










 

[18].  For cellular material design, the number of design variables far exceeds the number of 
objectives, which is similar to fitting a low order polynomial model to a large data set.  The least-
squares formulation for this problem is given by Eqn. 6. 
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where Pi,target is the target value of the ith objective, Pi,actual is the actual value of the ith objective, 
and X is the vector of design variables.  This error term is to be minimized, so the derivative of S 
is set equal to 0: 
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where the partial derivative term is the Jacobian, J(X), of the system, Since J is nonlinear, an 
iterative solution technique must be used to solve for the unknown coordinates, X.  Gauss-
Newton methods are typically used to solve such problem.  We used the Levenburg-Marquardt 
(LM) method [16], an extension of Gauss-Newton methods, since it tends to be more robust 
when sensitivities in the Jacobian are small.  The iteration function for the LM method is: 

Xk+1 = Xk + [(Jk)T Jk + µkI]-1 (Jk)T [Pi,target – Pi,actual]       (8) 
where, µk is a scalar damping parameter that aids stability of the method. 

We use Matlab to solve the process planning problems.  Its non-linear least-squares solver, 
lsqnonlin, selects from Gauss-Newton and LM algorithms to solve problems.   

4 SYNTHESIS EXAMPLES 
Two examples will be used to compare the performance of the PSO and LSM algorithms.  

One example is a cantilever beam composed of square unit cells, while the other is a simply 
supported bridge structure, which utilizes a ground truss as the starting configuration.  Both 
problems are in 2-dimensions. 

4.1 Cantilever Beam Example 
Four cantilever beam problems were investigated, each consisting of square 10x10 mm unit 

cells.  The beams consist of 1x3, 3x8, 4x11, and 9x25 unit cells, where each unit cell consists of 
four beams (lattice struts) arranged in a square.  As shown in Figure 4 for the 3x8 case, the left 
end is fixed and the right end is loaded with a 10 N point load.  Design variables are the beam 
diameters.  Target deflections of nodes at the free end are determined as 20 percent of the 
deflection of a solid beam (through finite-element analysis).  Target volumes were: 226.2, 
1407.4, 2448.1, and 11938 mm3 for the four cases. 

 
Figure 4  Cantilever beam problem, 3x8 case. 



 

 
Figure 5  Representative result of PSO for the 3x8 case. 

 
Table 1.  Results of cantilever beam experiments for PSO and LSM. 

1x3 PSO     LSM    

 Run # Init. Obj. 
Value 

Objective 
Value 

Function 
calls 

Time 
[sec] 

Init. Obj. 
Value 

Objective 
Value 

Function 
calls 

Time 
[sec] 

9 variables 1 0.3888 0.0361 3638 158.31 0.3888 0.016 24 0.609 
 2 0.3888 0.0113 4140 178.85    
 3 0.3888 0.0251 4850 211.07    
 4 0.3888 0.0165 5828 242.84    

3x8 PSO     LSM    

 Run # Init. Obj. 
Value 

Objective 
Value 

Function 
calls 

Time 
[sec] 

Init. Obj. 
Value 

Objective 
Value 

Function 
calls 

Time 
[sec] 

56 variables 1 1.4867 0.0286 8714 6919 1.4867 0.0811 118 15.92 
 2 1.4867 0.0241 5401 4228.6 6200 0.0054 181 26 
 3 1.4867 0.0149 3945 3141    
 4 1.4867 0.0169 4252 3322    

4x11 PSO     LSM    

 Run # Init. Obj. 
Value 

Objective 
Value 

Function 
calls 

Time 
[sec] 

Init. Obj. 
Value 

Objective 
Value 

Function 
calls 

Time 
[sec] 

99 variables 1 2.3915 0.0877 4811 12567 2.3915 0.0099 308 102.9 
 2 2.3915 0.0710 7266 18828 9340 0.0653 310 103 
 3 2.3915 0.0600 3200 8284.2    
 4 2.3915 0.0910 3059 7914.9    

9x25 PSO     LSM    

 Run # Init. Obj. 
Value 

Objective 
Value 

Function 
calls 

Time 
[sec] 

Init. Obj. 
Value 

Objective 
Value 

Function 
calls 

Time 
[sec] 

475 variables - - - - - 6.81 0.01 958 7474 
      24000 0.1412 1438 11745 

 

Results are shown in Table 1.  The table is organized by the sizes of the problems (e.g., 1x3, 
3x8, etc.).  Initial and final objective values are reported, along with the number of function calls 
to the objective function and the total time required.  Multiple runs were performed for PSO 
since it is a stochastic algorithm.  Note that the 15x40 case was too large to run and that only 
LSM could achieve a solution in the 9x25 case.  The two LSM solutions in the 3x8, 4x11, and 
9x25 cases represent problems where the initial designs had strut diameters of 2 mm and 1 mm, 

465



 

respectively.  Note that the 1 mm cases were initially far from optimum, improved significantly, 
but did not result in as low of an objective function value as the 2 mm case (except for 3x8). 

