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ABSTRACT 

Wide-scale adoption of binder jet 3D printing for mission-critical components in 
aerospace, biomedical, defense, and energy applications requires improvement in mechanical 
properties and performance characteristics of end-use components. Increased fidelity may be 
achieved with better understanding of the interfacial physics and complex fluid-particle 
interactions fundamental to the process. In this work, an experimental testing apparatus and 
procedure is developed to investigate the fluid and particle dynamics occurring upon impact of 
jetted binder droplets onto a powder bed. High-speed, microscopic imaging is employed to capture 
short time-scale phenomena such as ballistic particle ejection, capillary flow, and particle 
clustering. The effects of different process parameters (e.g., translational printhead velocity, jetting 
frequency, and impact velocity) on the dynamics of Inconel powder are studied. These experiments 
reveal that the fluid-particle interaction is significantly affected by a combination of printing 
parameters, ultimately governing the quality and performance of binder jet 3D printed 
components. 

1. INTRODUCTION

Binder jet 3D printing (BJ3DP) is a type of powder bed additive manufacturing (AM) 
process that utilizes a scanning printhead to selectively administer fluid binder into a powder layer 
to form a cross-section of a three-dimensional object. The process is carried out in a series of 
repetitive cycles, each one producing an additional cross-section on top of the previous such that 
the components are built up layer-by-layer [1]. The major stages of the BJ3DP procedure are 
shown in Fig. 1. A single-layer print cycle begins with a powder delivery stage (Fig. 1a) where the 
feedstock material is forced to flow from a hopper onto the previously deposited layer. A counter-
rotating roller then traverses the build area spreading the newly supplied powder into a thin layer 
(Fig. 1b). Next, a printhead dispenses binder from a multitude of inkjet nozzles into the layer to 
join particles in regions prescribed by a computer-aided design (CAD) model (Fig. 1c). After 
jetting, the build platform lowers by a specified layer thickness (Fig. 1d), and the process repeats 
until the components are fully constructed. After completion, the components are buried in 
unbound powder (Fig. 1e); therefore, a depowdering step is required for retrieval. Typically, the 
printed parts are then either sintered or infiltrated with a secondary material in a high-temperature 
furnace for densification and strengthening [2]. An extensive review of BJ3DP, from its 
development to present state-of-the-art, is given in [3].  

The underlying physics of the BJ3DP process allows for many unique advantages 
compared to other AM methods, such as a wide range of suitable materials, relatively fast build 
times, and cost-effectiveness. These advantages have generated interest in BJ3DP for many 
applications in a variety of industrial sectors; however, its end-use components generally have 
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increased porosity and less robust mechanical
properties compared to powder bed fusion type AM 
processes. These downfalls have limited the use of 
BJ3DP for the fabrication of high-performance parts 
in demanding applications [4], e.g., combustion 
chambers for liquid rocket engines [5] or pressure 
vessel components in nuclear fusion reactors [6].
Therefore, mitigating these issues is of vital 
importance to facilitate a more wide-spread 
implementation of BJ3DP among a range of 
industries.  

To achieve this, many research efforts have 
been carried out in each major stage of the process. 
Several powder dispensing (Fig. 1a) techniques have 
been explored for use in powder bed AM methods – a
review of which is given in [7]. Powder spreading 
(Fig. 1b) simulations were performed using discrete 
element modeling (DEM) to better understand how 
spreading parameters affect the quality of the layer [8, 
9]. The binder jetting stage (Fig. 1c) has been studied 
by a number of researchers; several of the important 
works on this topic are presented in the following 
section. Finally, there have been efforts to improve 
the various post-processing techniques often used to 
strengthen binder jetted parts, e.g., see [10, 11, 12].

The goal of this work is to develop an 
experimental apparatus and testing procedure that 
allows for investigation of the interfacial fluid-
particle interaction prevalent during the binder jetting 
stage. Ultimately, this platform will provide insight on 
how printing parameters can be tuned to achieve 
optimal printing characteristics for a particular 
feedstock powder. The apparatus is constructed to 
replicate the fundamental printing operations in such 
a way that allows for quantative measurements of the 
print quality depending on various input parameter 
combinations. High-speed, microscopic imaging is 
employed to capture short time-scale dynamics 
occurring upon the impact of jetted binder droplets 
onto a powder bed. A dimensional analysis of the 
process reveals pertinent dimensionless groups that 
influence the coupled fluid and particle dynamics. 
Experiments are carried out to determine the effects 

FIGURE 1. The general BJ3DP process
comprised of the following stages: (a) 
powder delivery, (b) powder spreading, (c)
binder jetting, and (d) build platform
lowering. The stages (a)-(b) are repeated 
until the complete geometries are formed 
(e). Note that hatched regions indicate 
unbound powder. 

