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Powder bed fusion additive manufacturing (PBFAM) is well suited for the fabrication of metallic 

components with thin features that would be otherwise impractical using other manufacturing methods.  

As component designs begin to take full advantage of the capabilities of additive manufacturing, so must 

the capability of measurement techniques used in assessment of quality increase. The characterization of 

quality may be application specific, requiring different metrics for different uses, e.g. impact on thermal 

vs. mechanical considerations. Here, thin fins are built with a wide range of processing conditions to test 

the limits of thin, metallic components using PBFAM. These thin fins are inspected using novel computed 

tomography (CT) based measurement techniques to assess their build quality. Within the process 

parameters tested, fins were successfully built thinner than manufacturer-recommended minimum wall 

thickness using default process parameters. The quality of these fins was assessed utilizing post-build 

non-destructive evaluation techniques developed herein.  
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Introduction 

Powder bed fusion additive manufacturing (PBFAM) technology enables unique designs that 

revolutionize many of the traditional manufacturing design guidelines and principles. In particular, 

PBFAM provides the opportunity to design and fabricate structures with thin internal structures that 

would otherwise be impossible for more traditional subtractive manufacturing methods. Of particular 

interest is the use of PBFAM in the design and construction of heat exchangers, which benefit from light 

weighting and advanced geometries [1], [2]. 

Additive manufacturing is well suited for the manufacture of heat transfer components. Though 

for many applications the surface roughness present of as-built PBFAM components represents a 

hindrance in its application due to reduction in fatigue properties [3], for heat transfer applications, the 

increased surface roughness can be of benefit in enhancing convective heat transfer [4]–[6]. Potential 

improvements to heat exchangers with PBFAM technology are not limited to increased surface 

roughness, but also include the complex and thin geometries made viable through its use [5], [7], [8].  

While PBFAM is well suited to the design and fabrication of thin geometries that would be found 

within a heat exchanger, thin geometries may result in further complications. While commercial PBFAM 

systems come with material specific processing parameters for the fabrication of components, previous 

studies have shown that these parameters may not be ubiquitous to all part geometries [9], [10]. 

Yadroitsev et al. (2007) demonstrated that effective processing parameters may also be dependent not 

only on material, but also local geometry [11]. Based on these studies it is imperative to define process 

parameters that are specific to not only machine and material, but geometry as well.  

Prior studies have shown that PBFAM heat exchangers can exceed the heat transfer capabilities 

of traditionally manufactured ones [8], [12], [13]. Further advancements are possible through redesign of 

heat exchangers specifically for additive manufacturing [13].  As part of this effort it is necessary to 

identify PBFAM system capabilities and define processing parameters that will produce optimal heat 
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exchanger features. This study seeks to define the limits of a PBFAM system in producing the thinnest 

fins that would be suitable for use in a heat exchanger.  Fins are measured using novel X-Ray computed 

tomography (CT) based  measurement techniques developed herein; measurements are compared to 

traditional cross-sectioning measurements.  

Methodology 

Thin fins at a range of different fin angles were all constructed on an EOS M280 PBFAM machine using 

Inconel 625 with 40 µm layers. Fin geometries, shown in Figure 1, include a pedestal to isolate the fin 

geometry from the build plate and to allow wire EDM removal of the fins without damage. The top 

surface of the pedestal is angled so that the fin is always built perpendicular to the surface. The fin angles, 

defined as the angle at which the fin is built with respect to the (X-Y) build plane, are varied (45°, 67.5°, 

and 90°) to assess the impact of fin angle on quality. Fins are built using a scan path, with single- double 

and offset-scan trajectories, along the length of the fin using a range of laser powers and scan velocities.  

To achieve this the fins themselves are designed as a zero thickness 2D surface geometry, and ascribing 

user-specified scan parameters to each fin. 

