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Abstract 

 
One of the challenges facing the industrial adoption of additively manufactured parts is the 

surface roughness on the as-built part. The surface roughness of parts is frequently characterized 
by metrics specified by international standards organizations. However, these standards list many 
surface metrics that can make it unclear which to use to best describe the surface. In this work, the 
ability of the various surface metrics to successfully classify the as-built and post-processed 
surfaces is studied using linear classification models. Laser polishing via remelting and manual 
grinding are the post-processing techniques used to smooth the as-built surface. The ability of the 
linear classifier to successfully categorize the various surfaces is demonstrated, and the various 
surface metrics are ranked according to the strength of their individual ability to classify the 
surfaces. This work promotes the method as a potential way to autonomously classify as-built and 
laser polished surfaces. 
 
Keywords: Laser; Polishing; Additive manufacturing; Surface analysis; Identification; 
Topography 
 

Introduction 
 

Additive manufacturing is an emerging technology that enables the production of complex 
parts. One additive manufacturing process, powder-bed fusion, fuses powder in a layer-by-layer 
manner with a laser or electron beam, to form a completed part. However, the poor surface quality 
of the resultant parts present a challenge that must be addressed to make the parts suitable for 
industrial usage [1]. A variety of post-processing techniques, such as machining, vibratory abrasive 
polishing, electrochemical polishing, and hand finishing have been used to address and improve 
the as-built part’s surface [2]. One method that has received increased attention in the past few 
years for the finishing of additive manufactured parts is laser polishing. In this technique, a laser 
irradiates the surface of the part and surface tension causes asperities within the molten region to 
smooth out leaving a better final surface finish. The technique has been demonstrated to improve 
the surface of additive manufactured parts on a variety of different metallic alloys, including 
cobalt, aluminum, steel, and titanium alloys [3]–[8]. Another approach to improving the surface 
finish of additive manufactured parts is through the optimization of the build process parameters 
[9]–[12]. 
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The majority of works that discuss the surface finish of additive manufactured parts use 
average surface roughness, Ra, as the primary metric [13]. Ra, which is defined by the ISO 4287 
standard as the arithmetic mean deviation of the assessed profile [14], is measured from a linear 
profile of a surface. Sa, defined by the ISO 25178 standard as the arithmetical mean height of the 
scale-limited surface [15], is analogous to Ra but from an areal measurement instead of a linear 
measurement. Similar to Ra, Sa is the most commonly used areal surface metric; however, work 
has suggested reporting other metrics, like Sz (Maximum height of the of the scale-limited 
surface), skewness, and kurtosis when discussing additive manufactured parts [13]. Additional 
parameters that were highly sensitive to changes in additive manufactured part’s surfaces include 
Vmp (Peak material volume of the scale-limited surface), Sdr (Developed interfacial area ratio of 
the scale-limited surface), and Spk (Reduced peak height) [13].  
 
 As additive manufactured parts are complex and often require some type of post-processing 
technique to improve the final surface quality, it seems reasonable to assume that some type of 
automation method will be used to verify the resultant surface quality. One technique for 
identifying groups of items is Classification, a statistical and machine learning technique. 
Classification has been used in a variety of industrial applications, such as classifying weld defects 
[16]–[18], detecting surface defects on milled parts [19], quantifying the quality of cast part 
surface’s [20], and classifying the occurrence of defects and quality online for a powder-bed fusion 
process [21], [22]. However, to the author’s knowledge it has not been used to distinguish between 
post-processed and as-built additive manufactured parts. Additionally, there are numerous surface 
metrics listed in the ISO standards [14], [15], but Ra and Sa are the most, and often only, reported 
metrics. It is likely other surface metrics are also suitable for describing additive manufactured 
parts. Because of that, it is of interest to define the surface metrics that are best suited for defining 
the unique surfaces formed from additive manufacturing and those that are best suited for 
distinguishing between the as-built and post-processed surfaces. However, defining ‘best’ at 
describing the surface is difficult and likely unique to a user’s specific application. This work 
attempts to rectify that difficulty by instead studying the ability of the various surface metrics to 
differentiate between different types of as-built and post-processed additive manufactured surfaces 
using classification techniques. The results indicate that the metrics commonly used (such as Sa), 
are not consistently the ideal metrics for distinguishing between surfaces, and the work lists other 
metrics that are more suitable for the role for these surfaces.    
 

