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Abstract

Metal powder-based additive manufacturing (PAM) typically results in microstructures 
with a texture and columnar grain structure. The columnar grains can vary greatly in size and 
shape throughout the microstructure, which can significantly affect the mechanical properties of 
the resulting part. A previous study developed a microstructurally informed crystal plasticity con-
stitutive model that took into account grain sizes and shapes then showed that grain geometry can 
influence the prediction of mechanical behavior of the part. In the present work, the influence of 
grain aspect ratio, size, and loading direction on the resulting mechanical properties of the PAM 
part are investigated through a parametric study. Results show that considering size and shape 
effects have the tendency to increase the material yield strength while decreasing the initial strain 
hardening modulus. Using this knowledge, it may be possible to optimize a PAM microstructure 
using process parameters to produce a part which exhibit superior yield strength and hardening 
modulii compared to traditional materials.

Introduction

Metal powder-based additive manufacturing (PAM) processes involve continued melt-
ing and solidification of metallic p owder. The rate at which material cools after solidification as 
determined by the thermal gradient, influences t he evolution of t he l ocal m icrostructure. Large 
thermal gradients lead to substantial local stresses in the solidified material [ 1]. Because of the 
elevated temperature, the yield stress of the material is substantially decreased meaning that the 
local thermal stress can lead to local yielding of the material. Local yielding results in non-uniform 
plastic strain which, when coupled to the mechanical constraint of the support structure (e.g. the 
base plate), may cause large residual stress and undesirable distortion of the build part. Residual 
stresses in the build part have been suggested to deteriorate fatigue strength [2] and decrease PAM 
part’s service life. Additionally, the stress evolution in the microstructure may produce defects, 
such as dislocations, pores, and microcracks [3].

The microstructure resulting from a PAM process typically has a texture due to epitaxial 
grain growth. The grains are often columnar with different grain sizes and aspect ratios, which 
affect the mechanical properties of the material. To numerically study these effects, a number of
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finite element (FE) models have been developed. Early models primarily focused on challenges
associated with a moving heat source, material evolution, and computational cost of the simulation
[4, 5, 6, 7, 8, 9]. Subsequent studies focused on residual stress evolution and the role of process
parameters in the PAM process in influencing these residual stress [10, 11, 12, 13, 14, 15]. A more
recent study [16] focused on the development of a microstructure-informed constitutive model de-
veloped to describe the mechanical behavior of solidified material produced by PAM by extending
the recently reported [17, 18] microstructural-feature size-dependent crystal plasticity constitutive
model for nickel superalloy materials. A follow-up study [19] developed a method to better cap-
ture the grain boundaries, and therefore grain shape, to more accurately represent the local stress
intensification of irregularly shaped grains.

In this work, the models developed previously [16, 19, 20] are extended to examine the
effects of grain size and shape on the prediction of the mechanical behavior of a material. First, an
overview of the crystal plasticity model along with its implementation is presented. Next, synthetic
microstructures that contain features seen in PAM microstructures are generated and meshed to
create an FE model of a representative volume element (RVE). The generated FE models are used
to conduct a parametric study where average RVE aspect ratio and grain size are varied. As part
of this study, the constitutive response is varied to consider cases with no size or shape effects,
size effects only, and both size and shape effects. The effect of load direction is also examined by
considering longitudinal (i.e., along the dominant grain direction) and transverse (i.e., out of plane
of the dominant grain direction) tension and shear.

Constitutive Model and Homogenization

The crystal plasticity constitutive model implemented in this work is an extension of the
grain-size dependent crystal plasticity constitutive model described in [17, 18]. The constitutive
model has been extended by [16] to account for the aspect ratio of grains and is based on a core and
mantle framework to describe the effect of a grain boundary. In this framework, a grain boundary
influence region where there is an increased resistance to dislocation nucleation is considered. The
resistance to dislocation nucleation in the region has a maximum value at the grain boundary and
fades away at the inner boundary of the region in the grain. The resistance in the grain bound-
ary influence region is represented in a fasion similat to that of work-hardening, where the grain
boundary effects are associated with an increase in strength and decrease in initial strain-hardening
modulus. By treating the grain boundary influence similar to work-hardening, the crystal plasticity
constitutive modeling framework used to capture work-hardening effects can be implemented. A
brief overview of the framework is presented here to elucidate how the grain boundary effects are
incorporated; further details can be found in [16].