 

Figure 1: Schematic illustrating the fin and pedestal geometry and dimensions (in mm). All fins extend 9.65 mm into the page. (A) 

Fin angle 45° (B) Fin angle 67.5° (C) Fin angle 90°  
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Figure 2: Schematic defining build angle for fins with the build direction perpendicular to the XY plane 

Recognizing that recoater blade interference can also play a role in the quality of thin features, the 

build angle, defined as the angle between the fin and the recoater, as shown in Figure 2, was also varied. 

Only two build angles were used, where a build angle of 90° is defined as being perpendicular to the 

recoater and a build angle of 45° is defined as the fin being rotated 45° about the Z axis.  Fins were 

spaced evenly with a constant radius about the center of the build plate, as shown in Figure 3 for the 45° 

build. A constant radius was used to reduce effects that may arise from variations in laser path length and 

angle-of-incidence. A summary of geometric parameters that are varied in this study can be found in 

Table 1. 

 

Figure 3: Build layout for fins built with 45° build angle 

Table 1: Summary of geometric parameters varied in the fin study 

Build Angle (°) Fin Angle (°) 

45 45 

90 67.5 

 90 
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Processing parameters altered within this study include: scan speed, laser power and the laser 

scan type. Power and scan speed are common parameters to vary in the definition of new process 

parameters [11]. The laser scan type determines the number of scan paths for each layer and the relative 

distances between the scan paths.  For these fins, the laser scan type is used in place of the more common 

parameter, hatch spacing. Three different laser scan types are used: single, double, and offset. Fins built 

with the single laser scan type are built with only one laser path per layer. Fins built with the double laser 

scan type are built with two laser scan paths with each overlapped directly on one another.  The final laser 

scan type, referred to as offset, is defined by two laser trajectories that are offset by 70 µm. The various 

process parameters used in the study are summarized in Table 2. 

Table 2: Summary of process parameters used in fin study 

Scan Speed (mm/s) Laser Power (W) Laser Scan Type 

900 70 Single (S) 

960 100 Double (D) 

1500 285 Offset (O) 

 

Due to the large number of processing and geometric parameters within this study, a complete 

design of experiment was not feasible. Instead, fin angle and laser scan type parameters were varied 

together to enable assessment across a larger parameter matrix. Table 3 shows a list of the parameter sets 

used for each build, i.e. one built with a 45° build angle, and the other built with a 90° build angle 

resulting in a full set of 56 test fins for the experiment.  

Table 3: List of all fins built and their respective label and parameters. 

Fin 

Name 

Scan 

Speed 

(mm/s) 

Power 

(W) 

Fin 

Angle 

(°) 

Laser 

Scan 

Type 

Fin 

Name 

(Cont) 

Scan 

Speed 

(mm/s) 

Power 

(W) 

Fin 

Angle 

(°) 

Laser 

Scan 

Type 

A# 900 70 90 S N# 960 100 90 O 

B# 900 70 67.5 D O# 960 100 67.5 S 

C# 900 70 45 O P# 960 285 45 O 

D# 900 100 90 D Q# 960 285 90 S 

E# 900 100 67.5 O R# 960 285 67.5 D 

F# 900 100 45 S S# 1500 70 67.5 S 

G# 900 285 90 O T# 1500 70 45 D 

H# 900 285 67.5 S U# 1500 70 90 O 

I# 900 285 45 D V# 1500 100 67.5 D 

J# 960 70 45 S W# 1500 100 45 O 

K# 960 70 90 D X# 1500 100 90 S 

L# 960 70 67.5 O Y# 1500 285 67.5 O 

M# 960 100 45 D Z# 1500 285 45 S 
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In addition to the fins defined in Table 3, four fins were built using EOS M280 default processing 

conditions. Each of the default fins were designed to be a specified thickness: 300 µm, 200 µm, 100 µm, 

and 75 µm. Laser tool paths were defined automatically with fin geometries receiving the default laser 

scan path trajectories as defined by the EOS process software (PSW).  These fins were built at two 

different build angles (45° and 90°) and only one fin angle (90°).  

All fins from the study are subjected to 3D computed tomographic (CT) scanning using a GE 

phoenix v|tome|x system with a 300 kV microfocus tube. CT scan parameters were selected to provide 15 

µm voxels for the fins. The CT scan data for each fin was processed using a thresholding technique to 

differentiate solid material. The threshold value was determined through a qualitative analysis. 