Materials and Methods 
 

Sample Material and Building Parameters 
 

The experiments presented in this study used a cobalt-chromium alloy (Celsit 21-P, Stellite 
21 equivalent alloy) that was built using a powder-bed fusion (PBF) process (SLM 250, SLM 
Solutions). The alloy’s composition is given in Table 1.  
 
Table 1. Build material composition (manufacturer provided). 

Ni (%) Mo (%) Cr (%) Others 
(<3.348%) Co (%) 

2.74 5.28 26.6 B, C, Fe, P, Si Bal. 
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The nominal powder diameter was distributed between 20 μm and 53 μm, and the build 
process used a layer thickness of 100 μm, laser power of 110 W, laser beam diameter of 60 μm, 
and a laser scan speed of 158 mm/s. The samples being studied were rectangular cuboids that were 
built upright at a 90  angle and angled at a 45  angle. The top facing surface of the 45  sample 
is the surface of interest for this work. The nominal size of the samples was 10 mm in the vertical 
direction (build direction) and 20 mm and 3.5 mm in the horizontal direction. An example of the 
geometries of the two different surfaces can be seen in Figure 1. 

 

 
       (a) (b)  

Figure 1. Example of the geometry for the (a) 90  and (b) 45  surfaces. 
 

 The surfaces of interest on the samples in this study is the side orthogonal to the build 
layer orientation for the 90  sample, and the surface at a 45  angle to the build layer for the 45  
sample, which is shown in Figure 1. An example of a representative surface of the as-built 90  
sample and as-built 45  can be observed in Figure 2.  
 

  
(a) (b) 
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(c) (d) 

Figure 2. Top down view of representative examples of the as-built surfaces built at a (a) 90  
and (b) 45  angle and projection view of the (c) 90  and (d) 45  angle surfaces. 

 
As Figure 2 shows, the two surfaces are relatively similar to one another with a few distinct 

differences. The 90  sample has a greater number of adhered particles stuck to its surface, and 
they are often in tighter clusters with one another than the 45  sample. The 45  sample has more 
pronounced large wavelength features that can be observed due to the individual build layers and 
the stair-step effect that occurs when building at an angle [10]. Due to the high roughness these 
surfaces have, they often require some type of post-processing to get to a suitable surface finish. 
 

Surface Post-Processing 
 

 The additively manufactured surfaces were post-processed using both manual grinding and 
laser polishing. The grinding was performed on the side of a 90  sample using a 
grinding/polishing system and a 240-grit abrasive pad. The grinding was performed until the 
surface quality stopped improving for that grit size grinding paper, which took approximately two 
minutes.  The laser polishing was performed on the sides of the 90  sample (surface orthogonal 
to the build layer) using a 200 W, 1070 nm fiber laser (SPI Lasers, SP-200C-W-S6-A-B) that was 
operated in continuous-wave mode. The laser polishing conditions were based on those used in 
previous studies [7], and a 1 mm by 1 mm area was polished. The nominal laser processing 
parameters include a beam diameter of 100 m, a beam scanning velocity of 200 mm/s, a laser 
power of 80 W, and a spacing distance between subsequent laser lines of 60 m. The laser traveled 
in the same direction for every line and scan. A total of 36 different areas were laser polished using 
the same polishing conditions. An example of the ground and laser polished surfaces can be seen 
in Figure 3.  
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(a) (b) 

 
(c) (d) 

Figure 3. Top down view of the (a) laser polished and (b) ground surface and projection view 
of the (c) laser polished and (d) ground samples.  

 
These surfaces are both smoother than the as-built surfaces. However, larger wavelength 

features can be observed in the laser polished surface (Figure 3(c)), which is due to incomplete 
redistribution of mass from the adhered particles during the remelting process. The ability of the 
laser to redistribute mass and reduce large wavelength features is strongly dependent on the 
processing parameters used [8]. There are also clear directional features within both of the surfaces, 
which correspond to either the laser scanning direction for the laser polished surfaces, or the 
grinding direction for the ground samples.  
 

