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Abstract

Powder Bed Fusion (PBF) is a type of Additive Manufacturing (AM) technology that builds

parts in a layer-by-layer fashion out of a bed of metal powder via the selective melting action of a

laser or electron beam heat source. The technology has become widespread, however the demand

is growing for closed loop process monitoring and control in PBF systems to replace the open

loop architectures that exist today. This paper demonstrates the simulated efficacy of applying

closed-loop state estimation to the problem of monitoring temperature fields within parts during

the PBF build process. A simplified LTI model of PBF thermal physics with the properties of

stability, controllability and observability is presented. An Ensemble Kalman Filter is applied

to the model. The accuracy of this filters’ predictions are assessed in simulation studies of the

temperature evolution of various test parts when subjected to simulated laser heat input. The

significant result of this study is that the filter supplied predictions that were about 2.5x more

accurate than the open loop model in these simulation studies.

1 Introduction

Powder Bed Fusion (PBF) belongs to a class of technologies known as additive manufacturing
(AM). Commonly referred to as “3D printing,” these technologies have rapidly grown in popularity

and market size due to their ability to produce near net-shape parts of complex geometry, with

engineering properties meeting or exceeding those produced by conventional techniques, while

removing the majority of the overhead costs normally associated with production [1–3].

The PBF process iteratively builds three-dimensional parts out of layers of metal powder, using

a build cycle consisting of three stages: 1) sweeping a thin layer of powder over a base of metal

feedstock or previously-applied powder, 2) selectively melting a pattern of desired geometry into

the powder by application of a high-powered laser or electron beam, and 3) lowering the build
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Figure 1: System schematic of Powder bed fusion (PBF) additive manufacturing. a) Input and output

channels for E-PBF and DLP-PBF. Measurement (2) screenshot taken from [4]. b) Input and output channels

for L-PBF taken from [5].
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platform in the −z direction to accommodate a fresh layer of powder. Schematics of PBF are given

in Fig. 1 along with typical input and output channels that are available to the controls engineer.

The PBF process is not without flaws. It is well-documented in the literature that components

manufactured with PBF display high levels of residual stresses ( [6, 7]), porosity ( [8–10]) , and

anisotropy in material properties ( [2, 10–14]), and that these defects are a direct consequence of

the heat transfer throughout the part, which is manifested by cooling rates within the part interior.

The application of thermal model-based process monitoring and control techniques could help

detect and mitigate these defects. Process monitoring suites offered by commercial PBF systems,

as reviewed in [15], typically assess the presence of defects based on exhaustive calibrations that

“train” the model to accept certain measured values as defect-free. Predictive model-based process

monitoring with a minimum of necessary calibration remains elusive.

This paper advances the goal of predictive model-based process monitoring for PBF. We con-

tinue the work shown in [16] and present a linear time-invariant (LTI) state space model of PBF

conductive heat transfer physics with established stability, controllability, and observability. This

model is based on first principles and thus requires a minimum of training/calibration to perform.

We reduce the model and express it in discrete time, and then demonstrate the application of a state

estimator known as an Ensemble Kalman Filter to the reduced-order model. We conduct simula-

tion studies of this state estimator by constructing models for simulated test parts when subjected

to simulated laser heat input. We assess the performance of the state estimator by comparing the

estimator accuracy with that of the open loop model, with respect to a reference simulation repre-

senting a “true” evolution of the part thermal history. We show that the state estimator provided

predictions that were approximately 2.5x as accurate as the open loop model, which we believe

constitutes justification for further research into this topic.

2 Spatiotemporal Model Construction

2.1 PBF model assumptions and LTI model construction

In this work we build upon the spatiotemporal model constructed in [16]. What follows here

is a statement of the method results, readers interested in a complete description on the model

construction and its properties should consult [16]. We examine a simplified model of PBF thermal

physics in which only Fourier conduction within the fused material is considered. The Fourier

conduction BVP is stated in (1).

∗Corresponding author. Phone: +1 (614) 688-2942; email: hoelzle.1@osu.edu
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∂T
∂ t

=
K
cρ

∇2T ∀ v ∈V

T = T0 ∀ v ∈ Λ
∇T · n̂ = 0 ∀ v ∈ Γ
∇T · n̂ = q(v̄, t) ∀ v ∈ Ω

(1)

Here, K represents the material thermal conductivity, c represents the material specific heat, and

ρ represents the material density. V represents the domain spanned by the (possibly unfinished)

build, Λ collects all faces of the build in contact with the base plate, Ω collects all surfaces of the

build exposed to the environment, and Γ collects all remaining faces. T0 is the assumed-isothermal

temperature of the base plate.