Results indicate that PSO and LSM achieve approximately the same objective function 
values, but LSM is one to two orders of magnitude faster than PSO.  Example solutions for the 
3x8 case are shown in Figure 5 and for the 9x25 case in Figure 6.  Note that the PSO solution 
exhibits significant variations in strut sizes, but the variation does not follow obvious patterns.  
Although this may be expected due to the stochastic nature of PSO, we expected a more uniform 
decrease in strut size from left to right as PSO neared convergence.  A much more uniform size 
variation is observed in the LSM results. 
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Figure 6  Results from LSM method for the a) 3x8 case, and b) 9x25 case. 

 

4.2 Bridge Example 
The second synthesis example is a three-point bending lattice structure problem, as shown in 

Figure 7.  The premise of this example was to reduce the weight of the structure as much as 
possible without sacrificing stiffness at the central point load of –1 N.  The bridge was assumed 
to be 40 mm long and 20 mm tall.  This problem falls into the category of the well known 
Michell truss problems.   

Rather than utilize a unit lattice approach, we decided to start with a ground truss.  Two 
versions of the problem were investigated, one with a 5x5 ground truss and one with a 7x7 
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ground truss.  Both problems were symmetric about the center-line; the 5x5 node problem had 
102 variables while the 7x7 node problem had 377.  As usual, the design variables are the beam 
diameters.  It should be noted that the minimum value for strut diameters was constrained at 
0.001, instead of zero, to maintain the mathematical stability of the finite-element code utilized 
to analyze the model.  After the optimization was complete, struts whose diameters fell below a 
lower threshold Dt=0.5 were removed from the structure, yielding a reduced number of 
individually sized struts.  The target deflection of the top center node is zero.  The relative 
weights of the deflection and volume goals are equal to 1. 

Initial experiments showed that both PSO and LSM had limited ability to identify 
appropriate solutions from a complex ground structure. To overcome this limitation, while 
preserving the routines’ access to the entire design space, an initial “seed” was presented at the 
onset of each problem. This seed consisted of a potential lattice design with elements that were 
likely to be appropriate for the final solution sized larger than those that were not. The seed was 
placed as one member of the initial population for particle swarm optimization, while it 
represented the initial configuration of the system for least squares minimization.  

 
Figure 7  Ground truss (5x5) for Michell beam example. 

 
Again, LSM outperformed PSO by one or two orders of magnitude in terms of computation 

times as shown in Table 2.  For the 5x5 case, PSO did not converge; synthesis was terminated 
after 200 iterations.  In contrast, the LSM algorithm converged relatively quickly, using only 213 
objective function calls, compared to 10,050 calls required by PSO.  PSO did achieve a lower 
objective function value, 0.065 vs. 0.079 for LSM.  Example solutions are shown in Figure 8.  
Note that the PSO solution represents a very efficient, interesting solution, an isosceles triangle, 
which is close to the optimal solution.   

For the 7x7 case, PSO returned a wide range of solutions and converged sometimes.  The 
best solution had an objective function value of 0.059, which required 10,050 function 
evaluations (no convergence).  For the fastest convergence case, the solution had an objective 
value of 0.159 and required 2600 objective function evaluations.  In contrast, LSM required 773 
function evaluations to achieve an objective function value of 0.088.  Representative solutions 
for the 7x7 case are shown in Figure 9.  Note the resemblance to the optimal Michell truss [13].  
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Figure 10 shows the typical progression of objective function values vs. generations for the PSO 
algorithm.  Note that it is difficult to predict if or when reductions in objective function values 
will occur with this algorithm.  We terminated PSO after 200 generations, but could have 
selected a different number of maximum iterations, which may have resulted in lower objective 
function values. 
 

Table 2.  Results of PSO and LSM on the bridge problem. 
5x5         

PSO run # Generations 
Objective 
Value 

Function  
calls LSM 

Objective 
Value Function calls 

 1 200 0.164 10050   0.079 213 
 2 200 0.696 10050     
 3 200 0.065 10050     
 4 200 0.065 10050     

7x7         

PSO run # Generations 
Objective 
Value 

Function  
calls LSM 

Objective 
Value Function calls 

 1 40 0.116 4100   0.0877 772 
 2 200 0.091 20100     
 3 100 0.059 10100     
 4 200 0.099 20100     
 5 25 0.156 2600     
 6 200 0.084 20100     
 

 
Figure 8  Example PSO (left) and LSM (right) solutions for the 5x5 problem. 