Fortunately, as the fins are very thin, scans have a high contrast between solid and void regions which 

provides a clear definition of both solid material.  An example cross-section, comparing greyscale and 

binary images, for a fin is shown in Figure 4.  

 

Figure 4: Comparison of greyscale (left) and binary (right) for a single fin slice. 

Using the thresholded data, the median thickness and through-hole porosity of each fin were 

calculated within a user-defined central region of interest within each fin (to eliminate edge effects).  The 

region of interest is 5mm wide and 2 mm tall and is centered on the fin. After CT scans were completed, 

each fin was also cross-sectioned, mounted, and polished in a destructive process for comparison.  The 

thickness of each cross-sectioned fin was measured at five locations along the height. An example fin 

cross-sectioning measurement is shown in Figure 5 for fin H, which has a 67.5° fin angle and a  45° build 

angle. Although cross-sectional imaging is a more conventional measurement technique, when trying to 

assess the true thickness of the fin, it can be limiting. CT-based fin quality metrics allow for thickness and 

through-hole porosity measurements to be aggregated across a larger region of the fin area instead of 

confining measurements to individual cross-sectional areas. 
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Figure 5: Fin H (Build angle 45°, Scan speed 900 mm/s, Power 285 W, Fin angle 67.5° and Laser scan type Single) as built 

image (left) and cross-sectional measurements (right) (Measurements in Imperial Units) 

 

Figure 6: Single CT image of fin H with measurement regions highlighted. Region of interest (ROI) shown as a red rectangle and 

CT-based cross section region shown as a green line. 

For thin AM components there is a great deal of variability in both through-hole porosity and 

thickness. For comparison, the CT-based measurements are taken for fin H across a single cross-section, 

defined by the green line in Figure 6, and a region of interest (ROI), defined by the red rectangle in Figure 

6. CT-based cross sectioning and CT-based ROI measurements are compared against manual cross-

sectioning measurements in Figure 7. Table 4 shows the comparisons of median thickness of the three 

different measurement techniques used. Between the three measurement techniques there is a significant 

discrepancy in the median thickness. Even between the two CT-based measurements, Figure 7-(B) and 

Figure 7-(C), there is a discrepancy of 30 µm in the median thickness. Figure 8, a contour map of fin 

thickness across the ROI, shows the variation in thickness across the region of interest. This discrepancy 

is not the result of measurement error, but instead a result of the complex surface in the relative 

5 mm 

2 mm 
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measurement region.  The high variability of thickness across the fin defines the need for metrics that are 

aggregated across the surface of the fin to better asses the build quality.  

 

Figure 7: Histograms of measured fin thickness using different methods: (A) Manual Cross-Sectioning (Destructive) (B) CT-

based measurement aggregated across a single cross-section (C) CT-based aggregated across an entire ROI. 

Table 4: Comparison of measurement techniques for median thickness of a fin. 

Measurement Technique Number of 

Measurements Per Fin 

Median Thickness 

(µm) 

Physical Cross-Sectioning 5-6 267.5 

CT  Cross-Sectioning ~500 190 

CT Region of Interest ~40,000 225 
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Figure 8: Contour map of thickness across the region of interest for fin H (as measured from CT scan data). 

Results 

A comparison of the median thickness measurements from the CT based analysis and the cross-

sectioning measurement method is shown in Figure 9. The comparison between the manual cross-

sectioning measurements and CT-based ROI measurements reveal that the CT-based measurements 

frequently exceed measurements from manual cross-sectioning. Although the percent difference in some 

of these cases exceeds 30% it is important to note that discrepancies can be due to both differences in 

measurement techniques as well as what is also likely due to differences in the region of the fin where the 

measurements are taken. The consistent agreement between the two methods provides adequate 

confidence in the CT-based ROI method, therefore all further analysis will be respective to CT 

measurements.  