(a)
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that certain dimensionless groups have on powder binding behavior. 

2. FLUID-PARTICLE INTERACTION IN BJ3DP

The instant a jetted binder droplet impinges the powder bed, many physical phenomena 
begin to take place that govern the formation of bound particle features that make up the part. 
Immediately upon impact, momentum transferred from the droplet to the unconsolidated powder 
bed can result in ballistic ejection of particles. This potentially gives rise to various types of part 
defects; for example, the ejection of particles yield impact craters which are deleterious to 
dimensional accuracy and serve to increase porosity [13].  

At impact, inertial forces initially drive the flow of liquid either into or on top of the bed. 
As the initial kinetic energy of the drop is transferred and dissipated into the powder bed, the binder 
may continue to flow into the interstitial space between particles due to capillary forces [14]. 
Simultaneously, the liquid attempts to minimize its surface energy by generating interfacial forces 
which impede the expansion of surface area as the binder spreads. These interfacial effects, namely 
surface tension and capillary action, often produce a net attractive force between mutually wetted 
particles. If these forces are large enough to overcome particle inertia and friction, the particles 
can be accelerated and drawn inward towards each other, forming a bound cluster referred to as a 
“primitive” [15]. 

A single-drop primitive is the most basic building element produced in BJ3DP. The 
printhead translates over the powder bed at a given velocity where, ideally, successive droplets 
coalesce with the previous ones forming a single-line primitive [16]. The line primitives must then 
be adequately stitched to adjacent lines to form a solid cross-section of the part. Additionally, the 
liquid should penetrate the powder bed deep enough to achieve sufficient inter-layer binding. For 
these reasons, the formation of line primitives is a predominant factor governing the relative 
density, dimensional accuracy, resolution, surface properties, and overall quality of the parts. 

In Ref. [29], high-speed imaging of the fluid-particle interaction in BJ3DP was performed 
with synchrotron X-rays using the Advanced Photon Source at Argonne National Laboratory. With 
this approach, an X-ray beam passes completely through the powder bed and is converted to visible 
light on the opposite side. This approach has provided new insights into the surface and sub-surface 
dynamics of the powder bed during binder jetting. At the powder bed surface, ballistic ejection, 
impact cratering, and primitive formation were observed for several powder types of varying 
particle size and morphology. Powder bed compression induced by the droplet impact was 
discovered, and the depth of disturbance for each powder was reported. Although this work has 
offered knowledge about the effect of particle size and shape on the binder-powder interactions, 
the influence of printing parameters on primitive formation remains poorly understood. These 
parameters are commonly wrapped into a single expression [17] given as 

 (1)
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where  is the binder droplet diameter,  is the droplet spacing,  is the line spacing,  is the
layer thickness, and  is the powder bed packing fraction. The droplet spacing is determined from 
the translational dispenser velocity,  and the jetting frequency,  by 

The binder saturation, , given in Eq. (1) expresses the ratio of binder volume to void 
volume in a predefined envelope  within the powder bed. Saturation is an 
important parameter that must be optimized for particular feedstocks. Typically, higher saturation 
results in increased green (pre-sintered) part strength; however, excessive binder will bleed out of 
the desired part boundaries reducing dimensional accuracy and resolution [14]. Presently, the 
optimal saturation for a given powder is most often found by trial and error; however, several 
efforts have been made to obtain it more rigorously. In Ref. [18], an analytical model was 
developed to estimate the saturation level that results in a balance of capillary pressure dependent 
on contact angle of the solid-liquid-gas interface, binder-air surface tension, and powder bed 
packing fraction. This “equilibrium saturation” was first suggested to be the optimal saturation for 
BJ3DP in Ref. [14] based on arguments from the classical theory of fluid flow in porous media 
[19]. A more direct experimental approach was taken in Ref. [20] by analyzing the influence of 
saturation on the dimensional accuracy and surface roughness of 420 stainless steel parts. The 
same methodology was adopted in Ref. [21] to investigate how saturation affects the flexural 
strength of 316L stainless steel parts. Further studies regarding the appropriate selection of 
saturation level for various powders were carried out in Refs. [22, 23, 24, 25].  

