
Some Efficient Procedures for Correcting Triangulated Models

1. Mtikela*
A. Dolenc

Helsinki University of Technology
Institute o.lIndustrial Automation

July 1993

Abstract

This paper describes methods for handling efficiently a large class of problems encountered when
dealing with 3D models represented by a collection of triangles in STL format. In spite of its drawbacks,
the STL format has become a de facto industrial standard for transferring models to manufacturing
processes generally known as Rapid Prototyping Techniques (RPT) or Solid Freeform Fabrication (SF2).

As the accuracy and size of the workspace of such processes increases, so does the size of the models one
wishes to manufacture. Therefore, the efficiency of application programs is an important consideration.
Previous published work has focused on the problem of eliminating gaps in triangulated models. In
addition to efficiency, this paper descrihes methods for dealing with other problems such as overlapping
triangles and intersecting triangles. The algorithms have been implemented and tested in industry. The
underlying data structures hased on adaptive space subdivision also allow the development of other
efficient tools such as slicing.

1 Introduction

Data transfer between CAD systems and RP processes is mainly based on data exchange formats capable of
representing faceted models. 1l1e current defacto standard is the STL format [1] which allows one to represent
triangulated models. i.e. each facet is a triangle.

•••

••••••

•••••

•••••••••

In order for models to be correctly manufactured they
must represent a collection of one or more non-intersecting
solids. The manufacturer hopes to receive "well-behaved"
STL-files such as the one outlined in Figure 1. In a correct
STL-file. each triangle has exactly one neighbour along
each edge and triangles are only allowed to intersect at
common edges and vertices. Under these conditions. it is
possible to distinguish precisely the inside from the outside,
of the model.

Figure 1: A correct triangulation.

*Otakaari 1, SF-02150 Espoo, Finland. Tel:+358-0-45 13372. Fax:+358-0-45 13293. Email (Internet): ima@cs. hut. fL

126

Unfortunately. quite often incorrect
faceted models are used. 1l1e mistakes
can be numerous (Figure 2). 1l1e mod­
els can contain gaps due to missing
facets, facets may intersect at incorrect
locations, the same edge may be shared
by more than two facets, etc. Special
cases of these errors may occur that re­
quire separate treatment, e.g. overlap­
ping facets (coplanar facets whose in­
tersection results in another facet). The
reasons for such errors are related to the
application that generated the faceted
model, the application that generated
the original 3D CAD model, and the
user. Many STL interfaces in CAD
systems fail to inform the user that the
result is not correct and problems re­
main undetected until the manufacturer
attempts to process the model.

Gap

Figure 2: Incorrect triangulations.

The objective of this paper is to describe efficient algorithms for (i) verifying if the model is correct, (ii)
detect the mistakes in the model, and (iii) automatically correct as many mistakes as possible. Additional
requirements are portability and user friendliness. the latter implying that the parameters should be easy to
understand and have a predictable effect on the output.

The paper is organiZed as follows. One of the key aspects are the data structures used so we begin with
their description in Section 2. Next, in Section 3 we outline the algorithm used to process an STL-file.
The algorithm for determining the topology of the model-i.e. the neighbours of a given triangles along its
edges-is described in Section 4. Determining the correct orientation of the triangle normals-a requirement
of the STL format-is described in Section 5. Detecting incorrect intersection and the handling of special
cases of overlapping triangles is described in Section 6. Section 7 outlines a gap elimination algorithm for a
restricted class of gaps. Related and future work is discussed in Section 8 and, finally, we state our conclusions
in Section 9.

2 Data structures

Efficient handling of large geometrical data sets requires special data structures. We use an adaptive space
subdivision scheme that reduces the amount of browsing involved when searching for objects nearby a given
object, and adopted a method that is a variant of quadtrees [9]. The system is called the CELL space subdivision
system (other data structures are also suitable for this application [9, 10]).

A bounding box, or space, surrounding the objects must be known in advance. Associated to each object
is a bounding box of dimension n. 1l1e space is subdivided into smaller regions, or cells, until either each cell
contains at most N objects or the depth of the subdivision reaches a maximum D. The subdivision is done by
splitting the cell using iso-oriented hyperplanes of dimension n - 11 and always at the midpoint. The direction
alternates at each level of subdivision.

iThe hyperplanes will correspond to lines in two dimensions and planes in three dimensions.

