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Abstract 

Additive manufacturing (AM) is a novel fabrication technique capable of producing highly 
complex parts. Nevertheless, a major challenge is improving the quality of fabricated parts. While 
there are a number of ways of approaching this problem, developing data-driven methods that use 
AM process signatures to identify these part anomalies can be rapidly applied to improve overall 
part quality during build. The objective of this study is to build a new layer-wise process signature 
model to create the thermal-microstructure relationship. In this study, we derive novel key process 
signatures for each layer (from melt pool thermal images), which are reduced using multilinear 
principal component analysis (MPCA) and are directly correlated with layer-wise quality of the 
part. Using these key process signatures, a Gaussian SVM classifier model is trained to detect the 
existence of anomalies inside a layer. The proposed models are validated through a case study of 
real-world direct laser deposition experiment where the layer-wise quality of the part is predicted 
on the fly. The accuracy of the predictions is calculated using three measures (recall, precision, 
and f-score), showing reasonable success of the proposed methodology in predicting layer-wise 
quality.  The ability to predict layer-wise quality enables process correction to eliminate anomalies 
and to ultimately improve the quality of the fabricated part.  

1. Introduction 
Additive manufacturing techniques fabricate parts with complex shapes in a layer-by-layer 

manner, significantly reducing material waste and enabling new design options that are not feasible 
with conventional manufacturing technologies [1]. However, a major barrier that prevents wider 
industrial adoption of AM is that the quality of manufactured parts does not meet the stringent 
requirements of industrial application due to the existence of defects (e.g. porosity, cracking, etc.). 
There is an urgent need to develop layer-based quality measures for deposited layers so that 
correction actions can be taken to improve part quality during the fabrication.  Hence, establishing 
and quantifying the process-structure relationship of the metal additive manufacturing (AM) 
through new layer-based process signatures can provide great value towards tuning the part 
quality. 

The challenges associated with the development of the efficient layer-wise process 
signature is two-fold. First, there is a lot of uncertainty in the underlying thermo-mechanical 
process of metal printing associated with the compositional and process parameters. Existing finite 
element methods (FEMs) have been used to model correlation between thermal history and 
microstructure properties. Temperature distribution and thermal behavior are the key properties in 
studying the thermomechanical process which affect the part stress, formation and hardness as well 
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as phase transformation during the AM process which have been studied thoroughly by Matsumoto 
et al., Kolossov et al., Crespo et al  and Martukanitz et al. [2]–[5]. However, these approaches have 
several challenges that still need to be overcome: they are (1) dependent on part geometry, (2) time 
consuming, (3) non-robust to process uncertainty (deterministic nature), and (4) have high 
computational costs. Therefore, the current state of the art with FEMs cannot provide online 
predictions [6].  

Second, advanced sensing technologies have been utilized to monitor the thermal history 
during fabrication. The resulting sensing data has high dimensionality and a low signal-to-noise 
ratio. Existing data-driven methods focus on robust statistical methods to detect anomalies from 
thermal images [10]–[12]. However, most of the existing works use local features for prediction 
purposes. Thus, they cannot be directly utilized to characterize the profile of an entire deposited 
layer. Hence, layer-wise modeling has attracted the attention of the additive manufacturing 
community. Layer-wise spatial porosity evolution has been previously modeled by Lie el al.   based 
on X-ray computed tomography (XCT), which is a highly time consuming and expensive 
characterization technique [7]. Layer-wise defect monitoring based on advanced sensing systems 
has also been studied by Yao et al.[8]. 

 
Figure 1: Illustration of the four main steps toward achieving the key signatures: (a) initial layer-based thermal 
images, (b) tensor structure of layer, (c) extracted principal components, and (d) layer-wise process signature. 