Surface Measurement and Metrics 
 
 The various surfaces of interest in this study were imaged using an optical focus-variation 
microscope (Alicona InfiniteFocus G4) with a 20  objective. The images were captured using a 
vertical and horizontal resolution of 100 nm and 1.5 m, respectively, and the size of each 
measurement was 712 m by 540 m. Each experimental condition (as-built 90 , as-built 45 , 
laser polished, and ground) was imaged 36 times at separate locations across the samples spaced 
approximately 2 mm apart. From these images 20 different surface metrics were calculated and 
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used for this study. The various surface metrics used in this study are listed in Table 2. More 
detailed information on the specific metrics can be found in the ISO 25178 standard [15]. 
 
Table 2. Areal surface metrics used in this work [15]. 

Metric and Units Metric Description 

Height Parameters 

Sa ( m) Arithmetical mean height of the scale-limited surface 
Sq ( m) Root mean square height of the scale-limited surface 
Sp ( m) Maximum peak height of the scale-limited surface 
Sv ( m) Maximum pit height of the scale-limited surface 
Sz ( m) Maximum height of the of the scale-limited surface 

Ssk (-) Skewness of the scale-limited surface 
Sku (-) Kurtosis of the scale-limited surface 

Hybrid Parameters 
Sdq (-) Root mean square gradient of the scale-limited surface 

Sdr (%) Developed interfacial area ratio of the scale-limited surface 
Bearing Area Curve Parameters 

Sk ( m) Core height 
Spk ( m) Reduced peak height 
Svk ( m) Reduced dale height 
Smr1 (%) Material ratio 1(10%) 
Smr2 (%) Material ratio 2 (20%) 

Vmp (ml/m3) Peak material volume of the scale-limited surface 
Vmc (ml/m3) Core material volume of the scale-limited surface 
Vvc (ml/m3) Core void volume of the scale-limited surface 
Vvv (ml/m3) Dale void volume of the scale-limited surface 

Spatial Parameters 

Sal ( m) Autocorrelation length (0.2) 
Str (-) Texture aspect ratio 

 
 The metrics were calculated on the primary datasets (i.e., the surface without any waviness 
removed) using the microscope’s built-in analysis software (Alicona IF-MeasureSuite). The 
waviness of the surface was not filtered out due to the wide potential selection of cutoff 
wavelengths that could be chosen that may influence the classification; however, the overall form 
of the surface was removed by removing the least-square plane with a robust fitting algorithm, 
rendering this a S-F surface [15]. The values of the areal surface metrics for the various surfaces 
reported on in this work can be found in the Appendix in Table A1.   
 

Data Analysis and Classification 
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For this work, two different classifications were performed. The first analysis used the 
surface metrics listed in Table 2 to classify the as-built 90 , laser polished, and ground surfaces, 
and the second used those same metrics to classify the as-built 90  and as-built 45  surfaces. 
Within each analysis, two different classification techniques were used: a linear discriminant 
analysis (LDA) classifier, and a Gaussian naive Bayes (NB) classifier. The LDA classifier attempts 
to categorize the various surfaces by determining the linear function that most effectively splits 
the categories [23]. If only one input parameter (for example, Sa) is used to classify two different 
surfaces, LDA determines the single value that best separates the two groups. In contrast, a 
Gaussian NB classifier uses a Gaussian probability distribution of the different groups to separate 
them [24]. For both techniques, 10-fold cross validation was used to improve confidence and 
reduce the chance of over-fitting. The data was analyzed, and the classification algorithms were 
implemented, using commercially available machine learning software (MATLAB R2018a, 
Statistics and Machine Learning Toolbox). The results presented in this work are reported using 
the error of the classification techniques for each of the individual metrics and for combinations 
of two metrics. The equation used to calculate the error rate is given below in Equation 1: 

 
   (1) 
 
 The error rate refers to the amount of surfaces the classifier incorrectly identified. An 
example of ‘good’ classification performance for the various surface metrics would be to have a 
low error rate as described by Equation 1. While various metrics from the confusion matrix can be 
used to assess the goodness of the classification (i.e., sensitivity, specificity, etc.), the error rate is 
used as there are an equal number of each group and reporting the other metrics becomes more 
involved for 3-way classification.  
 

