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Abstract 

Monitoring and controlling Additive Manufacturing (AM) processes play a critical role in 
enabling the production of quality parts. AM processes generate large volumes of structured and 
unstructured in-situ measurement data.  The ability to analyze this volume and variety of data in 
real-time is necessary for effective closed-loop control and decision-making. Existing control 
architectures are unable to handle this level of data volume and speed.  This paper investigates the 
functional and computational requirements for real-time closed-loop AM process control.  The 
paper uses those requirements to propose a function architecture for AM process monitoring and 
control.  That architecture leads to a fog-computing solution to address the big data and real-time 
control challenges.  
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Section-1. Introduction 
Within the next decade, the goal of AM is to become one of the primary manufacturing 

processes. Requirements for achieving this goal include 1) AM software for high-complexity 
product design and engineering, 2) AM machines for high-quality and low-cost part fabrication, 3) 
AM sensors for in-situ monitoring of various AM processes, and 4) controllers that can analyze 
big data and make optimal decisions in real-time [1].  Vendors have been providing similar 
capabilities to address these requirements for traditional manufacturing for decades.  So what is 
different about AM?    
 AM is an additive fabrication process.  AM processes create parts directly from 3D 
computer-aided-design (CAD) files.  For example, powder bed fusion adds, and then melts, metal 
or polymer powders in a layer-upon-layer fashion.  The melting process varies depending on the 
technology underlying the heat source used in the process.  Despite of the enormous potential 
benefits of AM, manufacturers are facing a major problem of the production technology: even 
under the identical process parameters and machine conditions, the quality of the AM products can 
vary substantially and often unacceptably [2].  Various factors contribute to this problem, including 
the variability in feedstock materials, process parameters, and build function execution. To reduce 
the part quality uncertainty, AM process monitoring and control become critical.   

Unlike the process monitoring of subtractive processes, AM in-situ monitoring relies on 
multi-modal sensors that generate a large amount of 1d, 2d and 3d data during fabrication.   The 
data are used to estimate the current states of both AM processes and parts, as well as to predict 
the final states of the parts.  The in-situ data can also be used for part qualification and to improve 
the design and engineering of future AM products.   
   In addition, AM requires multi-loop feedback control, meaning that the measurement and 
quality monitoring data are used for process control and decision making at multiple sampling 
rates.  AM in-situ monitoring data, generated in real-time from various sensors at different 
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intervals, becomes feedback to machine controllers.  The controllers analyze the data, modify 
process parameters in real-time or near real-time, or stop the build as necessary.  
 In this paper, we focus on defining a reference architecture for AM process monitoring and 
control, including 1) identifying the relevant analytics and control functions, 2) proposing a control 
architecture, and 3) using fog computing to implement them.  In Section 2, we describe the 
limitation of the traditional hierarchical control architecture. In Section 3, we present a multi-loop 
control framework for AM process monitoring and control; Section 4 describes the computing 
requirements for near real-time process monitoring and control functions; Section 5 presents a fog 
computing based architecture for AM process monitoring and control  

2.  Is ISA 95 the Right, Control Architecture for AM 
The ISA Model 

For decades, the ISA 95 model defined by the International Society of Automation (ISA) 
has been the hierarchical-control choice for traditional manufacturing systems [3].  ISA 95 divides 
the functions of those systems into levels based on three aligned decompositions: spatial, 
functional, and temporal. In Figure 1, the triangle represents the ISA functional hierarchical 
decomposition, with the temporal aspects (the timeframes) of the hierarchy shown on the left.  It 
is important to note that those timeframes are holdovers from the time when humans performed 
those functions. The spatial aspects, which are not shown, go from an individual machine to an 
entire factory. The shaded boxes on the right of Figure 1 show the various software applications 
that have been developed to implement the functions in each level.  That implementation is 
constrained by the timeframe assigned to each level.  

 
Figure 1.  The ISA Hierarchy 

The ISA views this functional hierarchy as a control hierarchy, meaning that each function 
is associated with a controller.  That controller’s job is to use the designated software application 
to manage the execution of that function. There are rigid rules about 1) the kinds of inter-level 
“command-feedback” communications and 2) the information exchanges between the software 
applications that create those communications.  As noted above, those rigid rules were originally 
developed before the computer revolution, and well before the explosion of commercially 
available, domain-specific, software applications [3].   