In this work, we propose a data-driven methodology to extract thermal-based process 
signatures, which are directly correlated to the quality of the deposited layers. This represents a 
fundamental shift in the paradigm, from modeling and monitoring of individual melt pools to layer-
based modeling. To address the issue of high dimensionality of thermal history images, we propose 
to develop a tensor-based modeling approach to characterize the highly dynamic thermal-physical 
AM process, captured by the pyrometer camera during the build (see Figure 1(a, b)). A central 
premise of the proposed methodology is that a uniform thermal history tends to lead to 
homogenous microstructure of the deposited layers, resulting in a more consistent part quality. To 
characterize the variability exhibited in the thermal history, multilinear PCA is utilized to extract 
the spatiotemporal variation of thermal images as a tensor (Figure 1 (c)). We propose a novel, 
layer-wise quality signature using a convex hull based on multilinear principal components of all 
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individual melt pools from the same layer (Figure 1 (d)). We examine the uniqueness and 
sensitivity properties of the layer-wise quality index and prove that it is the most proper index 
which characterizes the change of quality of the deposited layers. The proposed methodology is 
validated using a real-world direct laser deposition experiment in which the layer-wise thermal-
based quality index predicts the distribution of porosity within the corresponding layers. This 
proposed new quality index provides the theoretical foundation for control/correction at laser 
based additive manufacturing (LBAM) process by accurately predicting the overall quality of 
deposited layers.  

The remaining of the paper is organized as follows: Section 2 provides the mathematical 
background behind the proposed methodology, Section 3 introduces the case study used to validate 
the methodology and Section 4 is the conclusion.   

2. Methodology 

2.1. Data Description and Challenges 

Thermal history is a term used to represent the thermal response (thermal cycling behavior) 
in manufactured parts as a function of time [9]. Thermal history is a signature of the build process 
and, thus, carries information about the microstructure of the part. Thermal history can be 
represented through images of melt pools captured by a pyrometer camera during the build. The 
melt pool is the region of superheated molten metal usually with a droplet shape that moves at a 
traverse speed [9]. Each image of melt pool includes location-based temperatures; therefore, each 
layer is a collection (video) of images. Dealing with layer-wise thermal history is challenging due 
to (1) high dimensionality of data, (2) corrupted and missing data, and (3) discrete sampling, where 
the number of melt pool samples are determined by the sampling frequency. Conventional 
approaches handle melt pool images one-by-one and provide predictions at the location of each 
individual melt pool. Therefore, these approaches do not deal with challenges concerning layer-
wise modeling of thermal history.  

In the following sections, we propose a method to reduce the dimensionality of images and 
through spatiotemporal variation between images, layer-wise key process signatures are extracted. 
Finally, the classification model is built upon key process signatures.  

2.2. Data Transformation 

Each melt pool is captured by the pyrometer camera as an image with a temperature reading 
at each pixel location within the field of views. Usually, the large size of these images (number of 
pixels) complicates processing without proper data reduction. Most important, the heat affected 
zone (HAZ) is usually condensed and carries the main features of the melt pool. Transforming the 
initial coordinate system and interpolating the temperature response surface can help to both 
emphasize the heat affected zone and reduce the data dimensionality. Converting the coordinate 
system from Cartesian to Spherical enables melt pools with different sizes, shapes, and locations 
to have identical support in the spherical domain [10]. Afterwards, incorporating a nonparametric 
surface interpolation (e.g., bi-harmonic model) allows data to be converted from discrete into 
continuous form. Having a continuous model in hand, a smaller grid of information can be 
extracted to effectively decrease the image size. Therefore, overall data dimensionality decreases 
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significantly. Considering the output of data transformation, each melt pool ℳ𝒊𝒊 is an image (tensor) 
with size 𝑙𝑙 × 𝑘𝑘. At this point, the next step is applying Multilinear Principal Component Analysis 
(MPCA)—a powerful tool for feature extraction and dimension reductions purposes. 

2.3. Feature Extraction with MPCA 

Multilinear Principal Component Analysis is a method developed [11] to extract features 
of high dimensional data expressed as tensors. One alternative approach is reshaping the melt pool 
data into large vectors (vectorization) and apply traditional Principal Component Analysis (PCA). 
However, vectorization causes computational and memory issues; moreover, vectorization breaks 
the natural correlation structure of original melt pool data [11]. MPCA is a dimensionality 
reduction algorithm that works directly on tensor objects instead of vectors.  