The instantaneous shear strength of a slip system, α, at a material point at location r in
the grain boundary influence region can be stated as the additive decomposition,

g(α)(r, t) = g
(α)
0 + g

(α)
GB(r) + g

(α)
L (r, t), (1)

where g(α)0 is the shear strength of the material points outside the grain boundary influence region
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of an annealed sample, g(α)GB(r) represents the grain boundary effect on the strength, g(α)L (r, t) rep-
resents the increase in strength due to strain-hardening as a result of mechanical loading, and r
and t are location and time, respectively. The resistance to dislocation motion due to the grain
boundary effect has no evolution in time. Thus, it can be represented as an integration in the total
strain in all slip systems, dγ, according to

g
(α)
GB(r) =

∫ γ̃GB(r)

0

ġ(α)(γ̃, γ̇(β))dγ, (2)

where ġ(α) is the rate of strain hardening, β is any slip system, γ̇ is the shear flow rate, and γ is
the cumulative shear flow strain. The grain boundary effects and the effects from loading, as stated
above, appear the same as a work hardening type behavior. However, the grain boundary effect is
not a physical quantity but rather a mathematical one introduced to allow for a variation in strength
and initial strain hardening modulus. As such, this quantity must be separated appropriately from
the actual strain caused by loading and is denoted with the (̃) symbol. Equation 2 can be simplified
by use of the strain-hardening modulus, hαβ , so that

g
(α)
GB(r) =

∫ γ̃GB(r)

0

Σ(β)hαβ(γ̃)
∣∣γ̇(β)∣∣ dγ. (3)

Equation 3 can be further simplified by considering the special case of a hyperbolic secant squared
type strain-hardening with

hαβ = qαβh0∞sech
2

∣∣∣∣ h0∞γ

τs − τ0∞

∣∣∣∣ , (4)

where qαβ differentiates latent-hardening (α 6= β) and self hardening (α = β), h0∞ is the ini-
tial hardening modulus, and τs is the maximum resistance to shear flow. The previous equations
are very general since they are defined on a material point basis. However, the computational
implementation of the equations on a material point basis can be challenging for a realistic 3D
microstructure. In this work, an alternative approach using homogenization on a grain-by-grain
basis is utilized. The total strength can be rewritten as,

g(α)(r, t) = τo∞ + gGB +

∫ t

0

ġ(α)dt, (5)

where
gGB = g

(α)
GB(γ̃GB) (6)

and

γ̃GB =

∫
VGB

γ̃GB(r)dV

V
. (7)

The above integration is aided by mapping the arbitrary grain geometry to a simplified domain,
such as a sphere or an ellipsoid. Considering only size effects, a simple sphere with the volume
equivalent of the grain is sufficient to represent the grain. The diameter of this sphere is found as
d = V

( 4
3
π)

, where d is the diameter of the representative sphere and V is the known grain volume

of the arbitrarily shaped grain. Considering both the size and shape effects requires the use of an
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ellipsoid, which can be represented by a general quadric surface ψ(x, y, z) = 0, where ψ(x, y, z)
is a quadratic polynomial given by,

ψ(x, y, z) =A1x
2 + A2y

2 + A3z
2+

A4xy + A5yz + A6xz+

A7x+ A8y + A9z + A10

. (8)

Individual grains are then represented using an ellipsoid that provides the best fit in terms of min-
imum linear least square (llsq) error. The approach essentially uses all the known points on the
arbitrary grain surface to determine the appropriate coefficients, Ai, for the given grain. With a
known integrable grain geometry, the integration in Equation 7 can be performed by assuming a
constant grain boundary thickness, δGB, and parameterizing the ellipsoid and grain boundary in
terms of the radii.

Model Generation

In this work, RVEs of microstructures that are similar in nature to those identified experi-
mentally via Electron Back Scattering Diffraction (EBSD) imaging in actual PAM microstructures
are synthesized using a continuum diffuse interface model [20]. The resulting synthetic microstruc-
ture generated by the continuum diffuse interface model is represented in figure 1. The data in the
RVE is in the form of a 3D matrix with each (i, j, k) location containing a grain label from 1 to
N , where N is the total number of distinct grains in the microstructure. The structure of this data
is similar to the data structure used in gray scale images such as those obtained from magnetic
resonance imaging (MRI) and computed tomography (CT) scans. As such, the voxel image data is
imported into ScanIP, a software developed by Simpleware (Synopsys, Mountain View, USA) to
semi-automatically segment such image data.

Figure 1: RVE of synthetic microstructure generated by the 3-D continuum diffuse interface model.

The segmentation process creates a surface representation of each grain, which is then
used to generate a surface and volume FE mesh. To eliminate the “stair stepping” effect inherent
to the data structure, an algorithm to anti-alias and smooth the data is applied to ensure smooth
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contours along the grain boundaries. Following the smoothing of the surface data, the segmented
boundaries are converted into a triangulated surface representation, then a multi-part surface dec-
imation algorithm followed by a Delaunay tessellation with tetrahedral elements is applied [21].
A tetrahedral mesh is used in this work as it better represents the grain geometries (and therefor
overall RVE behavior) at a similar or lower computational cost compared to a hexahedral mesh
[19].