Since ISA’s standardization, both the use of hierarchical principles and the ISA control 
hierarchy itself have been adopted, and adapted, in many manufacturing domains.  The domain-
specific software applications, which began to infiltrate the manufacturing sector in 1990s, were 
run according to the predetermined ISA timeframes. For example, as shown in Figure 1, ERP 
would run once a day, MES would run once an hour, and so on.  Of course, once the required 
integration problems were solved, these applications could have been run at any time.  But, for a 
variety of reasons mostly associated with keeping the four aspects in Figure 1 completely aligned, 
they were not.   
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Does ISA Work for AM 
 The beginnings of Industry 4.0, new advances in information technology, and a variety of 

new AI tools are obviating the need for an AM-centric control architecture.  A key point of Industry 
4.0 systems is decentralized, data-driven decision-making. The purpose is to make each entity 
more autonomous, with the capability to communicate directly with any other part of the system 
[3].   

Advances in information technology include cloud services, camera sensors, fog 
computing, and edge computing.  Cloud services provide a good option for implementing AM 
design and AM engineering functions.  The economic benefits of using cloud services and 
computing come from efficient resource allocation. Resource management plays a major part in 
increasing system performance, thereby enhancing user satisfaction [4].   Nevertheless, cloud 
services naturally clash with both the new Industry 4.0 design principles and the need for reliable, 
real-time control of AM machines and processes during the “build” function [5].  

That need depends on the ability to analyze the large amounts of in-situ measurement data 
being collected by a variety of cameras.  Since there are very few physics-based AM process 
models, that analysis, and hence control, warrants the use of machine learning tools. Many of these 
tools exist in the cloud. Hence the in-situ data collected at level 1 must also be sent directly to level 
3 and 4 functions for off-line analysis.  While the cloud services can certainly be used for 
understanding AM processes and analyzing the final-part’s quality for inspection purposes, they 
cannot be used for real-time control. For real-time control, in-situ measurement, analysis, and 
prediction are required to optimize the process parameters and thereby control the machine and 
process. These real-time or near real-time functions also demand intensive computation power, 
which cannot be provided by typical edge nodes, such as PLCs or AM machine on-board 
computing units.   
 In the remainder of the paper, we first propose a multi-loop feedback control architecture 
for the “build” monitoring and control.  We then propose the use of both fog and edge computing 
as a way of implementing the corresponding functions. 

3.  Multi-Loop AM Process Monitoring and Control Functions 
 The proposed multi-loop AM process and control architecture is shown in Figure 2. It has 
three major loops: 1) sub-second real-time control 2) Layer wise scan optimization and 3) offline 
build planning and data driven modeling. Process Monitoring provides multirate data curation 
functions, including sensing, data acquisition, data fusion and data analytics.    

The outmost loop “Build Planning” is an engineering task, usually done with human in the 
loop.  The main outputs of Build Planning include 1) a build plan - the process parameters and 
other information needed to fabricate the product, and 2) the information (models) used to assess 
the current state of the process and the parts, and to predict the final state of those parts.  The 
planning process involves two major types of tasks:  1) process specific tasks including lattice, 
support design and build orientation selection; 2) machine specific tasks to convert the build plan 
into the formats required by a particular AM machine, usually done by using machine specific 
software tools. 

The innermost loop is for real-time control. Based on in-situ feedback measurements, real-
time controllers change the process parameters to stabilize process. The feedback measurements 
can include melt pool temperatures and sizes, sampled at many KHz. And the process parameters 
include energy power, material feeding rate etc. As of today, only a few AM machine models have 
the real-time feedback control capabilities.  
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Figure.2 Multi-loop Control Architecture for the Build Function 

The middle loop “Layer-wise Control and Planning” makes adjustments of scan path and 
process parameters for the next layer based on the monitoring information from the previous layers. 
For PBF, this task has to be done before the recoating process finishes to avoid build time 
increasing.   