A set of 𝑁𝑁 tensor objects {ℳ1,ℳ2, … ,ℳ𝑁𝑁} is available for training. Each tensor object ℳ𝑗𝑗 ∈
ℝ𝐼𝐼1×𝐼𝐼2 accepts values from tensor space ℝ𝐼𝐼1 ⊗ ℝ𝐼𝐼2. The MPCA’s goal is to perform a 2-mode 
transformation of the original tensor data into a low dimensional tensor subspace. The 2-
dimensional melt pool data requires two projection matrices 𝑈𝑈�(𝑡𝑡). Each projection matrix {𝑈𝑈�(𝑡𝑡) ∈
ℝ𝐼𝐼𝑡𝑡×𝐼𝐼𝑡𝑡

′ , 𝑡𝑡 = 1,2} maps the tensor space ℝ𝐼𝐼1 ⊗ ℝ𝐼𝐼2 into a tensor subspace ℝ𝐼𝐼1′ ⊗ ℝ𝐼𝐼2′  where 𝐼𝐼𝑡𝑡′ < 𝐼𝐼𝑡𝑡. 
The transformation equation is 

ℳ𝑗𝑗
′ = ℳ𝑗𝑗 ×1 𝑈𝑈�(1)𝑇𝑇 ×2 𝑈𝑈�(2)𝑇𝑇 , 𝑗𝑗 = 1, … ,𝑁𝑁 

where ℳ𝑗𝑗
′ ∈ ℝ𝐼𝐼1′×𝐼𝐼2′  captures most of the variation from original data.  

2.4. Key Process Signatures of a Layer 

Key process signatures carry the most valuable features to discriminate healthy layers from 
unhealthy ones. To improve the performance of MPCA, it is critical to train it based on the healthy 
melt pools and afterwards, applying the estimated projection matrices to all melt pools to extract 
their principal components (PCs). The reason behind this procedure is that the healthy melt pools 
carry the same temperature distribution and projecting any unhealthy melt pool (different 
temperature distribution) using the projection matrices of the healthy model will lead to a 
significant dissimilarity in either of the key process signatures of layers.  

2.4.1. Primary Feature: Volume of the convex hull 

The first key process signature is directly derived from the PCs resulted from MPCA. The 
main idea is to find a measure to capture the dispersion of the PCs of all melt pools within one 
layer. Being defected causes at least one melt pool to have a major difference in PCs compared to 
the healthy ones which leads to more scattered points (as shown in Figure 2). To capture the 
dispersion, one reasonable approach is building a convex hull using the multiple number of PCs 
for each melt pool. Although, other geometric shapes, such as sphere, can also be utilized to 
enclose the points, convex hull builds a unique free form shape around data points which is also 
highly sensitive to the change in data points. Two theorems stated below demonstrates the 
advantages of using the convex hull over the minimal bounding sphere.  
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Figure 2: Illustration of the first layer-wise key signature. Examples of (a) a healthy layer and (b) an unhealthy layer. 

Definition 1: Convex Hull 
The convex hull of finite point set C is the intersection of all convex supersets containing 

C as 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶) = {∑ 𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1 |𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶, 𝜆𝜆𝑖𝑖 ≥ 0,∑ 𝜆𝜆𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 1} [12].  

Definition 2: Minimal Bounding Sphere 
The smallest bounding sphere 𝜔𝜔(𝐶𝐶) is the hypersphere with smallest radius which encloses 

a given point set C in its interior or on its boundary; i.e. ‖𝑐𝑐𝑖𝑖 − 𝑂𝑂‖ ≤ 𝑅𝑅,∀ 𝑖𝑖 ∈ 1, … ,𝑛𝑛, where O and 
R are the center and the radius of 𝜔𝜔 (𝐶𝐶), respectively. 

Theorem 1: Sensitivity 
Adding a new point 𝑥𝑥∗ to set C, 𝑥𝑥 ∉ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶), the convex hull will definitely get enlarged. 

On the other hand, its smallest bounding sphere may not change.  
Proof: If ∃𝜆𝜆𝑖𝑖∗: 𝑥𝑥∗ = ∑ 𝜆𝜆𝑖𝑖∗𝑐𝑐𝑖𝑖𝑛𝑛

𝑖𝑖=1 , 𝜆𝜆𝑖𝑖∗ ≥ 0,∑ 𝜆𝜆𝑖𝑖∗𝑛𝑛
𝑖𝑖=1 = 1, then 𝑥𝑥∗ ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶) and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶 ∪

{𝑥𝑥∗}) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶). Additionally, for the bounding sphere, ‖𝑥𝑥∗ − 𝑂𝑂‖ = ‖∑ 𝜆𝜆𝑖𝑖∗(𝑐𝑐𝑖𝑖 − 𝑂𝑂)𝑛𝑛
𝑖𝑖=1 ‖ ≤

