


 
Figure 9. Heat map showing the error rate of the various combination of metrics in classifying 

the two different as-built surfaces. Values of 0.15 and lower are highlighted.  
 

These surfaces are more difficult to distinguish than the as-built vs. post-processed 
surfaces, and the lowest observable error rate is 0.14 (for the Sdr and Vvv LDA combination). A 
few metrics stand out as consistently having a lower error rate: Sal, Vvv, Smr2, and Svk. Those 
metrics are the same metrics that performed well individually. Figure 9 also shows that the LDA 
classification performs slightly better than the NB method for these surfaces. Two plots showing 
some examples of the stronger classification combination of metrics are shown in Figure 10.  
 

 
      (a)            (b) 
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Figure 10. Examples of the distinct grouping of the as-built surfaces that occur when (a) Sdr 
and Sv and (b) Sdq and Vvv are used. 

 
 In contrast to Figure 4(b), the plots in Figure 10 show more distinct regions where the 90  
and 45  surfaces can be distinguished from one another. These results show that, while using 
common metrics such as Sa and Sz may imply these surfaces are almost identical, further 
information and distinctions between the surfaces can be observed when other metrics are used.   
  

Conclusions 
 

In this work, two different classification techniques are used in two different group 
classifications of additive manufactured metal parts. The first classification attempted to 
distinguish between as-built parts, ground parts, and laser polished parts using both a linear 
discriminatory analysis classifier and a Gaussian naive Bayes classifier. It was found that Sa and 
Sz performed well as individual metrics for classifying the surfaces with the naive Bayes classifier, 
but when combinations of metrics were considered, other groupings worked better. Additionally, 
Sk, Sal, Vmp, Vmc, Vvc, Sdr, and Sdq were all effective at distinguishing between the surfaces 
when the naive Bayes classifier was used. The second classification tried to differentiate between 
as-built surfaces that were built at two different angles. For these surfaces, Sa and Sz were not 
effective at distinguishing between the surfaces, but Svk, Smr2, Sal, and Vvv performed better 
with error rates of between 0.21 and 0.25 as individual metrics. Additionally, various combinations 
of metrics were shown to give error rates of 0.15 and low (Sv and Sdr, Sdr and Vvv, Sdr and Vvv, 
Vmc and Sal, and Vvc and Sal). These results demonstrate that the metrics with the best ability to 
distinguish between the various surfaces, and those commonly reported, are not necessarily the 
same. Especially for additive manufactured parts, whose surfaces are very complex, it is likely 
worthwhile to report additional metrics when discussing roughness. This work reports various 
metrics that may be worth considering. It also demonstrates a methodology for determining metrics 
to use in classifying surfaces, and a similar process could be used to determine whether parts meet 
specifications, if enough satisfactory parts are available to provide a training data set.  
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Appendix  

  
The values of the various surface metrics reported are given below in Table A1.  
 
Table A1. Surface texture mean values and standard deviations for the different surfaces.  

Metric As-Built Angled As-Built Laser Polished Ground 
Sa ( m) 17.59 ± 5.73 17.96 ± 4.43 6.12 ± 2.18 0.94 ± 0.06 
Sq ( m) 23.07 ± 7.31 24.19 ± 5.84 8.00 ± 2.93 1.26 ± 0.22 
Sp ( m) 98.35 ± 24.66 100.87 ± 32.28 28.02 ± 13.45 9.24 ± 4.80 
Sv ( m) 57.03 ± 12.38 68.29 ± 14.25 30.28 ± 8.63 13.47 ± 8.17 
Sz ( m) 155.38 ± 30.50 169.16 ± 33.71 58.31 ± 17.65 22.71 ± 10.24  

Ssk (-) 1.19 ± 0.42 0.70 ± 0.87 -0.40 ± 0.78 -0.56 ± 1.44 
Sku (-) 4.94 ± 1.55 5.13 ± 2.44 3.98 ± 1.05 10.29 ± 19.62  
Sdq (-) 3.35 ± 0.71 2.79 ± 0.60 0.53 ± 0.08 0.55 ± 0.04 

Sdr (%) 324.16 ±135.62 216.97 ± 82.15 11.50 ± 2.65 12.40 ± 1.30 
Sk ( m) 40.68 ± 10.65 41.08 ± 6.33 13.94 ± 4.57 2.87 ± 0.11 

Spk ( m) 42.16 ± 18.54 39.39 ± 16.43 9.05 ± 8.77 1.28 ± 0.10 
Svk ( m) 11.47 ± 4.06 24.27 ± 13.77 11.73 ± 5.77 1.60 ± 0.59 
Smr1 (%) 20.53 ± 3.70 17.22 ± 5.94 12.19 ± 7.62 10.06 ± 0.58 
Smr2 (%) 93.61 ± 1.80 88.25 ± 5.56 83.80 ± 6.51 88.87 ± 0.92 

Vmp (ml/m3) 1.86 ± 0.83 1.93 ± 1.05 0.34 ± 0.20 0.06 ± 0.01  
Vmc (ml/m3) 17.13 ± 5.37 17.89 ± 4.40 6.52 ± 2.03 1.02 ± 0.04 
Vvc (ml/m3) 32.42 ± 13.41 28.53 ± 9.02 8.96 ± 5.50 1.37 ± 0.05 
Vvv (ml/m3) 1.39 ± 0.41 2.48 ± 1.16 1.14 ± 0.57 0.16 ± 0.04 

Sal ( m) 58.05 ± 16.25 94.23 ± 30.50 128.01 ± 27.50  7.85 ± 5.68 
Str (-) 0.60 ± 0.19 0.50 ± 0.18 0.48 ± 0.16 0.06 ± 0.06 
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