 

   
Figure 9  Example PSO (left) and LSM (right) solutions for the 7x7 problem. 
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Figure 10  Typical progression of objective function values vs. generations for PSO. 

 

4.3 Discussion 
Both PSO and LSM produced results that were, for the most part, acceptable and appropriate 

for the problem. Particle swarm optimization was more apt to produce hanging struts, which are 
only attached to the structure on one end. This was most likely a result of the stochastic nature of 
the method, which introduces a certain amount of randomness into the solution. The differences 
in final objective function value between the two solution methods were on the order of 17% for 
the 5-by-5 truss, and 5% for the 7-by-7 truss, which is not significant for this portion of the 
design space. However, least squares minimization required approximately 96% fewer 
evaluations of the problem. For such complex problems, in which the time required for a single 
evaluation of the finite-element truss problem might be measured on the order of minutes, this 
reduction represents a significant reduction in processing time. 

While inclusion of an initial seed in the bridge problem dramatically increased the 
performance of both processes, its use reduces the extent to which the remaining portion of the 
design space is searched and requires pre-existing knowledge of the approximate solution. Both 
of these effects negate a certain amount of the utility of these processes, since computational 
optimization is implemented as a direct result of the large and complex design space. 

The need for an initial seed for LSM was not terribly surprising, since such gradient-based 
methods are often sensitive to the presence of local minima in the design space.  PSO’s difficulty 
locating an appropriate solution was unexpected, however, since the primary argument for its use 
is the ability to broadly search complex problems. It is possible that this difficulty could be 
alleviated through different settings of the various parameters of the optimization process 
(population size, particle velocity, etc).  However, we used values that were recommended in the 
literature and fine-tuned by our experience. The difficulty in identifying more appropriate 
parameters lies in the length of time required for optimization, which is so great that it prohibits 
an exhaustive study of complex problems. If the parameters guiding the PSO process must be set 
individually for each design problem in order to provide accurate results, the usefulness of the 
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process would be dramatically reduced. In the end, it might be more efficient to perform 
iterations of LSM and rely on multiple initial configurations to avoid local minimums present in 
the problem. 

Computational complexity results are displayed in Figure 11 as the number of objective 
function evaluations vs. the number of design variables.  For the PSO runs in Tables 1 and 2, 
blue diamonds are displayed if PSO did not converge.  For the two cases where PSO did 
converge (Table 2), pink squares are plotted.  Green triangles indicate the results for LSM runs in 
Tables 1 and 2.  It is clear that PSO takes many more function evaluations to achieve objective 
values that are comparable with those found by LSM.  The range of function evaluations appears 
to increase as the number of design variables increases, indicating a wide variation in execution 
times.  When PSO does converge, considerable time savings are realized, but LSM converges 
more quickly.  Although it is not clear from Figure 11, the LSM data points fall roughly on a 
linear curve, suggesting a very favorable linear increase in computational demands as problems 
get larger. 
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Figure 11.  Number of objective function evaluations vs. number of design variables for the PSO 

and LSM methods. 
 

5 CONCLUSIONS 
Two synthesis algorithms were compared for their use in designing structures with cellular 

materials, which are characterized by complex geometries and large numbers of design variables.  
Synthesis algorithms for such structures must be able to efficiently and effectively search large 
design spaces for promising design regions and for local optima.  Two simple 2-D problems 
were explored, a cantilever beam and a simply-supported plate.  When lattice materials are used 
to comprise the beam and plate, the design problems consist of hundreds of design variables.  
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The objective function to be minimized was a weighted sum of deflection and volume.  Based on 
experiments with these problems and the Particle Swarm Optimization (PSO) and Least Squares 
Minimization (LSM) algorithms, the following conclusions can be offered: 

• Both PSO and LSM found very good designs. 

• LSM converged much more quickly than PSO, often by more than an order of magnitude 
fewer objective function evaluations. 

• PSO was somewhat more effective in searching the large design spaces, as evidenced by 
the slightly lower objective function values that were found.  However, PSO rarely 
converged in the range of generations that PSO was allowed to run. 

• Good initial designs were needed to ensure good performance of both PSO and LSM.  
LSM needed a good initial design, while PSO needed at least one good design in its 
initial generation.   

• LSM will be utilized for design synthesis in the future for sizing problems, while PSO 
will only be used when exploring large, complex design spaces where good 
configurations are not yet known. 
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