While some success in improving part quality was achieved in the above works, saturation 
alone is not sufficient to fully characterize the effects of fluid-particle interaction in BJ3DP. This 
is primarily due to the fact that saturation is not a unique value, which is made clear by closer 
inspection of Eq. (1). An infinite combination of the variables on the right-hand side may produce 
the same saturation value; however, holding saturation constant while changing other parameters 
does not guarantee that primitive formation behavior will remain the same. For example, a 
reduction of binder droplet diameter, , can be accompanied with a thinner layer thickness, ,
to produce the same value of , but a decreased  will also reduce the kinetic energy of the jetted
droplet, which can dramatically change the impact dynamics. In this work, a dimensional analysis 
is performed to reveal how important parameters are related and how they should be varied in 
order to carry out valid parametric studies (Sec. 3).  

3. EXPERIMENTAL SETUP

A testing apparatus was constructed to allow for close investigation of fluid-particle 
interaction in BJ3DP and the effect printing parameters have on the binding of a single-line 
primitive. The apparatus (Fig. 2) is comprised of a linear motor that drives a single-jet droplet 
dispenser over a powder sample at an adjustable translation speed, , along an x-axis rail. The x-
axis motor and rail assembly is mounted on a linear stage that allows for precise manual adjustment 
of the dispenser’s y-axis position. The dispenser device, manufactured by MicroFab Technologies, 
Inc., utilizes a piezoelectric element for droplet generation, which provides control of jetting 

 (2)
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frequency, , and droplet speed,  along the jet trajectory. The 53 μm orifice on the dispenser 
nozzle produces droplet sizes on the order of 50 μm. The droplet diameter can be slightly adjusted 
by varying the parameters of piezoelectric actuation. 

The powder sample is contained in a cylindrical vessel having a diameter and height of 1 
cm. In this work, the fundamental phenomenon of line primitive formation on the surface of an
unbound powder bed is considered; therefore, a thin layer thickness is not currently imposed. After
the powder is loaded, the vessel is lightly tapped and the powder bed surface is smoothed by
manually spreading the excess powder with a lab spatula. Future work will examine the effect of
layer thickness on the line primitive and will replicate the BJ3DP spreading process to greater
fidelity. Highly spherical, plasma atomized Inconel 718 powder is used. The particle diameter
range is 20-38 μm and the tapped packing fraction  is approximately 0.53. Inconel is a nickel-
chromium-based superalloy that maintains high strength at extreme temperatures and has excellent
oxidation and corrosion resistance [26]. For these reasons, Inconel alloy components are
commonly used in gas-turbine engines, combustion chambers, nuclear reactors, and other
demanding applications involving high thermal loading. Currently, BJ3DP has been employed to
manufacture components from Inconel 625 and Inconel 718 powder feedstocks [27, 28]; however,
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FIGURE 2. Experimental apparatus for investigating single-line primitive formation. (a) Diagram of the 
entire setup. (b) Magnified diagram of the single-jet droplet dispenser and powder sample. 
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further work is required to mitigate part defects introduced by 
the process before the components can be used in mission-
critical and high-performance applications. 

A Vision Research Phantom VEO high-speed camera 
with a 4.5X microscope objective is mounted above the 
powder sample and droplet dispenser assembly. Various 
camera angles were attempted such that the line of sight of the 
camera intersected the powder bed at an oblique angle rather 
than perpendicular to it; however, because of the shallow 
depth of field at high magnification, a purely top-down 
arrangement with the camera’s line of sight parallel to the z-
axis (as it is in Fig. 2a) produced the best results. In this 
configuration, view of the droplet impact location on the 
powder bed is obstructed by the single-jet dispenser (Fig. 3a). 
This issue is addressed by positioning the dispenser with a 
slight angle  about the y-axis in order to move the droplet 
impact location in the line of sight of the camera (Fig. 3b). 
Assuming the translational dispenser motion is from right to 
left in Fig. 3 and negating aerodynamic drag, the x- and z-
components of the droplet impact velocity can be 
approximated by 

This jetting speed is obtained using stroboscopic imaging with a charge-coupled device 
(CCD) camera and a mounted light-emitting diode (LED) strobe. The basic operation of
synchronized stroboscopic illumination is shown in Fig. 4. The strobe is illuminated at a frequency
that is synchronized with the piezoelectric actuation of the dispenser. A small time delay  is
imposed between the jet initiation and LED pulses; thus, a low framerate camera (typically 24-60
frames per second) will only capture what appears to be a single stationary droplet at some position
along its trajectory [30].  The distance of the “pseudo-stationary” droplet from the dispenser
orifice, , and the time delay can be used to calculate the jetting velocity as .

Furthermore, the droplet diameter is 
also easily obtained from the 
stroboscopic images. Consequently, 
this method allows for 
measurements of the jetting 
parameters without the need for an 
additional high-speed camera. 