Results and Discussion 
 

Motivation of Work 
 

This work is largely motivated by the frequent use of Ra, Sa, and Sz when discussing the 
surfaces of additively manufactured parts [13]. An example of the Sa and Sz relationship for the 
surfaces in this work is shown in Figure 4.  The data shown are grouped according to the two 
different classification analyses.  
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(a) (b) 

Figure 4. Sz vs. Sa plots for (a) as-built vs. post-processed and (b) as-built: 90  vs. 45  build 
direction. 

 
Figure 4 shows that it can be difficult to distinguish between the different types of surfaces 

by using only Sa and Sz. The as-built vs. post-processed surfaces can be relatively easily separated 
based on these metrics, with Sa values of approximately 2 m and 10 m or Sz values of 
approximately 30 m and 100 m separating the groups. It should be noted that the relatively 
high Sa values of the laser polished surfaces are largely due to the waviness of the surface that has 
not been filtered out. When the waviness is filtered out using a 250 m cutoff wavelength, the Sa 
values range between 0.9 and 2.1 m. In contrast, the as-built 90  and as-built 45  angled 
surfaces cannot be distinguished from one another using only Sa and Sz. However, as Figure 2 
demonstrates, these surfaces are quite different in appearance from one another. Additionally, Sa 
and Sz are linearly correlated with one another, which effectively reduces the total information 
that is reported when both of those metrics are given. It is valuable to know which surface metrics 
more effectively distinguish between the different types of surfaces seen in powder-based metal 
additive manufacturing, which is what this study reports on.   
 

As-Built vs. Post-Processed Surfaces Classification 
 
 The error rates of the individual metrics for classifying the as-built vs. post-processed 
surfaces are shown in Figure 5.  
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(a) (b) 

Figure 5. Error rates for the various metrics at classifying the as-built vs. post-processed 
surfaces using the (a) LDA classifier and (b) NB classifier. 

 
 Figure 5 shows that the most effective metrics at distinguishing the surfaces from one 
another for both classifications include Sk (Core height) and Sal (Autocorrelation length) with 
LDA error rates of 0.028 and 0.028, respectively. Sk is derived from the bearing area curve and 
represents how tall the core (portion of the surface excluding peaks and valleys) is, while Sal 
represents the distance on the auto-correlation function that decays to the specified value (0.2 in 
this case) most rapidly. For this analysis, Sa and Sz are also reasonably good at distinguishing the 
surfaces, with NB errors rates of 0.037 and 0.056. Figure 4(a) shows this as well – Sa values can 
be visually seen that would reasonably separate the groups (such as 2 m and 10 m). While this 
analysis tested the ability of individual metrics to distinguish the surfaces, Figure 6 shows how 
effective combinations of metrics are at classifying the surfaces.  
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Figure 6. Heat map showing the error rate of the various combination of metrics in classifying 

the as-built vs. post-processed surfaces. Values of 0 are highlighted. 
 
 The upper right portion of Figure 6 shows the results of the LDA classifier, while the lower 
left shows the results of the NB classifier. When combining two metrics, it is possible to get to a 
zero error rate using the NB classification, meaning that all of the surfaces were classified 
correctly. However, Sa and Sz together have a 0.07 error rate for the LDA classification and a 0.04 
error rate for the NB classification. Those values are similar to the error rates shown in Figure 5 
for single metric classification and is likely due to the strong correlation between the two values. 
Further improvements are not observed by using both Sa and Sz together. However, Sk and Sal 
both perform well alongside many of the different metrics. Additionally, Vmp (Peak material 
volume of the scale-limited surface), Vmc (Core material volume of the scale-limited surface), and 
Vvc (Core void volume of the scale-limited surface) perform well for the NB classification. These 
metrics are also derived from the bearing area curve and represent the volume of the material in 
the peaks of the surface, the volume of material in the core region, and volume of the core void 
region, respectively. Finally, Sdq (Root mean square gradient of the scale-limited surface) and Sdr 
(Developed interfacial area ratio of the scale-limited surface) also perform well. Sdq represents an 
average value of the slopes on the surface, while Sdr represents the additional area the surface has 
compared to a projected area. Additionally, Figure 6 shows that the NB classifier frequently 
performs better than the LDA classifier. Figure 7 plots some of the metrics for the various surfaces.  
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(a) (b) 