The BVP (1) was transformed into the linear state-space thermal model shown in (2). We use

the transformation described in [16], which converted the PDE into a set of coupled ODEs via the

Finite Element Method (FEM). Each ODE governs the evolving temperature at a single node in

the FEM mesh, and the system input was quantized to hold a constant value over each element

surface belonging to Ω. In Thermal Model (2), x collects the temperature signals at all nodes in

the mesh, A maps the degree of conductive heat flow between nodes (0 for nonadjacent nodes), B
maps the degree of distribution of laser energy input onto nodes located on Ω, and C selects the

nodes belonging to Ω as system output in keeping with our assumption that only exposed faces of

the build are available for measurement.

ẋ = Ax+Bu
y = Cx

(2)

It was shown in [16] that Thermal Model (2) is unconditionally stable, stabilizable, and de-

tectable, and that it is both structurally controllable and observable provided that at least one node

in the FEM mesh exists on the exposed build surface.

2.2 Model order reduction via balanced realization

Thermal model (2) was developed to mitigate the problem of model scale when attempting to

represent PBF physics on the macroscale, however the quantization of the system heat input can

produce cumbersome node counts and therefore system sizes. Model order reduction (MOR) is

necessary to reduce the impact of these issues. We have chosen to perform MOR via residualiza-
tion [17, 18].

The residualization algorithm requires stability, controllability and observability of the system,

which we have shown in [16]. The algorithm begins by performing the linear state transformation
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z = Tx, which puts the system in its’ balanced realization. The user then selects the first r (largest)

Hankel Singular Values (HSVs) of the system, which are demonstrated in (3) [19, 20]. Each HSV

is
√

λi (WcWo); λi denotes the ith eigenvalue of a matrix, and Wc and Wo are the controllability

and observability grammians, respectively.

Σ = diag(σ1 ≥ σ2 ≥ . . .≥ σn > 0) (3)

Partitioning the HSVs in this manner also partitions z into two groups: z1 ∈ R
r, which consti-

tute the “dominant” modes in the system input/output dynamics, and z2 ∈ R
n−r, which constitute

the negligible modes. The partitioned system takes the form shown in (4)

[
ż1
ż2

]
=

[
A11 A12
A21 A22

][
z1
z2

]
+

[
B11
B22

]
u

y =
[
C11 C22

][z1
z2

] (4)

The residualization algorithm assumes that the “weak” modes stored in z2 operate at quasi-

steady state. In other words, it assumes that on the time scales of interest, ż2 = 0. This assumption

allows for the algebraic solution of z2, which reduces (4) to the form shown in (5).

ż1 = Arz1 +Bru
y = Crz1 +Dru
z2 =−A22

−1 (A21z1 +B22u)
Ar = A11 −A12A22

−1A21

Br = B11 −A12A22
−1B22

Cr = C11 −C22A22
−1A21

Dr =−C22A22
−1B22

(5)

With residualization, one only needs to solve r coupled differential equations instead of n, and

the original state x may be reconstituted during postprocessing by algebraically calculating z2 and

performing the inverse transformation x = T−1 [z1,z2]
′. By [18, 21], the (structural) controllabil-

ity/observability of (2) implies that (5) is also (structurally) controllable and observable.
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3 State Estimator Design

3.1 Discretization of continuous-time model

This study utilized a Kalman filter to estimate the state of Thermal Model (2), which required

it to be implemented in discrete time. The continuous-to-discrete time conversion of model (2) for

a discrete time step Δt is shown in (6):

z [k] = Adz [k−1]+Bdu [k]
y [k] = Cdz [k]

Ad = eArΔt ≈
(

Ir +
1

2
ΔtAr

)(
Ir − 1

2
ΔtAr

)−1

Bd = Ar
−1 (Ad − Ir)Br

Cd = Cr

Dd = Dr

(6)

The discretization scheme provided in (6) is based on the complete discretization method given

in [22] for a system with constant parameters. The approximation of the matrix exponential eArΔt

in (6) is based on the Bilinear Transform as given in [23].