The finite element model in this work is implemented in Abaqus/Standard (Dassault
Systems, Providence, RI, USA) implicit FEA package [22], with the crystal plasticity constitutive
model highlighted earlier, implemented through a user material subroutine (UMAT). The RVE
faces have periodic boundary conditions applied. The constitutive model parameters used in this
work are taken from a copper cubic lattice structure and from literature [23, 24]. The copper
cubic lattice structure used to define the elastic material properties C11, C12, and C44 and the
plastic material parameters ȧ, n, and q were obtained from [23]. The parameters ȧ and n are
the parameters for a power law flow rule. The material properties τ0∞, τs and h0∞ (eq. 4) were
determined by matching the stress-strain behavior of a grain-size independent simulation with the
stress-strain behavior reported for the sample with large average grains [24]. A grain boundary
thickness δGB of 0.333µm was chosen. All the material parameters used in this study are shown
in Table 1.

Table 1: Material parameters used for the numerical simulation.

Parameters Value
τ0∞ 9 MPa
τs 95 MPa
ȧ 0.001 /s
n 10
q 1

C11 168.4 GPa
C12 121.4 GPa
C44 75.4 GPa
γ̃∗GB 1.07
h0∞ 240 MPa

Note that the value of n obtained from the previously referenced works [23, 24] was 100,
but a value of 10 is used in this study. The parameter n controls the rate dependence of the material
and higher values of n result in a more intensive computational problem. To demonstrate the effect
of the n variability, identical problems were run with only the value of n varying from 10 to 100
(Figure 2). Figure 2a shows how the choice of n influences the predicted stress-strain behavior
and Figure 2b shows how n influences computational time. The stress-strain behavior is relatively
unaffected except for the absolute value of the predicted stress. However, the computational time
using n = 10 compared to using n = 100 is increased by a factor of 4. The goal of this study is
to generate large amounts of comparative data, thus n = 10 was chosen to expedite the data col-
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lection process. The results of the study are not affected by this choice as the material parameters
are irrelevant as long as they are consistent between analyses. The results only show changes in
predicted mechanical behavior due to changes in how the grains in the RVE are represented, i.e.
no size or shape effect, size effect (grains represented by a sphere), or size and shape effect (grains
represented by an ellipsoid). The trends seen between runs due to changing grain size/aspect ratio
and load direction are being analyzed in this purely computational study.

(a) Variation of stress and strain with a
changing n value.

(b) Computational cost in execution time,
in hours, to run the example problem as a
function of the parameter n.

Figure 2: The effect of varying n on mechanical behavior prediction and computational time.

Results and Discussion

Three RVE microstructures are generated and analyzed in the parametric study presently
being conducted. The three RVEs are generated by using three different combinations of parame-
ters in the continuum diffuse interface model. The RVEs are referred to by the anisotropy factor κ0
that controls the anisotropy associated with the grain aspect ratios as described in [20]. Three κ0
values of 1, 3, and 5.5 were chosen to generate RVEs with three distinctly different aspect ratios
as shown by Figure 3. The three κ0 values were chosen to simulate an equiaxial grain structure
(κ0 = 1) such as that seen in the traditional manufacturing process, a slightly directionally-biased
grain structure (κ0 = 3), and a highly elongated grain structure (κ0 = 5.5). The last two are
representative of features that can be seen in PAM microstructures. Each RVE has approximately
300 grains and a volume of 0.1mm3.

The variation of grain size and shape throughout each of the RVEs is shown in Figure 4,
where the grain effective diameter is calculated by equating the grain volume to a sphere and the
effective aspect ratio is the largest axis of the fitted ellipsoid to the mean of the intermediate and
smallest axes. From Figure 4a, it can be seen that the number of grains and effective diameter of
the grains in each microstructure are approximately the same. This indicates that the three RVEs
contain similar number of grains with similar volumes, thus the largest variability in the RVEs are
the shapes of the grains. The effective aspect ratios of Figure 4b show the expected behavior that as
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(a) κ0 = 1. (b) κ0 = 3. (c) κ0 = 5.5.

Figure 3: Synthetic microstructure RVEs generated by the continuum diffuse interface model with
three different values of κ0.

κ0 is increased the variability in the aspect ratio is increased. However, the increase in κ0 does not
mean that grains with a low aspect ratio are completely removed, the inverse is also true. This is
easily demonstrated by noting that the highest effective aspect ratio of the three RVEs is actually in
the κ0 = 3 case and not the κ0 = 5.5 case, but on average the effective aspect ratio in the κ0 = 5.5
case is higher than the κ0 = 3 case.