 

Figure 9: Comparison of median fin thickness from CT-based ROI measurement (CT) with manual cross-sectioning measurement 

(Cross-Sect) for build angle 45° (left) and 90° (right) 
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Figure 10:Percent difference in the median fin thickness between CT-based ROI measurements and manual cross-sectioning for 

build angle 45° (left) and 90° (right) 

Figure 11 and Figure 12 show the median thickness and through-hole porosity, respectively, for 

all fins built within this study. Fins that failed to build are designated in Figure 12 as having 100% 

through-hole porosity. Fin thicknesses reported in Figure 11 demonstrate that for a given scan speed (V) 

there is an increase in fin thickness as laser power increases. Additionally, there is a second trend that 

shows that as the scan speed decreases the resultant fin thickness increases. Neither of these trends are 

surprising as an increase in laser power or decrease in scan speed result in more energy input to a given 

region. Increased energy deposited into a given volume will increase the melt pool size and therefore 

produce a thicker fin. Fins built with a build angle of 90° are consistently thicker than the matching fin 

built with a build angle of 45°.  Figure 12, in conjunction with Figure 11, show that there is a trend where 

the thinner fins also exhibit the highest levels of through-hole porosity. The through-hole porosity and 

median thickness are also reported in Table 6.  

The thinnest fins produced with no porosity were either scanned with a single or a double laser 

scan, since the overlap scan strategy consistently produced thicker fins. This is consistent with the initial 

supposition due to the increased area being scanned by the laser due to offset of 70 µm for that laser scan 

type. Sorting fins by highest through-hole porosity identifies that the single laser scan is most likely to 

exhibit a higher porosity, followed by the double laser scan, with the overlap laser scan having the lowest 

porosity. It should be noted that the single, double, and overlap laser scan types were not isolated 

parameters in the test plan defined in Table 3. 
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Figure 11: Median fin thickness for all fins built highlighting the laser power (P) and scan speed (V) parameters for each fin. 

For the values corresponding to high medium and low see Table 3. 

 

Figure 12: Percent through-hole porosity for all fins built highlighting the laser power (P) and scan speed (V) parameters for 

each fin. For the values corresponding to high medium and low see Table 3. 

Figure 13 shows the median thickness and through-hole porosity of the fins built with the default 

EOS processing parameters and prescribed fin thickness defined in the Methodology section. In Figure 13 

there is a discrepancy between the prescribed fin thickness and the measured thickness. For the fins with 

300 µm prescribed thickness, the measured thickness is approximately 300 µm, but the fins designed with 

200 µm, 100 µm and 75 µm wall thickness exhibit similar thicknesses and through-hole porosity. This is 

likely an effect of the scan strategy, where only the 300 µm thick fin has a hatching region and the 

discrepancy between the other fins is defined by the offset of the contours tracing the outline of the fin as 

defined by the EOS process software. Typical hatch spacing for a PBF machine is between 100 µm and 

200 µm, which here would allow for hatches in the 300 µm fins. 
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Figure 13: Median thickness and through-hole porosity of fins built with default EOS processing parameters and prescribed 

thickness 

Discussion 
For fins within the channel section of a heat exchanger (i.e. with the same fluid on either side of the fin), 

some porosity is acceptable as flow across the fin surface would not result in unwanted mixing. However, 

for a tube sheet, which separates two different fluids, the geometry must be capable of preventing mixing 

and sustaining a pressure differential between the two flows; which requires that no porosity is present. In 

this analysis, we have addressed this by defining two categories of fins: the thinnest fins with less than 

10% porosity, and the thinnest fins with no porosity. Figure 14 highlights fins that match these definitions 

of successful fins.  