3.2 Ensemble Kalman filter (EnKF) implementation

Effective implementation of a Kalman filter requires knowledge of the covariances of the pro-

cess and measurement noise of the system under consideration. The process noise covariance is

denoted as Q, and the measurement noise covariance is denoted as R. We intend to for model

(6) to be implementable for arbitrary build layer geometry V and under arbitrary external loading

q(v̄, t). These constraints make the prediction of Q intractable, while also limiting the utility of

experimentally determining Q due to the near-infinite variety of allowable geometric and loading

conditions.

To overcome this limitation, we seek a means of approximating Q and R in-situ from the

measured data y and reconstructed state estimate x̂. The Ensemble Kalman filter detailed in [24]

provides the optimal means of accomplishing this goal. Appendix A gives a brief overview of the

EnKF algorithm, readers interested in a complete description of EnKF theory should consult [24].

Our process model as described in (6) differs from the structure typically assumed for the oper-

ation of conventional Kalman filters (13) due to the presence of direct feedthrough. Accounting for

independent process noise wk ∼ N (0,Q) and measurement noise vk ∼ N (0,R), our stochastic

process takes the form shown in in (7). The subscript 1 attached to z1,k indicates that the filter is

estimating z1 of the reduced order system as defined in (5), (6).
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z1,k = Adz1,k−1 +Bduk +wk

yk = Cdz1,k +Dduk +vk
(7)

We follow the modified Kalman filter architecture supplied in [25], which acts to provide si-

multaneous unbiased minimum-variance estimates for the system input uk and state z1,k in the

presence of systems with direct feedthrough. To this end, we define an ensemble of inputs corre-

sponding to Z1,k, Uk =
[
u1

k ,u
2
k , . . . ,u

N
k

]
. [25] assumes that the values of all ui

k are unknown. We

simulate this condition by making the process input uk stochastic via direct injection of the system

process noise into the input for each ensemble member:

zi
1,k = Adẑi

1,k−1 +Bd
(
uk +wi

k
)

yi
k = Cdzi

1,k +Dd

(
uk +wi

k

)
+vi

k
(8)

In (8), each ensemble member of Uk is defined as ui
k = uk +wi

k, each ensemble member of Yk

is defined as yi
k = Cdzi

1,k+Ddui
k+vi

k, and ẑi
1,k−1 represents the filter estimates for the ith ensemble

member at time step k−1. Each member represents a sample from the randomly-distributed system

inputs and measurements, respectively. This stochastic treatment of the process input reflects the

uncertain nature of PBF processing conditions discussed in [16]. (8) can be expressed in more

conventional form by rearrangement:

zi
1,k = Adẑi

1,k−1 +Bduk +
(
Bdwi

k
)

yi
k = Cdẑi

1,k +Dduk +
(
Ddwi

k +vi
k
)

As shown in [26], the multivariate normal distribution is closed under linear transformations

and linear combinations, meaning that independent wi
k ∼ N (0,Q) and vi

k ∼ N (0,R) produce

Bdwi
k ∼ N (0,BdQBT

d ) and (Ddwi
k +vi

k)∼ N (0,DdQDT
d +R), and as such defining the process

noise in this manner retains the assumption of Gaussian-distributed noise that underlies Kalman

filter operation.

The filter architecture specified by [25] has three steps. When combined with the EnKF archi-

tecture specified by [24], these steps take the following form:

1. Predict. Each ensemble member updates its ensemble values zi
1,k according to (8), using

ui
k as inputs, while collecting measurements yi

k. The ensemble is used to calculate sample

estimates P̄ f
k and R̄k according to (15) and (16), respectively. Here, P̄ f

k represents the sample

estimate for the covariance associated with the estimated state error.
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2. Estimate input. Minimum-variance estimates for the ensemble member inputs are calculated

by the following procedure:

R1 = CdP̄ f
k Cd

′+ R̄k

Mk =
(
Dd

T R1Dd
)† Dd

T R̄†
k

Ûk = Mk
(
Yk −CdZ1,k

) (9)

3. Estimate state. Minimum-variance estimates for ensemble member state estimates ẑi
1,k are

calculated according to an expression similar to (19). The procedure is outlined below:

Kk = P̄ f
k Cd

′R†
1

Ẑ1,k = Z1,k +Kk
(
Yk −CdZ1,k −DdÛk

) (10)

In (9) and (10), Mk and Kk are calculated with pseudoinverses because R̄k becomes singular

if the number of measurements p is greater than the number of ensemble members N, as noted

in [24].