(a) Grain effective diameter (size) distribu-
tion sorted by size.

(b) Effective grain aspect ratio (shape)
compared to the effective grain diameters
(size).

Figure 4: Synthetic microstructure RVE grain size and shape distributions.

The generated RVEs are now used in the previously described parametric study. The
goal of this study is to determine how the grain boundary effect changes the stress-strain behavior
of the three synthetic RVEs under four different loading conditions. The RVEs are subjected to a
uniaxial tensile loading in the dominant grain direction (Y direction in figure 3) and a direction
transverse to this direction (Z direction in figure 3). An in-plane (Y − Z direction in figure 3)
and an out-of-plane (X − Z direction in figure 3) shear loading were also considered. Here we
have assumed that loading in the X and Z directions and shear in the X − Y and Y − Z planes
produces identical behavior. The loading is applied via a specified displacement to generate a
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maximum volume-averaged nominal strain in the direction of the load of 60%. The analysis results
were post-processed by volume averaging the stress and strain in the direction of the load. Other
components of stress and strain not in the direction of the applied displacement were nonzero to
maintain equilibrium but are not considered here. The cumulative results of the parametric study
are shown in Figure 5. Note that these results include data up to 30% strain, as after that point all
results have reached the saturation stress, thus coincided with one another and do not contribute to
the discussion.

The first observation that can be noted is that by not including size and/or aspect ratio
(AR) effects, the yield point for all values of κ0 is unchanged for the different loading directions,
as expected. Furthermore, the yield point for similar loading (e.g., tension or shear) when not
considering size and/or shape effects is also unchanged. Intuitively, this is an unexpected behavior
because it is well known that materials with a dominant material orientation such as those seen in
PAM-produced parts, generally have an anisotropic response (e.g., carbon fiber-epoxy composites
and biological materials such as muscle). This reinforces the need for a constitutive model that
incorporates grain size and shape effects. Next, these results show that in tension an increasing
RVE aspect ratio (controlled by κ0) has the effect of decreasing the stress at 30% strain but in
shear, has the effect of increasing the stress at this point. This effect is independent of the grain
boundary effect. Including the size effect increases the yield strength and decreases the strain
hardening modulus. This effect is amplified when considering the size and shape effects and further
amplified when the microstructure average AR is increased. Due to the RVE grain sizes being the
same, on average, the size effect does not vary with varying κ0. Finally, it can be seen that in
all cases, the yield point is heavily influenced by grain shape. However, the predicted hardening
modulus for the elongated grains is lower than the more conventional microstructure.

It is difficult to draw quantitative conclusions on the effect that the grain boundary has
on the stress-strain behavior. However, it can be said that the grain shape and size both have a
discernible effect on the mechanical behavior of the PAM part. It is also known that grain size
and shape are influenced by the process parameters involved in producing the PAM part. The
combination of these facts leads to the conclusion that the process parameters can be directly
related to the mechanical properties of the PAM produced part.

Conclusions

The work in the present paper has described an overview of the implementation of a
constitutive model that incorporates grain size and shape effects. Synthetic microsturcture repre-
sentative volume elements were generated using a continuum diffuse interface model. RVEs of
three different aspect ratios, representative of PAM microstructures, were generated and then con-
verted to finite element meshes. The FE models were implemented in Abaqus/Standard with the
crystal plasticity model implemented in a UMAT. The FE models of the RVEs were used to com-
plete a parametric study to determine the effects of grain size and shape on effective mechanical
properties of the RVE.
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κ0 = 1, Y κ0 = 3, Y κ0 = 5.5, Y

κ0 = 1, Z κ0 = 3, Z κ0 = 5.5, Z

κ0 = 1, X-Z. κ0 = 3, X-Z. κ0 = 5.5, X-Z.

κ0 = 1, Y-Z. κ0 = 3, Y-Z. κ0 = 5.5, Y-Z.

Figure 5: Results of the parametric study varying RVE anisotropy factor (κ0), grain boundary
effect applied, and load direction.
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As part of the parametric study, three synthetic RVEs were simulated under four loading
conditions with and without grain boundary effects applied. The results showed that when both the
size and shape effects are considered, the loading in the direction of the elongated grains produced
superior strength compared to the out-of-plane loading. Finally, it was concluded that the grain
boundary effect had the most significant effect immediately post yield with the effect diminishing
as the material strength reached the saturated strength.

With a known connection between process parameters and microstructure, it may be
possible to utilize the framework and the insight gained from this work to optimize a microstructure
so that it would exhibit superior yield strength while maintaining a higher hardening modulus
compared to traditionally manufactured microstructures. The optimized structure could then be
related back to specific PAM process parameters and the parts exhibiting the superior behavior
could be built.
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