127

IB
I. __

~ .. -,
'D 1
1 1
._ ••1

, ,

I

Pi,

/\o

(\
A C FEB D

Figure 3: An example space subdivision and tree
representation.

X 'c '

Figure 3 illustrates a space subdivision with
six objects, n =2 and N = 3. A suitable data
structure for representing the space subdivi­
sion is a tree. In the example shown. white
nodes are the internal nodes and the black
nodes are the leaf nodes, or simply leaves.
The information stored in the nodes is very
simple. The internal nodes contain orlly point­
ers tothesubtrees;it is not necessary to store
bounding boxes or splittingdirections because
this information can be derived as the tree is
searched. The leaves contain simply an array
of pointers to the objects.

Finally, objects contain a bounding box, a query number and a reference to user data. Suppose a query Q,
a rectangle, intersects the bounding box of object E. In order to avoid E being reported twice, the queries are
numbered and objects that are reported by a given query are assigned the same number. If an object already
has the same number as the current query then it is ignored. The query numbers of allobjects would have to be
reset only when the query counter overllows, an unlikely event if the platform uses 32-bitinteger arithmetic.

When inserting a new object, it may happen that it is impossible to subdivide a cellsuch that only N objects
remain, e.g. if N +1 triangles share the same point. The default action is to subdivide until a maximum depth
D is reached. Alternatively, the application programmer can supply a boolean function Subdivide? that will
browse the objects and determine if it is worth attempting the subdivision.

Searching such a data structure is efficient because the number of possible neighbour candidates is usually
small. We only have to check nearby objects, instead of going through the entire collection. Furthermore,
in our applications the data stnJcture is semi-static. A1ler initial object insertion, objects added to the data
structure do not change significantly the original bounding box of the space, and very few deletions are done.
Thus, no reorganization of the data structure is needed during the processing.

Interface

The interface consists of four functions. GellInit creates the data structure according to the set of param­
eters already mentioned earlier, namely the bounding box, maximum cell occupancy, and maximum depth.
GellInsert and Gel/Delete are used to update the data structure. Finally, GellQuery is a function thattakes
as arguments a bounding box and a query number and it returns a list of all objects that intersect the given
bounding box.

Analysis

In general, the size of a CELL data structure is bounded by 0(2D + n), where n is the number of objects.
In our applications, we set D equal to llogz (lnINJ)J+ I, so the size is bounded by O(n) and the height
of the tree by O(log n). Regarding the computation time for updates and queries, so far we have not made
any attempt to analyse the complexity of the worst and average cases. However, experiments indicate that the
performance is excellent.

Application-dependent data structures

128

...............e, .• ..., records are referenced with an application data
pointer from the objects. The triangle record has
pointers to the vertices and to the edge-neighbors. A field
is reserved a normal vector and a reference counter for
memory management. The vertices are indicated by a set
of pointers, {va, VI, V2}. Edge i is defined by the vertices
Vimod3Vi+lmod3, and associated to each edge is a pointer ni
to the corresponding neighbouring triangle.

a =b
1 0

Figure 4: Two neighbouring triangles
A and B.

The data associated to each vertex consist of three Hoating-point values defining the xyz-coordinates, a
reference counter and a vertex id.

3 Outline of the algorithm

The data structure is very flexible in the sense that when one is equipped with such a data structure there
are various solutions to the problems layi ng ahead. We have chosen those that favour minimizing memory
resources at the expense of computation time.

Before the structures can be initialized, it is necessary to read the input file to gather the required
information, i.e. the bounding box enclosing the model and the number oftriangles. Next, two CELL structures
are created, namely TCell will contain objects associated to the input triangles, and ECell will contain the
edges with no neighbours and is used to construct the gaps. The user may supply the maximum occupancy
for each of structures to override the internal defaults. Based on the maximum occupancy, the
depth of the associated trees is bounded by a suitable constant to obtain a balance between the main resources,
namely memory and computation time.