3.3 Filter algorithm summary

• Construct a reduced order linearized model from the governing FEM-discretized heat trans-

fer equation as done in [16].

• Express the model in discrete time as done in (6).

• Define initial temperature distribution throughout the part, express in terms of z1,k=0.

• Define an ensemble of N parallel instances of model (8), each having ensemble members

zi
1,k, yi

k, and ui
k.

for k=1:end of runtime

• Determine ui
k for all ensemble members according to ui

k = uk+wi
k, and run (6) for all ensem-

ble members to generate all zi
1,k. Ensemble member measurements yi

k are constructed by cor-

rupting the system measurement yk with independent instances of white noise: yi
k = yk +vi

k.

Collect into ensembles Z1,k, Yk, and Uk, respectively.

• Compute P̄ f
k and R̄k from (17) and (18).

• Estimate Ûk according to (9).
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• Estimate Ẑ1,k according to (10).

• Construct estimated ẑ1,k by taking the sample average of Ẑk.

• Reconstruct x̂k according to the relationship between ẑ1,k, ẑ2,k and x̂k = T−1
[
ẑ1,k, ẑ2,k

]′
out-

lined in (5).

end

4 Case Studies Description

Two case studies were conducted to assess the performance of the state estimator constructed

in Sections 2 and 3. These tests constitute a continuation of the work performed by the authors

in [27], in which data from assumed-accurate simulations were used in place of physical test parts.

We adopt the same basic “virtual test” procedure here.

4.1 Test procedures

The simulated tests utilized the following procedure:

1. Construct a linearized state space model corresponding to test parts according to the proce-

dures outlined in Section 2 and Fig. 2. The temperature along isothermal boundary Λ was

set to 0. All test parts used material properties corresponding to Aluminum ore, tabulated in

Tb. 1. Initial temperature was uniformly 0.

2. Construct a heat conduction simulation in ANSYS utilizing the same test part geometry,

mesh, and isothermal boundary, but with the full nonlinear treatment of the heat source.

Initial temperature was uniformly 0. These simulations were used as surrogate “true” data,

to test the amount of error incurred by the linearization process, tk.

(a) Tb. 1 shows that the material properties used to construct the LTI model and those used

to construct the reference ANSYS simulation differed substantially. This was done to

assess the effectiveness of the filter in purging modeling errors from the predicted t̂ in

a worst-case scenario. The material properties used to construct the reference ANSYS

data were those corresponding to Aluminum at its’ melting point, while those used to

construct the linearized LTI model were those corresponding to Aluminum at room

temperature, and therefore represent the maximum possible modeling error.

(b) Process noise, visible in Fig. 3, was added to the ANSYS laser data, to reflect the

inevitability of uncertainty in the time-varying process inputs during PBF. This contin-

uous time noise had power equal to 1×105 mW for Part (a) and 2×105 mW for Part

(b).
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3. Construct uk for all test parts as Gaussian laser beams of a given power P and variance σ2

moving over the top surface Ω of the parts in a raster scanning path with average speed v,

incorporated into the LTI model according to [16].

4. Run the Ensemble Kalman Filter algorithm with the procedure described in Section 3.3,

using the constructed uk as an input and using ANSYS data along surface Ω of the test parts

from Step 2 as system measurements yk. Recover temperature estimations x̂k.

(a) Ensembles with N = 100 members were used for both parts.

(b) The continuous-time process noise power injected into the input ensemble members uk
was 2× 109 mW for Part (a) and 2× 1012 mW for Part (b). These noise powers were

high because testing showed that EnKF performance improved as the injected noise

power tended to infinity, since doing so increased the difference zi
k− z̄k for all ensemble

members in (17), therefore increasing the accuracy of computing P̄ f
k for large N. The

continuous-time measurement noise power injected into yk for both parts was 1 K.

5. Define the EnKF state estimation error (the “closed loop” estimation error) as Error(t) =
xk − x̂k. Plot and animate this error.

6. Run the LTI models corresponding to each test part in the open loop, according to (2) and (6).

Denote the open loop model predictions as xk,OL, and define the open loop model error as

ErrorOL(t)= xk−xk,OL. Comparisons between Error(t) and ErrorOL(t) quantify the accuracy

improvement produced by the filter.