For obtaining quantitative 
data of the resulting line primitive, a 
common digital single-lens reflex 
(DSLR) camera with a microscope 
objective attachment can be installed 

  (3) 

FIGURE 3. Configuration of 
the dispensing device. The red 
dashed line is the camera line of 
sight, and the black dashed line 
is the straight line jet trajectory. 

 

(a) (b)

 

FIGURE 4. A general stroboscopic imaging setup. 
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in place of the high-speed camera. Still frame images are taken from above shortly after the 
conclusion of a single-line print operation. Due to the small volume of binder jetted (~50 picoliters 
per drop), it can be difficult to discern the liquid within the bed, even when high magnification is 
used. This issue is made less severe by introducing a small amount of fluorescent dye to the binder 
prior to jetting. This causes the liquid contained within the line primitives to illuminate upon 
exposure to ultraviolet light.     

4. DIMENSIONAL ANALYSIS

A dimensional analysis is carried out to aid in the design of experiments of single-line primitive 
formation. Dimensional analysis is a powerful technique that can reduce the number of 
independent variables in the problem by grouping them into a fundamental set of nondimensional 
parameters for which the problem depends [31]. To do this, all parameters that can affect the fluid-
particle interaction in a single-line print must be considered. The problem being analyzed is that 
of a continuous droplet train impacting a powder bed. The droplets are generated from a single-jet 
dispensing device translating over a powder bed at a constant speed. Each droplet is assumed to 
be spherical and of fixed diameter – satellite droplets are not currently considered. Additionally, 
temperature is assumed to only affect the material properties of the binder and powder. Although 
their influence may be significant, evaporation and other phase change effects are not considered 
here. Finally, the dispenser angle  is set to zero; therefore,  and .  Given the 
problem statement and the aforementioned assumptions, the relevant parameters and their 
nomenclature are given in Table 1. 
TABLE 1. Nomenclature and important parameters in a single-line primitive formation event. The 
fundamental dimensions comprising each parameter are mass (M), length (L), and time (T). Hyphens 
indicate dimensionless values.     

Symbol Description Dimensions 
Process Parameters 

 Jetting frequency T-1

 x-component of impact velocity LT-1

 z-component of impact velocity LT-1 
 Binder droplet diameter L 

Fluid Properties 
 Binder density ML-3

 Binder dynamic viscosity ML-1T-1

 Binder-air surface tension coefficient MT-2

Particle Properties 
 Particle (powder) density ML-3

 Particle diameter L 
 Packing fraction - 
 Cohesion ML-1T-2

 Angle of internal friction - 
System Properties 

 Binder-particle-air contact angle - 
 Gravitational acceleration LT-2
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If it is assumed that some response variable  exists that serves as a measure of the quality 
of the line primitive, a functional relationship between the response and independent parameters 
is in the form 

The determination of what 
measures should be used for  to 
provide adequate quantification of 
the primitive line quality is not 
obvious. In this study, two 
response variables are considered: 
1) the fractional area coverage, ,
of a line primitive contour with its
bounding box, and 2) the bounding
box width . As shown in Fig. 5, the red bounding box is constructed from the four extreme points
(top, bottom, left, and right) of the 2D primitive line contour. The area fraction is calculated by

, where  is the gray region representing the bound line primitive in Fig. 5. It
is clear from Eq. (5) that  is some function of the fourteen independent parameters given in Table
1. With Buckingham’s Pi theorem, Eq. (5) is cast into another functional relationship between the

nondimensional groups that can be 
constructed from all of the independent 
and dependent variables: 

where each  term represents a 
nondimensional group – these terms are 
defined in Table 2. The  term depends 
on which response variable is being 
considered (  or ). The 
terms -  are independent of the 
response variable; however, the 
function  relating these terms to   
will differ depending on which  is 
chosen. 

From Table 2, several common 
nondimensional (ND) groups in fluid 
mechanics are apparent:  
(Reynolds number),  (Weber 
number),  (Bond number), 
and  (Strouhal number). The 
terms , , , , and  are of 
primary focus in this work since they 

  (5) 

   (6) -term ND group Classical name 

  or   -

  Reynolds No. ( )

 Weber No. ( )

  -

  -

  -

 -

  -

  -

 Bond No. ( )

  Strouhal No. ( )

  -

TABLE 2. –terms obtained by dimensional analysis 
and appropriate classical names. 

 

 

FIGURE 5. Line primitive shape (gray) and bounding box
(red).
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are the only ones that contain printing process parameters that can be tuned on an actual 3D printer. 
We currently assume a cohesionless powder; thus,  is disregarded.  