The first stage evaluates the topology 0 fthe model, detects gaps, exact duplicates, and degenerated triangles.
TCeli is used to collect vertices that are equal within a tolerance E. Once the vertices have been merged and
values have been assigned to the pointers Vi then we proceed to detect the edge-neighbours and assign values
to the pointers ni. The triangle is now ready to be insertedinto TCell. After all triangles have been inserted,
it is possible to determine the existence of gaps but not their actual description.

direction ofthe normals is now evaluated because this information is needed for correcting the gaps
and that might be detected subsequently. The next stage consist of verifying the model. The
description of the gaps is evaluated and errors such as improper intersections and overlapping triangles are also
detected. Some of these errors can be corrected whereas others can only be reported. Once errors have been
corrected, the normals are oriented again because if gaps where present it is possible that the first orientation is
incorrect. In fact, if the gaps have not been all eliminated, it is not possible to guarantee that the second attempt
is successful either. Finally, the triangles and a description of the errors are written to files in the required
format.

4 Creating the topology

Creating the topology for a model consists of collecting for each triangle t neighbourhood information about t.
More specifically, it consists of detecting the triangles that share common vertices andectges with t. Naturally,
the first step is to begin with the vertices.

I Detecting vertex-neighbours

Let us assume that all triangles inserted so far into TCell have their corresponding Vi pointers already initialized
to correct values. (In the sequel. the Euclidean coordinates of an unprocessed triangle are denoted Vi as opposed
to the associated pointer which is denoted Vi.)

129

For each vertex Vi E t we apply the following procedure. The bounding box BBi == BoundingBox(Vi)+€
is evaluated, where E is a small constant to account for rounding errors that probably occurred when the model
was created. Next, the set of triangles liN eighbouTCandidates == CellQuery(TCell, BBi) is evaluated.
The vertices V' of all triangles t' E liNeighbouTCandidates are searched to find the closest one to Vi E t.
Once found, the associated pointer is assigned to Vi.

If a triangle collapses to a line or a point then it is deleted and is not inserted into TCell.

4.2 Detecting edge-neighbours

Ifa little more effort is done while finding the vertex-neighbours then enough information can be made available
to easily detect the triangles that share a common edge with t. Let lImin be the closest vertex to Vi evaluated
by the procedure outlined above. Since the entire set 1IN eighbouTCandidates is searched one can collect
the triangles that already share the same pointer Vmin.

Let us say that these triangles are placed in a set denoted by 1INi. For each k = 0, 1,2 we compute
I == NVk n NVk+lmod3. If III = 0 then the neighbour of t along the edge k either does not exist or has not
yet been inserted in TCel!. In this case, no further action is taken. If III > 1 then a possible error condition
has been detected, namely an edge is heing shared by more than two triangles. The edge is tagged accordingly
and the tag will be cleared if another edge from another triangle matches it. Edges shared by 2n triangles
with n > 1 are reported has warnings whereas edges shared by 2n + 1 triangles with n ~ °are reported has
errors. We call the latter odd-edges. Finally, if III = I then the neighbour oft along edge k has been found.
The pointer nk is set equal to Vlllill and a glohal counter, ErlgeH it, is incremented by one.

After all triangles have been inserted into TCell, the value of EdgeHit must equal 3N, where N is the
number of triangles. If Edgel! it < 3N then the entire set of triangles is searched for the odd-edges. These
are placed in ECell for subsequent use during the gap elimination stage. Before a triangle is inserted, though,
we verify if it is an exact duplicate, i.e. if all pointers ni have the same value. In this case, the triangle is
discarded because it is likely that it is the result of duplicate or coincident surfaces2•

5 Orienting the triangles

An initial triangle to is chosen arbitrarily and a queue of triangles U is initialized. A ray is cast in the direction
of the normal vector jJ0 of to. The direction of jJ0 is determined by the number of intersections between the
ray and the mode1. The vertex pointers Vi are reordered according to the specifications of the S1L format which
states that as the fingers of the rigth-hand follow the vertices the thumb must be pointing towards the outside
of the model. TCell is used to minimize the number of ray-triangle intersection tests. Only the triangles that
are located in cells that are hit by the ray need to be taken into consideration.

Once a triangle t has been oriented, all its edge-neighbours that have not yet been processed are placed in
the queue U, if not already there. The next triangle to be processed is the one at the head of the queue. When
the queue is empty we verify if all triangles in the model have been processed. Ifnot then the next unprocessed
triangle t~ is again chosen arbitrarily and the same procedure is applied once nlore.