4.2 Test parts

The two test parts utilized in this study are depicted in Fig. 2. Information pertaining to the

mesh and system size for these test parts is shown in Tb. 2. The slight discrepancy between node

count and n is due to temperature-constrained nodes along Λ being removed from the system by

ANSYS.

Table 1: Comparison of material properties used to construct LTI model data and reference ANSYS data for

all test parts [28]

Property LTI model ANSYS data Unit

Thermal conductivity 250 200 mW/mm-K

Specific heat 9×108 1.248×109 mJ/tonne-K

Density 2.7×10−9 2.5×10−9 tonne/mm3

Table 2: Meshing information, system size n, and measurement count p for test parts depicted in Fig. 2

Part Element size (mm) Elements Nodes n p
(a) 0.0333 540 1263 1200 63

(b) 0.05 4861 8700 6831 1869
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(b)

(a)

Figure 2: Test parts used to conduct case studies. Red arrows denote the basic path of the simulated laser

beam. Part (a) referred to as the “spool” and Part (b) referred to as the “coupon”

4.3 Test loading conditions

Fig. 2 illustrates the basic path of the laser beam across surface Ω for both test parts, as well

as its nominal power P. The laser power for both parts was distributed across Ω according to the
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procedure outlined in [16]. The time-varying laser centerpoints were calculated according to the

expressions below.

The laser centerpoint x(t) for Part (a) was calculated according to the expression:

x(t) =
xmax − xmin

2
sin

(
vπ

xmax − xmin
t − π

2

)
+

xmax + xmin

2
(11)

Where v = 954 mm/s, and xmax and xmin were taken from the part geometry as shown in Fig.

2. The end time of the simulation was set to be tfinal = 4 ms. The variance of the beam was set to

be σ2 = 0.01.

The laser centerpoint {x(t),y(t)} for Part (b) was calculated according to the expression:

x(t) =
xmax − xmin

2
sin

(
vπ

xmax − xmin
t − π

2

)
+

xmax + xmin

2

y(t) =
ymax − ymin

tfinal
t + ymin

(12)

Where v = 954 mm/s, and xmax, xmin ymax, and ymin were taken from the part geometry as

shown in Fig. 2. The end time of the simulation was set to be tfinal = 20 ms. The variance of

the beam was set to be σ2 = 0.0225. Fig. 3 displays these loads for sample time steps in the

simulation.

5 Simulation Results

Fig. 4 plots the OL model error (ErrorOL(t)) and CL estimation error (Error(t)) for both test

parts. It reveals two important aspects of the filters’ performance. The addition of the EnKF

reduced the model error in both test parts by approximately a factor of 2.5. Additionally, as Fig.

4 shows, ErrorOL(t) for Part (a) was unbounded. This phenomena is due to the geometry of Part

(a). The Neumann boundary condition that models surrounding powder insulating the build [29]

trapped heat inside the “arm” of Part (a), therefore causing a monotonic temperature increase in

that region. The rate of increase was a function of the thermal diffusivity of the material being

modeled, which was constructed to contain the maximum possible error. This disparity in rates of

temperature increase produced an unbounded ErrorOL(t). As Fig. 4 shows, the filter stabilized this

error such that it was bounded.

Fig. 4 shows that both ErrorOL(t) and Error(t) appeared to be strongly periodic for Part (b).

This phenomena is explained by Fig. 5, which illustrates the EnKF state estimation error for both

test parts for sample time steps in the simulation. One clearly observes from the figure that the

region of maximum error closely “followed” the laser centerpoint. This result was expected, given
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that the region nearest to the heat source produced the most extreme thermal response and thus

deviated the furthest from the operating point of the linearization. What appears to be periodic

behavior in Fig. 4 is actually the superimposition of select few state components in Part (b) – ie

nodal temperatures corresponding to physical locations in the geometry – experiencing a “pulse”

of substantial error as the laser beam passed over them at staggered moments in time, before the

heat diffused away and the regions decayed back to approximate ambient temperature with little

error.

Fig. 5 also demonstrates that Error(t) oscillated about the laser point center. Error(t) in the

“neck” of Part (a) oscillated between positive and negative as the laser beam transitioned from

close to far away from the x = 0 plane. Fig. 5 shows that this tendency was also present in Error(t)
in Part (b), with regions of positive and negative estimation error alternating radially outward from

the laser centerpoint. It is currently unknown what produces this wave-like pattern in Error(t).