Figure 14 shows median fin thickness for all fins that are built with no through-hole porosity 

(left) and meet the 10% through-hole porosity threshold (right). For the fins built with the parameters 

defined in Table 3, the thinnest fin with no porosity has a median thickness of 97.5 µm and the thinnest 

fin within the 10% porosity threshold has a median thickness of 75 µm. For the best fins there is also a 

strong agreement, within 10% difference, between the cross-sectioning measurements and the CT-based 

ROI measurements. For fins built with default EOS parameters, Figure 13, the only fins built with no 

porosity has a median thickness of 338 µm. The thinnest fin that meets the 10% porosity threshold has a 

median thickness of 113 µm. These best fins for the experimental and the standard EOS parameter set are 

listed in Table 5 for easy comparison.  
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Figure 14: Median fin thickness of fins built with no through-hole porosity (left) and less than 10% through-hole porosity (right) 

Table 5: Summary of the best fins built using the standard EOS parameters and experimental parameters from Table 3. 

Fin Category Standard EOS Parameter Best with     Parameter 

Development 

Thinnest Fin with 

<10% porosity 

113 μm 

(100 μm design / 90° build angle) 

75 μm 

 (Fin K / build angle 45°)  

Thinnest Fin with  

no porosity 

338 μm 

 (300 μm design /90° build angle) 

97.5 μm 

(Fin D /build angle 45°) 

Conclusion 

As part of this study, numerous fins were constructed using a range of process and geometric parameters. 

Within the parameter space tested, the fin thickness increases with either an increase in laser power or a 

decrease of scan speed. Fins were analyzed with a combination of CT-based measurements aggregated 

over a region of interest, developed herein, as well as physical measurements performed using destructive 

cross-sectioning. The CT-based measurement technique represents an advancement in inspection methods 

allowing geometric measurements to be made automatically, allowing for a larger and more 

representative region of interest to be used to quantify build quality. 

Fins that were built with the parameters defined in Table 3 were compared against fins built with 

default EOS processing conditions. The best fins built with the varied processing conditions were thinner 

and less porous than the fins built with the default EOS processing conditions. Further development 

includes using the identified ideal processing parameters for fins in actual heat exchangers to test their 

effectiveness in working components. Future work also includes the development of additional 

measurement algorithms to determine other pertinent metrics to define fin quality using CT-based 

measurement techniques.  
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Appendix 

Table 6: Median thickness and through-hole porosity of fins built with processing parameters defined in Table 3 

Fin 

Name 

Median 

Thickness 

45° (µm) 

Median 

Thickness 

90° (µm) 

Through-

hole 

Porosity 

45° (%) 

Through-

hole 

Porosity 

90° (%) 

Fin 

Name 

(Cont) 

Median 

Thickness 

45° (µm) 

Median 

Thickness 

90° (µm) 

Through-

hole 

Porosity 

45° (%) 

Through-

hole 

Porosity 

90° (%) 

A# 103 101 0.225 0.202 N# 103 101 0.225 0.202 

B# 108 101 0.042 0.018 O# 108 101 0.042 0.018 

C# 155 142 0.132 0.129 P# 155 142 0.132 0.129 

D# 107 101 0.004 0.000 Q# 107 101 0.004 0.000 

E# 168 173 0.020 0.012 R# 168 173 0.020 0.012 

F# 130 NA 0.230 NA S# 130 NA 0.230 NA 

G# 247 243 0.000 0.001 T# 247 243 0.000 0.001 

H# 255 172 0.000 0.002 U# 255 172 0.000 0.002 

I# 267 254 0.000 0.000 V# 267 254 0.000 0.000 

J# 119 106 0.435 0.366 W# 119 106 0.435 0.366 

K# 89 73 0.033 0.037 X# 89 73 0.033 0.037 

L# 144 125 0.103 0.148 Y# 144 125 0.103 0.148 

M# 121 106 0.035 0.033 Z# 121 106 0.035 0.033 

 

Table 7:  Median thickness and through-hole porosity of fins built with default EOS processing parameters and prescribed 

thickness 

Defined Fin 

Thickness 

(µm) 

Median 

Thickness 

45° (µm) 

Median 

Thickness 

90° (µm) 

Through-hole 

Porosity 45° (%) 

Through-hole 

Porosity 90° (%) 

300 338 278 0.000 0.004 

200 98 90 0.159 0.132 

100 113 83 0.073 0.177 

75 113 90 0.127 0.176 
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