At this point, we would like to introduce the concept of a component. Loosely speaking, a triangle t belongs
to the same component as t' if one can he reached by the other by "walking" along edge-neighbours. (For
precision purposes we include the following definition using concepts from Graph Theory. Let = (V, E)
be a graph where each vertex v E 1I corresponds to a triangle and an edge e =vw with v, w E V is an edge
of G if the triangle associated to 11 is an edge-neighbour of the triangle associated to w. Because the property
is reflexive, G is an un-directed graph. In a sense, the graph G is the "dual" of the triangUlated mode1. A
path in G is any connected set of edges. Two vertices are said to be in the same component C of G if a
finite path can be found between them. Two triangles tv and tw are in the same component if the associated
vertices v, w E V are in the same component of G. Finally, notice that the algorithm above corresponds to a
breadth-first search-BFS, for short-{)n the graph G.)

2In some cases, discarding both is a hetter alternative.

130

Clearly, a "by-product" of the ahove algorithm is the set of components of the model. This information
will be useful to detect more efficiently errors such as improper intersections.

It may happen that the orientation of a triangle is not consistent with all its neighbours. This happens when
the model contains a non-orientable component such as a Moebius strip. The user is notified of such errors but
no attempt is made to correct them.

It is possible to avoid one ray casting operation by choosing a suitable triangle as the first one. Let to to
be a triangle that is not parallel to the :qJ-plane and that touches the bounding box of the model. If the model
is correct then such a triangle must exist. Let 11 E to be a vertex that touches the bounding box. Then the
xy-projection of V+ No must be outside the projection of the bounding box onto the xy-plane. Experiments
indicate that, in our case, this method did not improve significantly overall execution times.

We draw the attention of the reader to the fact that if the model is incorrect then it is not possible to
guarantee that the direction of the normals is correct. However, one can state that the normals of the triangles
associated to the same component are oriented consistently. This property is sufficient for correcting some
errors in the model.

6 Checking the model

Errors are categorized into three classes. Gaps are detected during topology re-construction and their handling
is described in the following Section. Improper intersections may exist even if no errors where detected
in previous stages of the algorithm. Overlapping triangles are a special case of intersections and are dealt
with separately. One type of overlapping triangles, namely duplicate triangles, was already dealt with during
topology re-construction. Two triangles t and t' intersect improperly if their intersection is a line segment that
does not correspond to a common edge. On the other hand, they overlap if their intersection is a facet.

These errors are expensive to detect and report even when using the CELL data structure. The first stage
treats each component C of the model separately. The second stage handles pairs of intersecting components.

The first stage is as follows. For each triangle t E !vI the set

ICa,'tulidntc8 == CcliQuery(TCell, BO'ltndingBox(t»

is evaluated. The triangle t is checked for errors against those triangles in ICandidates that are in the same
component as t. In the case of improper intersections, one can also exclude the neighbours of t.

The second stage uses a CELL stmcture called C C ell. The objects in CCell are associated to the compo­
nents of the model. For each component C the set CCnnd-idates == CellQuery(CCell, BoundingBox(C))
is evaluated. Next, for each C' E CCaudidatc8, C f::. C' the fonowing procedure is applied. The bounding
box I = BoundingBox(C) n Bouudiu.fJBo:r(C') is evaluated. We now take from TCell the triangles
enclosed by this bounding box, i.e. the set T = C ellQ'uery(TCell, I) is evaluated. Finally, the triangles in
this set that belong to the component C must be checked against those of C', and vice-versa.

Consider the model shown in Figure 5. Each box forms
one component. Although each box in isolation is correct,
together they form an incorrect model because the result is
ambiguous. Additional information from the user would
be needed to correct the model and, therefore, improper
intersections are reported but no attempt is made to correct
them.

Figure 5: An incorrect model with
improper intersections.

131

-

Figure 6: Special case of overlap
removal.

Figure 6 illustrates a special case of overlapping triangles
that is corrected. One of the overlapping triangles, tb =
BCD, is removed whereas another one, t a = ABC, is split
in two. This situation can occur for various reasons, e.g. it
can be caused by errors in the triangulation of parametric
surface models [5].