6 Conclusions

This paper showed the feasibility of applying state estimation to the problem of acquiring

internal temperature field predictions for parts being manufactured via PBF. It demonstrated the

application of an Ensemble Kalman Filter to enforce discrete-time reduced LTI model accuracy in

the presence of uncertain system parameters and uncertain model error/noise statistics. It demon-

strated that the implementation of the Ensemble Kalman Filter in simulation studies improved the

accuracy of these model predictions by a factor of 2.5, even in the presence of worst-case model-

ing error. These results show that pursuing a controls-based approach to improving the accuracy

of simplified predictive models of PBF thermal physics holds great promise and warrants further

research.

We intend to pursue several avenues of research in light of the results of this test. First, the

performance of the filter will be tested experimentally against the temperature evolution of test

coupons that are subjected to varying load conditions in open source PBF machines. We intend

to explore the theoretical performance limitations of our reduced model, Ensemble Kalman Fil-

ter approach. We also intend to research model reduction techniques available for more complex,

time-varying models of the system. We anticipate that this research will present a marked contri-

bution toward the goal of realizing closed-loop, model-based monitoring of the PBF process.
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Figure 4: Evolution of open loop model error (ErrorOL(t)) (K) and closed loop estimation error (Error(t))
(K) vs time (s) for Parts (a) and (b). Every line represents the error signal for one state component (nodal

temperature) in each respective LTI system. Test part geometry shown in figure for reference.
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Figure 5: Demonstration of EnKF state estimation error (Error(t)) for Parts (a) and (b) for sample time steps

of the simulation. Red dot represents the location of the laser beam centerpoint.

Appendix A: Ensemble Kalman Filter algorithm

Consider a discrete-time LTI model used to model some process:

zk = Adzk−1 +Bduk

yk = Cdzk
(13)

The actual process modeled by (13) is depicted in (14), which contains (assumed independent)

process noise wk ∼ N (0,Q) and measurement noise vk ∼ N (0,R):

zk = Adzk−1 +Bduk +wk

yk = Cdzk +vk
(14)

Accordingly, the EnKF treats the evolution of zk as a random variable with some corresponding
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unknown true value zt
k. zt

k would equal the value of zk obtained from (13) if no noise were present.

The random variable zk is distributed with the state error covariance P f :

P f
k = E

[
(zk − zt

k)(zk − zt
k)

′] (15)

Similarly, the measurement yk is treated as a random variable with some corresponding un-

known, noise-free true value yt
k. It is clear that yk is distributed with measurement error covariance

equal to R:

R = E
[
(yk −yt

k)(yk −yt
k)

′] (16)

As shown in [24], the EnKF defines an ensemble of N parallel instances of (14), denoted

as Zk =
[
z1

k ,z
2
k , . . . ,z

N
k

]
, with corresponding measurement ensemble Yk =

[
y1

k ,y
2
k , . . . ,y

N
k

]
. Each

ensemble member zi
k, yi

k is generated by running (14) with independent instances of wk and vk.

Therefore, Zk, Yk collect N samples of the random variables zk, yk. By defining sample averages

z̄k =
1
N ∑zi

k and ȳk =
1
N ∑yi

k, one may construct the sample estimations of P f
k and R as defined in

(15) and (16), respectively:

P̄ f
k =

1

N −1

N

∑
i=1

(zi
k − z̄k)(zi

k − z̄k)
′ (17)

R̄k =
1

N −1

N

∑
i=1

(yi
k − ȳk)(yi

k − ȳk)
′ (18)

[24] note that ensembles of size N = 100 or greater estimate the true values of P f
k and Rk to

consistently acceptable accuracy. Model order reduction is absolutely essential to avoid unreason-

able computational burden when running several dozen concurrent models.

Having defined P̄ f
k and R̄k, [24] runs the standard Kalman filter update for every ensemble

member:

ẑi
k = zi

k + P̄ f
k Cd

′
(

CdP̄ f
k Cd

′+ R̄k

)† (
yi

k −Cdzi
k
)

This process may be represented compactly by operating on the ensembles Zk and Yk:

Ẑk = Zk + P̄ f
k Cd

′
(

CdP̄ f
k Cd

′+ R̄k

)†
(Yk −CdZk) (19)
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The state estimate ẑk may be taken as the sample average of Ẑk. The updated ensemble esti-

mates Ẑk are then fed into the “predict” step for the next time step in the algorithms’ runtime, by

substituting all ẑi
k into the RHS of their respective models as defined by (14).
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