∑ 𝜆𝜆𝑖𝑖∗𝑛𝑛
𝑖𝑖=1 ‖𝑐𝑐𝑖𝑖 − 𝑂𝑂‖ ≤ ∑ 𝜆𝜆𝑖𝑖∗𝑅𝑅𝑛𝑛

𝑖𝑖=1 = 𝑅𝑅, thus 𝜔𝜔(𝐶𝐶 ∪ {𝑥𝑥∗}) = 𝜔𝜔(𝐶𝐶). 
If ∄𝜆𝜆𝑖𝑖∗:𝑥𝑥∗ = ∑ 𝜆𝜆𝑖𝑖∗𝑐𝑐𝑖𝑖𝑛𝑛

𝑖𝑖=1 , 𝜆𝜆𝑖𝑖∗ ≥ 0,𝑎𝑎𝑎𝑎𝑎𝑎  ∑ 𝜆𝜆𝑖𝑖∗𝑛𝑛
𝑖𝑖=1 = 1, we need to add 𝑥𝑥∗ to the basis of the convex 

combinations which updates the supersets and extends the convex hull to 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶 ∪ {𝑥𝑥∗}) =
{∑ 𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛

𝑖𝑖=1 + 𝜆𝜆𝑛𝑛+1𝑥𝑥∗|𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶, 𝜆𝜆𝑖𝑖 ≥ 0,∑ 𝜆𝜆𝑖𝑖𝑛𝑛+1
𝑖𝑖=1 = 1} ≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶).  

Moreover, regarding the bounding sphere, if ‖𝑥𝑥∗ − 𝑂𝑂‖ ≤ 𝑅𝑅, 𝜔𝜔(𝐶𝐶 ∪ {𝑥𝑥∗}) = 𝜔𝜔(𝐶𝐶); and if 
‖𝑥𝑥∗ − 𝑂𝑂‖ > 𝑅𝑅, the radius 𝑅𝑅 needs to be enlarged to enclose 𝑥𝑥∗, i.e. 𝜔𝜔(𝐶𝐶 ∪ {𝑥𝑥∗}) ≠ 𝜔𝜔(𝐶𝐶). 

Theorem 2: Conditional Uniqueness 
Each point set has its own unique convex hull provided a fixed set of extreme points. 
Proof: Suppose we have one set of n points C. Assume that two different points 𝑥𝑥1∗ ≠ 𝑥𝑥2∗ 

are added separately to set C where  
∄𝜆𝜆𝑖𝑖∗:𝑥𝑥1∗ = ∑ 𝜆𝜆𝑖𝑖∗𝑐𝑐𝑖𝑖𝑛𝑛

𝑖𝑖=1 , 𝜆𝜆𝑖𝑖∗ ≥ 0,𝑎𝑎𝑎𝑎𝑎𝑎  ∑ 𝜆𝜆𝑖𝑖∗𝑛𝑛
𝑖𝑖=1 = 1  

∄𝜆𝜆𝑖𝑖∗:𝑥𝑥2∗ = ∑ 𝜆𝜆𝑖𝑖∗𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 𝜆𝜆𝑖𝑖∗ ≥ 0,𝑎𝑎𝑎𝑎𝑎𝑎  ∑ 𝜆𝜆𝑖𝑖∗𝑛𝑛

𝑖𝑖=1 = 1 
which means both points are exterior and according to Theorem 1, adding either of them to set C 
enlarges the convex hull into a new one where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶 ∪ {𝑥𝑥1∗}) ≠  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶 ∪ {𝑥𝑥2∗}). On the other 
hand, if ‖𝑥𝑥1∗ − 𝑂𝑂‖ ≤ 𝑅𝑅 and ‖𝑥𝑥2∗ − 𝑂𝑂‖ ≤ 𝑅𝑅, the boundary sphere stays the same even though new 
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extreme points have been added to the set, i.e. 𝜔𝜔(𝐶𝐶 ∪ {𝑥𝑥1∗}) = 𝜔𝜔(𝐶𝐶 ∪ {𝑥𝑥2∗}). Overall, while convex 
hulls of two different sets are different, their corresponding minimal boundary spheres can be 
identical.   