7 Filling gaps

A gap is a closed polyline composed of odd-edges. It is easy to find the gaps using the ECell mentioned
in previous Sections. However. Hllingthegllps, or gap elimination, poses many difficulties. One problem is
choosing aset of"user-friendly" par:.uneters. Another problem-which has no hope ofbeing fully automated­
is filling the gaps such that the or('SinalhUentionsof the designer are preserved. It cannot be fUlly automatic
because given a model with more than one gap, it is not possible to decidealgorithm.ically if triangles should
be added such that each gap is fllled separately or such that the gaps are joined. Finally, regardless of which
choice is taken, we must find a method th~lt adds triangles such that the result is a valid model.

The method we describe here can be applied to one individual gap. Triangles are added to the gap until it
is closed or user-supplied tolerances prevent triangles from being added.

Consider a closed polyline P with n vertices, vo, vI, ••• , Vn"'l, where VQ = Vn-l. The distances di- and
di+ attached to a vertex Vi are the distance between the vertex Vi and vertices Vi-2 andvi+2, di- =Vi - Vi-2 and
di+ =Vi Vi+2, respectively. Vertices are sorted in ascending order according to the smallest distances di- and
di+, i =0, ... , n - 1. Let us assume that the distance rli+ was the smallest. The triangle ti+ = (Vi, Vi+b Vi+2)
is added if the normal direction of the new triangle does not differ too much from the normals of those triangles
which contribute to the edges V(Ui+ I and vi+ IVi+2. When a triangle is added to the model, one vertex is
removed from P and all distances are re-evaluated for the remaining points in the polygon. In the above
example, if the triangle ti+ was added then the point 'lJi+ I is removed. The procedure is applied until the
polyline P "shrinks" to a polyline with only five vertices or tolerances prevent further triangles from being
added. The latter occurs when the smallest distance is greater than a user-supplied tolerance t g • If P has only
five vertices then it is triangulated using two triangles such that the area of the result is minimized.

Figure 7: An erroneous fill triangle t.j.

132

The procedure uses an additional parameter tao This pa­
rameter is an upper bound on the angle between the normals
of the original triangles and the fill triangles. Its main pur­
pose is to avoid "cusps", Le. to create a smooth blend to
fill the gap. It minimizes the chances of adding a triangle
that will overlap or intersect neighbouring triangles. Con­
sider the situation in Figure 7. Without normal checking,
the algorithm might suggest to add the triangle ti which is
clearly an error.

cllmct

Another example is shown in Figure 8. If the normals are

M
\ taken into account then better results are usually obtained..
\. TIle default value for ta is 90 degrees.

illcorrect , ". ---:.
,..... I

,,' "
Figure 8: The etIect of using normal

information.

8 Related and future work

Rock [8] described a method for generating topological information from an STL-file. The fundamental
difference is the use of AVL-trecs for vertex matching. Apparently though, this data structure is not appropriate
for range queries [9] (e.g. CcliO '/I.(;"'Y is an implementation of n-dimensional range queries). "Back-pointers"
from merged vertices to the associated triangles are used to detect edge-to-edge relationships. We chose not
to use such pointers in order to economize memory resources. A method for orienting the triangles is not
described.

Barequet [2] describes the best method (so far) for eliminating gaps in faceted. models. One of the ideas
exposed. is the use of global information to verify if adding a given set of facets would result in a valid solid.
If the set fails this test then another one is taken until either a successful set is found or such a set cannot
be computed. such that tolerances are respected. The method used for finding an alternative set of matches is
efficient. It is certainly an idea that could improve the algorithm described in this paper but significant changes
would be necessary. The method described in this paper for filling gaps utilizes only local information.

Bf2jhn [3] categorizes gaps into nve classes. Unlike Barequet, the gaps are apparently oriented. prior to gap
elimination. Gaps can be merged or connected if they share a common vertex and are located. in different
components (shells). In our opinion, this is not a general criterion. The method for adding triangles to fill
the gap does not take into account the shape of the neighbouring triangles. The algorithm does not use any
user-supplied. tolerances although it is not difficult to include them in the algorithm described.

The problem of generating a triangulation to till a gap can be related to the more general problem of
generating a faceted model from a set of 3D points. In the case of gap elimination, some of the edges are
already given. In this more general setting, O'Rourke [7] describes a method for generating a pOlyhedra of
minimal area given a set of 3D points.