Figure 7. Examples of the distinct grouping of surfaces that occur when (a) Sk and Sdr are 
used and (b) Sal and Vmc are used.  

 
 Figure 7 demonstrates that these metrics distinguish between the various surfaces more 
clearly than those shown in Figure 4(a) and also shows distinct clustering of the values for the 
three different surfaces. Additionally, as the variables are not as strongly correlated with one 
another, more information is shown then when only Sa and Sz are reported.  
 

As-Built 90º Vertical and 45º Angled Surfaces Classification 
 

This section uses classification techniques to distinguish between additively manufactured 
parts built vertically at a 90  and parts built at a 45  angle. As Figure 4(b) shows, these surfaces 
have similar Sa and Sz values to one another. The ability of the individual metrics to distinguish 
the surfaces is shown in Figure 8.  
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(a) (b) 

Figure 8. Error rates for the various metrics at classifying the as-built 90  and as-built 45  
vs. surfaces using the (a) LDA classifier and (b) NB classifier. 

 
 For these surfaces, Sa and Sz due a poor job at distinguishing between the groups. Sa has 
error rates of approximately 0.61 and 0.52 for the LDA classification and NB classification, 
respectively, while an error rate greater than 0.5 is worse than random chance. Sz has an error rate 
of approximately 0.42 for both classifications. In contrast, Svk (Reduced dale height), Smr2 
(Material ratio 2), Sal, and Vvv (Dale void volume of the scale-limited surface) perform the best, 
with error rates for all of them between 0.21 and 0.25. Svk, Smr2, and Vvv are derived from the 
bearing area curve, with Svk representing the height of the valley portion of the surface, Smr2 
representing the percentage of the surface that is in the valley portion, and Vvv represents the 
volume of the valleys from the bearing area curve. The classification ability of the various two-
metric combinations is shown in Figure 9.  
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Figure 9. Heat map showing the error rate of the various combination of metrics in classifying 

the two different as-built surfaces. Values of 0.15 and lower are highlighted.  
 

These surfaces are more difficult to distinguish than the as-built vs. post-processed 
surfaces, and the lowest observable error rate is 0.14 (for the Sdr and Vvv LDA combination). A 
few metrics stand out as consistently having a lower error rate: Sal, Vvv, Smr2, and Svk. Those 
metrics are the same metrics that performed well individually. Figure 9 also shows that the LDA 
classification performs slightly better than the NB method for these surfaces. Two plots showing 
some examples of the stronger classification combination of metrics are shown in Figure 10.  
 

 
      (a)            (b) 
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Figure 10. Examples of the distinct grouping of the as-built surfaces that occur when (a) Sdr 
and Sv and (b) Sdq and Vvv are used. 

 
 In contrast to Figure 4(b), the plots in Figure 10 show more distinct regions where the 90  
and 45  surfaces can be distinguished from one another. These results show that, while using 
common metrics such as Sa and Sz may imply these surfaces are almost identical, further 
information and distinctions between the surfaces can be observed when other metrics are used.   
  