Volume of the convex hull decently measures the dispersion of the points. The more 
dispersion within data points, the more increase in volume of the convex hull. The algorithm on 
how to calculate the volume of a high-dimensional convex hull is provided in [13]. 

Although the convex hull is an effective measure for layer characteristics, the extracted 
PCs may not capture all the variation in data.  Additionally, a valuable portion of information may 
get lost during projection from a higher dimension tensor to a lower dimension one. This is the 
reason why another signature feature should be introduced to account for the part not considered 
in primary feature. 

Secondary Feature: Maximum Norm of Residuals 

Each melt pool after projection loses a portion of data, whose amount differs from one melt 
pool to another. Backward projection of each melt pool using the projection matrices 𝑈𝑈�(𝑡𝑡) will 
create a tensor which is of the same dimension as the initial input tensor to MPCA. Subtracting 
these two tensors generates the residual tensor. Backward projection is  

ℳ𝑗𝑗
′′ = ℳ′𝑗𝑗 ×1 𝑈𝑈�(1) ×2 𝑈𝑈�(2), 𝑗𝑗 = 1, … ,𝑁𝑁   

where ℳ𝑗𝑗
′′ accepts value from tensor space ℝ𝐼𝐼1 ⊗ ℝ𝐼𝐼2, same as its initial tensor ℳ𝑗𝑗. Therefore, 

the residual tensor is ℛ = ℳ𝑗𝑗 −ℳ𝑗𝑗
′′. One way to represent this residual tensor is through 

Euclidian norm, sometimes called the L2 norm. 

 
Figure 3: Demonstration of norm of residuals for melt pools of two layers. Orange bars are the norms for melt pools 
of the unhealthy layer where blue bars are for healthy layer. Other than first unhealthy melt pool, all the healthy melt 

pools have similar L2-norm residual. 

Since MPCA is trained using healthy melt pools, it is expected that projecting defected melt pools 
results in bigger residuals than healthy ones. Choosing the maximum norm of residuals inside a 
layer (maximum between melt pools) is the most effective way of capturing anomalies. If there 
exists at least one unhealthy melt pool inside a layer, it causes the maximum norm of residuals to 
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increase noticeably (as shown in Figure 3). This is a similar idea with the group control chart in 
statistical quality control [14]. 

2.5. Classification: Correlating Layer Signatures to Structural Quality 

After defining the signature features, the convex hull volume, and the norm of residuals, 
the classification model can be trained. The goal of the classifier is to draw a boundary between 
healthy layers and defected layers.  Moreover, it should be able to predict the labels of newly 
observed layers. As mentioned before, if one layer contains at least one porosity, it is labeled as 
unhealthy (as shown in Figure 4). The classifier’s input is one vector of response labels (0 if 
healthy, 1 if unhealthy) and a matrix of two predictors: the convex hull volume and the maximum 
norm of residuals.  

Choosing a classification technique is a critical step. The classifier should be powerful 
enough to discriminate the healthy layers from unhealthy ones and additionally, it should not over-
fit the data with unnecessary complications. Support Vector Machine (SVM) is a powerful 
classification technique with a variety of kernel functions. Gaussian SVMs have the most 
flexibility among SVM classifiers. Fine Gaussian SVM makes finely detailed distinctions between 
classes (at the cost of overfitting in some cases). Medium Gaussian SVM has lower flexibility than 
Fine Gaussian and prevents overfitting issue. Medium Gaussian SVM is the suitable choice of 
classification in this study.  

 
Figure 4: The illustration of part of unhealthy layer which includes pores. 

3. Case Study 

The performance of the proposed methodology is examined using a direct laser deposition 
process which fabricates a thin wall Ti-6AL-4V. During the build of this thin wall, a pyrometer 
camera has captured the thermal images of the melt pools at different locations of the thin wall. 
Afterwards, X-ray scans are used to characterize the layer-wise porosity structure inside the build. 

The aforementioned thin wall includes 60 layers where each layer contain several melt 
pools in temporal order. Out of the 60 layers, 26 layers include at least one pore. These 60 layers 
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of data are divided into two sets, first part of data is used to train the model and second part is used 
to test the performance of the classifier. Before dividing data into training set and testing set, all 
thermal images are transformed into spherical coordinates and interpolated with a bi-harmonic 
model. Interpolation model is used to extract a lower dimensional grid of data. In thin wall data, 
each image with size 130 × 130 is transformed into a new grid with size 27 × 32. 