The algorithms described in this paper have been implemented by one of the authors and tested with
numerous models from industry. It incorporates all the features described in this paper. It is written using
the C language and is highly portable. being available on several ditTerent platforms. Several output formats
are supported., namely binary and ASCII STL. Personal Visualizer WAVEFRONT (OBJformat), and IGES.
Diagnostics (description of the gaps, non-manifold edges, improper intersections,etc)are reportedinVDA-FS
format. Full details can be obtained elsewhere [6]. TIle implementation is available as commercial product.

The data structure has been used to implement other algorithms such gap elimination in parametric
surface models [4] and slicing.

We are exploring the possibility of using secondary storage to handle models with O(104) T n.,oC'

Thealgorithmsdescrihed •• in.this paper COUld. be easily •generalized to facets but a significantportion of the
implementation would need re-writing. Besides, our feeling is that the limits of a non-interactive tool have
been reached and that the greatest benefits are to be gained by implementing appropriate interactive tools.

133

9 Conclusions

In this paper we have presented an emcient algorithm for handling polyhedra models represented in STL
format. An algorithm for tIlling indi vidual gaps that takes into account the shape of the neighbouring triangles
was presented. In addition, we have explained how to generate the topology of the model, orient the facets, and
detect all errors that can occur in the description of a model in addition to gaps. Special cases of these errors
are automatically corrected. The eHkiency of the algorithms is based on the usage of good data structures,
namely binary trees associated to spatial subdivision. The algorithm has been successfully tested in industry
and provenuseful.

We would expect productivity to improve if a better data exchange format replaced the STL-format.
Not that the problems discussed here would simply vanish; rather they would be minimized and occur less
frequently. The "quality" of a model represented in a neutral file format is directly related to the capabilities
of the format, the tool used to convert the model to the given format, and the user. Due to user expectations
regarding RPr, it will always be necessary to verify and correct models regardless of the format chosen for
data transfer.

10 Acknowledgements

This work was done within the INSTANTCAM project, an European Consortium ofpartners from both industry
and research centers. Although not all partners have been directly involved in software development, they
have all contributed in some way, eilher with suggestions, support, patience, or testing of the tools. The
partners are, in alphabetical order, I31I3A (G), I31ack&Decker GmbH (G), Danfoss A/S (DK), the Danish
Technological Institute (DK), E&D Design (SF), Helsinki University of Technology (SF), Instituto Superior
Tecnico (P), NTH-SINTEF Production Engineering (N), Raufoss A/S (N), Oy Saab-Valmet Ab (SF), and
Wilhelm Karmann GmbH (G). At HUT, we received the financial support ofTEKES.

References

[1] 3D Systems, Inc. Stereolilhograplry Interface Spec(ficatioll, July 1988.

[2] G. Barequet and M. Sharir. Filling Gaps in the I30undary of a Polyhedron. Under preparation, 1993.

[3] 1. H. B0hn and M. J. Wozny. Automatic CAD-model Repair: Shell-Closure. In Proceedings ofSolid
Freeform Fabrication Symposium, pages 86-94, Austin, Texas USA, 1992.

[4] A. Dolenc. Rapid recipes for parametric surface models. Submitted to Computer-Aided Design, 1993.

[5] A. Dolenc and I. MtikeH1. Optimized Triangulation of Parametric Surfaces. Technical Report TKO-B74,
Helsinki University of Technology, 1991. To be published in Mathematics of Surfaces IV.

[6] Helsinki University of Technology, Otakaari 1, SF-02I50 Espoo, Finland. TR2STL User Guide, Opus
1.9d, January 1993.

[7] J. O'Rourke. Polyhedra or Minimal Area as 3D Object Models. In A. Drinan, editor, Proceedings of the
7th Joint Conference on ArlUicialllllelligence (!.ICAI-8]), volume II, pages 664-666, August 1981.

[8] S. 1. Rock and M. J. Wozny. Generating Topological Information from a Bucket of Facets. In Proceedings
ofSolid Freeform Fabricatiofl Symposium, pages 1-15, Austin, Texas USA, 1992.

[9] H. Samet. The Design and Analysis qf Spatial Data Structures. Addison-Wesley Publishing Company,
Inc., 1989.

[10] M. Tamminen and R. Sulonen. The EXCELL Method for Efficient Geometric Access to Data. In
ACM/IEEE 19th Design Automation COI{lerence, pages 345-351, June 1982.

134