Conclusions 
 

In this work, two different classification techniques are used in two different group 
classifications of additive manufactured metal parts. The first classification attempted to 
distinguish between as-built parts, ground parts, and laser polished parts using both a linear 
discriminatory analysis classifier and a Gaussian naive Bayes classifier. It was found that Sa and 
Sz performed well as individual metrics for classifying the surfaces with the naive Bayes classifier, 
but when combinations of metrics were considered, other groupings worked better. Additionally, 
Sk, Sal, Vmp, Vmc, Vvc, Sdr, and Sdq were all effective at distinguishing between the surfaces 
when the naive Bayes classifier was used. The second classification tried to differentiate between 
as-built surfaces that were built at two different angles. For these surfaces, Sa and Sz were not 
effective at distinguishing between the surfaces, but Svk, Smr2, Sal, and Vvv performed better 
with error rates of between 0.21 and 0.25 as individual metrics. Additionally, various combinations 
of metrics were shown to give error rates of 0.15 and low (Sv and Sdr, Sdr and Vvv, Sdr and Vvv, 
Vmc and Sal, and Vvc and Sal). These results demonstrate that the metrics with the best ability to 
distinguish between the various surfaces, and those commonly reported, are not necessarily the 
same. Especially for additive manufactured parts, whose surfaces are very complex, it is likely 
worthwhile to report additional metrics when discussing roughness. This work reports various 
metrics that may be worth considering. It also demonstrates a methodology for determining metrics 
to use in classifying surfaces, and a similar process could be used to determine whether parts meet 
specifications, if enough satisfactory parts are available to provide a training data set.  
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Appendix  

  
The values of the various surface metrics reported are given below in Table A1.  
 
Table A1. Surface texture mean values and standard deviations for the different surfaces.  

Metric As-Built Angled As-Built Laser Polished Ground 
Sa ( m) 17.59 ± 5.73 17.96 ± 4.43 6.12 ± 2.18 0.94 ± 0.06 
Sq ( m) 23.07 ± 7.31 24.19 ± 5.84 8.00 ± 2.93 1.26 ± 0.22 
Sp ( m) 98.35 ± 24.66 100.87 ± 32.28 28.02 ± 13.45 9.24 ± 4.80 
Sv ( m) 57.03 ± 12.38 68.29 ± 14.25 30.28 ± 8.63 13.47 ± 8.17 
Sz ( m) 155.38 ± 30.50 169.16 ± 33.71 58.31 ± 17.65 22.71 ± 10.24  

Ssk (-) 1.19 ± 0.42 0.70 ± 0.87 -0.40 ± 0.78 -0.56 ± 1.44 
Sku (-) 4.94 ± 1.55 5.13 ± 2.44 3.98 ± 1.05 10.29 ± 19.62  
Sdq (-) 3.35 ± 0.71 2.79 ± 0.60 0.53 ± 0.08 0.55 ± 0.04 

Sdr (%) 324.16 ±135.62 216.97 ± 82.15 11.50 ± 2.65 12.40 ± 1.30 
Sk ( m) 40.68 ± 10.65 41.08 ± 6.33 13.94 ± 4.57 2.87 ± 0.11 

Spk ( m) 42.16 ± 18.54 39.39 ± 16.43 9.05 ± 8.77 1.28 ± 0.10 
Svk ( m) 11.47 ± 4.06 24.27 ± 13.77 11.73 ± 5.77 1.60 ± 0.59 
Smr1 (%) 20.53 ± 3.70 17.22 ± 5.94 12.19 ± 7.62 10.06 ± 0.58 
Smr2 (%) 93.61 ± 1.80 88.25 ± 5.56 83.80 ± 6.51 88.87 ± 0.92 

Vmp (ml/m3) 1.86 ± 0.83 1.93 ± 1.05 0.34 ± 0.20 0.06 ± 0.01  
Vmc (ml/m3) 17.13 ± 5.37 17.89 ± 4.40 6.52 ± 2.03 1.02 ± 0.04 
Vvc (ml/m3) 32.42 ± 13.41 28.53 ± 9.02 8.96 ± 5.50 1.37 ± 0.05 
Vvv (ml/m3) 1.39 ± 0.41 2.48 ± 1.16 1.14 ± 0.57 0.16 ± 0.04 

Sal ( m) 58.05 ± 16.25 94.23 ± 30.50 128.01 ± 27.50  7.85 ± 5.68 
Str (-) 0.60 ± 0.19 0.50 ± 0.18 0.48 ± 0.16 0.06 ± 0.06 
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