5. RESULTS

Several single-line printing tests are carried out using both the high-speed and still frame 
imaging setups on the experimental apparatus. As mentioned in the previous section, only the 
parameters  and  are considered. Since an aqueous binder is used, the fluid 
properties are taken as that of water – the actual binder properties will be measured in future work. 
The dispenser is set to jet droplets of  μm and  m/s. These values are held 
constant for all tests, requiring that   and  also remain constant as long 
as the fluid properties are unchanged. When  is the only parameter that is adjusted, both  and 

 are affected. The jetting frequency, which only  is dependent on, can also be varied; 
however, it is difficult to adjust  without inadvertently changing  and . This issue is presently 
being addressed and is deferred to later studies.    

Still frames extracted from the high-speed videos are shown in Fig. 6. The x-component of 
the droplet impact velocity for this case is  m/s. In agreeance with the findings in [29], 
a significant number of ballistic particle ejections were observed. Furthermore, several tests were 
performed with a lower vertical impact speed (  m/s) and particle ejections were still 
prevalent, albeit with reduced occurrences. For lower vertical impact speeds, the line primitives 
were found to be more susceptible to breakup. This is attributed to the “balling” phenomenon, 
which is the result of the Plateau-Rayleigh instability in liquid filaments [32]. Balling in BJ3DP 
was discussed in Refs. [3, 17].  

Four trials are performed 
utilizing the still frame imaging 
setup for a  range of -0.127 
m/s. The resulting line primitives are 
shown in Figs. 7-10 in order of 
decreasing  ( ) and 

. The line primitive contours are 
generated using image processing 
software developed in-house. Due to 
the illumination of the fluorescent 
binder, the line primitive edges are 
clearly delineated. The line 
primitive shape and bounding box 
for each trial is given in Fig. 11. 
Unsurprisingly, from Figs. 7-11, it is 
evident that the bounding box width 
increases as  is decreased. This is 
attributed to the fact that  is the 
inverse of the ratio of droplet 

spacing (Eq. 2) to droplet diameter; thus, a lower value indicates a larger volume of binder being 
deposited during the dispenser translation. In addition to the width increase, also increases with 
decreasing . The results for the four trials are given in Table 3.  

FIGURE 6. Still frames captured from high-speed video of 
the droplet dispenser traversing from left to right. The frames 
are in downward sequential order.   
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FIGURE 7. Resulting line primitive for Trial # 1 ( and 
). Image taken with visible (top) and ultraviolet

(bottom) light.   

FIGURE 8. Resulting line primitive for Trial # 2 ( and 
). Image taken with visible (top) and ultraviolet

(bottom) light.   

FIGURE 9. Resulting line primitive for Trial # 3 ( and 
). Image taken with visible (top) and ultraviolet

(bottom) light.   
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6. CONCLUSION

An experimental apparatus and procedure have been presented to investigate the fluid-
particle interaction occurring in the fundamental operation of binder jet 3D printing, namely the 
binding of a single-line primitive feature. The characteristics of the line primitives that make up 
the part largely influence its mechanical properties, dimensional accuracy, resolution, and overall 
quality. This work will aid in the improvement of such attributes by providing an experimental 
platform to investigate the relationship between the binding process parameters and the resulting 

FIGURE 10. Resulting line primitive for Trial #4 ( and 
). Image taken with visible (top) and ultraviolet

(bottom) light.   

FIGURE 11. Line primitive shapes and corresponding bounding boxes for Trials #1 (a), #2 (b), #3 (c),
and #4 (d). 

(a)

(b)

(c)

(d)

Trial #    
1 0.856 0.0152 0.642 4.45 
2 1.71 0.00762 0.654 5.01 
3 3.42 0.00381 0.673 6.59 
4 6.85 0.00191 0.731 8.65 

TABLE 3. Input ( and ) and output parameters ( and ) for all trials.
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line primitives. With this insight, an optimal combination of process parameters that yield the 
highest quality components may be discovered for any powder feedstock.  

In this study, the apparatus was employed to investigate single-line primitive formation on 
Inconel powder at various translational dispenser speeds. The area fraction and width of the line 
primitives were both shown to increase with decreasing translational speed. In future work, the 
test platform described here will be employed to perform extensive parametric studies on line 
primitive formation for various powder samples. The final parts will then be examined to reveal 
whether superior mechanical properties and performance characteristics have been achieved by 
intelligently tuning the printing parameters. Additionally, the apparatus will serve as an invaluable 
validation suite for high-fidelity models that attempt to simulate the process.  
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