After data transformation, key signature features are extracted and classification model is 
trained. Two types of cross validation techniques are discussed to analyze the performance of the 
proposed method. 

The number of PCs chosen to form a convex hull for each layer affects the output of 
prediction. Sensitivity analysis is a reasonable approach for determining which number of PCs 
ends up with better classification and F-score. Figure 5 shows the calculated f-scores for 
dimensions (number of PCs) varying from 2 to 11. According to Figure 5, choosing 7 PCs (7 
dimensional convex hull) leads to a better classification.  

 

Figure 5: Effect of number of PCs in F-Score of classification 

3.1. Leave-one-out Cross Validation 

Leave-one-out is an N-fold cross validation where N represents the number of samples. 
The confusion matrix after applying the model for 60 layers is shown in Table 1. 

Out of 60 layers, 4 layers are misclassified where one is healthy and three others are 
unhealthy. The accuracy of model can be defined with three measures namely precision, recall and 
F-score. These measure can be calculated using below formulas.  

Recall =
True Positive

True Positive + False Negative
  

Precision =
True Positive

True Positive + False Positive
 

F-score is the harmonic mean of precision and recall. 
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F − Score = 2 ×
Precision × Recall
Precision + Recall

 

Table 1: Confusion Matrix for the Leave-one-out Cross Validation 

  Predicted 
    Healthy Unhealthy 

Actual 
Healthy 33 (97%) 1 (3%) 

Unhealthy 3 (11.5%) 23 (88.5%) 

For leave-one-out cross validation, the recall is equal to 0.88 and precision is equal to 0.96. 
The classification model accuracy is reasonably high (F-score is 0.92). To investigate the 
misclassified layers, first it is necessary to classify all of the layers. According to Figure 6, three 
of the unhealthy layers are misclassified which are the same layers as the ones misclassified in 
leave-one-out cross validation. Three of the unhealthy layers are behaving as healthy layers and 
this may be due to the missing data points within layers during sampling with the pyrometer 
camera. Removing these misclassified layers from the training set causes the classifier to correctly 
predict the one misclassified healthy layer, increasing precision and F-score to 1.00 and 0.94, 
respectively. 

 
Figure 6: Full classification of all 60 layers 

3.2. Monte-Carlo Cross Validation 

Repeated random sub-sampling validation, also known as Monte-Carlo cross validation 
[15], randomly splits dataset into training and testing (validation) sets. Out of 60 layers, 50 layers 
are assigned randomly to training set which are later used to train the classifier and remaining 10 
layers are chosen to test the classifier.  

This random selection is performed 1000 times and all the three measures are calculated 
for each iteration.  In each iteration, misclassified layers are removed from training set until all the 
layers are classified correctly. The mean and standard deviation (SD) value of the recall, precision 
and f-score are shown in Table 2.  
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Table 2: Illustration of random cross validation output in terms of three measures 

 Recall Precision F-
Score 

Mean 0.8774 0.9857 0.9195 
SD 0.1509 0.0647 0.0979 

One output of one iteration is illustrated in Figure 7 where there exist 7 healthy and 3 
unhealthy layers in the testing set. The classifier is trained using 50 random layers and 
misclassified layers are removed to the point where there is no misclassified layer. Having the 
classifier model in hand, a prediction is made for the layers in the testing set. 9 out of 10 layers are 
classified correctly and only one unhealthy layer is misclassified. The classification model uses 
medium Gaussian to classify the layers, which is shown with black dotted line in Figure 7. The 
bottom-left region of the line is classified as healthy. 

 

Figure 7: Illustration of one iteration of Monte Carlo cross validation  

4. Conclusion 

The main challenge in additive manufacturing process is its lack of repeatability which 
leads to quality issues such as internal porosity in the build. Extensive studies have been focused 
to address the quality issue, including data-driven methods that provide a local prediction based 
on single melt pools. The major contributions of this study include  

1. A data-driven dimension reduction technique is used to decompose melt pool images based 
on MPCA; 

2. Two novel layer-wise process signatures are proposed based on thermal history of the 
entire layer; 
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3. The SVM classifier is used for real-time layer-wise quality prediction 

This proposed model will provide the foundation for online control/correction actions for LBAM 
processes by accurately predicting the layer-wise quality in real time. 
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