The multi-loop monitoring and control functions use a variety of machine learning 
techniques to determine the current states of the process and the parts, to make a prediction about 
the final state of the part and to generate real-time or near real-time control to bring back the part 
quality from deviations. The models used for real-time and near real-time control can be learned 
from past builds and simulations which are usually trained in clouds. The process monitoring 
functions supporting real-time or near real-time control have to provide process and part state 
estimation within micro seconds or several seconds to enable the feedback loop. For layer-wise re-
planning, multi-modal sensor fusion and model predictive control are involved for defect detection 
and scan path re-planning.  These tasks are also computational intensive, beyond the capability of 
the traditional edge computation nodes such as PLCs or embedded controllers. In order to identify 
appropriate computation infrastructure for the AM process monitoring and control, we will first 
analyze the functions for in-situ monitoring and control and group them in a function architecture, 
which will be described in this section. 
AM Process Monitoring and Control Function Architecture

Figure 3 shows a reference function architecture of AM process monitoring and control. 
Analytics and control functions are grouped and illustrated based on the time criticality. 
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Figure.3 AM Process Monitoring and Control Function Architecture 
Real-time functions include data acquisition from in-situ monitoring system, measurement 

data preprocessing - cleaning and tagging, melt pool geometry characterization, fast spectrum 
analysis of acoustic measurements, anomaly detection, real-time feedback control generation, and 
emergency reaction, such as build stop.     

Near real-time functions fuse the process monitoring data obtained from previous layers, 
conduct layer-wise process and part state evaluation and make decision if the build should be 
continued or stopped. If the build shall continue, a scan plan adjustment function may be necessary 
based on the evaluation or prediction of part quality. With hybrid manufacturing, the layer-wise 
controller can make a decision to machine off the defected layers and then resume the layer-by-
layer process. 

Offline functions include data analytics for engineering decision. In-situ monitoring and 
control data from multiple past builds, as well as the part development lifecycle data, are 
aggregated for analysis. The data can be used for training to correlate process settings with process 
signatures, microstructure properties and mechanical properties. The resulted models are used for 
build plan generation. Machine learning can also be used to train models which are used in real or 
near real-time process monitoring and control.   

In this paper, we focus on the analysis and prediction functions for in-process control. 
Many of the tasks associated with these functions are shown in Figure 3, including tasks in the 
real-time group and tasks in the near real-time-group.  In the remainder of this paper, we will 
discuss the near real-time functions, which demand the use of fog computing for implementation. 
Near Real-Time Functions 

The main purpose of the near real-time process monitoring and control functions is for 
layerwise decision making. Multiple commercial AM systems and third party in-situ monitoring 
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systems are equipped with such capability. The cycle time for layerwise decision making varies 
from seconds to minutes, depending on the design of the parts, the scan patterns and the process 
parameters.   The middle layer of Figure 3 lists the mostly reported layerwise data analytics and 
control functions. They are sensor data fusion, residual stress estimation, 3d model reconstruction, 
defect detection, process and part quality prediction, and layer parameters optimization.   

Multiple in-situ sensors are being utilized in AM machine for monitoring and controlling 
AM part quality. The sampling rates and volumes of the sensor data vary. For real-time monitoring 
and control, these sensors data such as temperature, melt pool geometry, acoustic signal, process 
parameters, etc. need to be registered correctly and fused effectively. Sensors data fusion is a major 
area of research for better understanding of the AM process [6, 7].  

3D in-situ measurement such as Optical coherence tomography (OCT) is used for both 
surface and inner-structure defect detection, as well as dimension analysis. Due to its high 
resolution and non-destructive nature, it also useful for surface-void detection, loose powder 
detection, and subsurface feature detection. OCT is also used to find cracks and un-melted powder 
areas during production [8, 9].  

Accurate residual stress estimation is a key step in attaining maximum dimensional 
accuracy and avoiding early fatigue failure [10]. Many process parameters affect the residual stress 
in AM [11]. The estimated residual stress based on in-situ thermal measurements can be used as 
the inputs to re- plan scan paths and optimize process parameters for the next build layer. Therefore, 
they work as a promising tool for AM part quality control. 

Finding defects using layerwise images provides timely control over the ongoing 
manufacturing process. By detecting a catastrophic defect during the process, we can stop a failed 
build early, reduce the cost and avoid the waste. There are many existing methods to find defects 
such as ANN, Bayesian classifier, support vector machines (SVM), and Convolutional Neural 
Networks (CNN). CNNs earned attention due to the accuracy and fast execution time as compared 
to other methods. The execution speed of a CNN is enhanced through the use of high-performance 
computing resources such as advanced GPU. The output of the function can be used for (layer-
wise) process control, supplementary process decisions, or remedial actions [12-14]. Some 
researchers use an acoustic signal for in-situ quality prediction in AM using deep learning [15-16].  

Automatic virtual metrology (AVM) is a technique in which the quality of the 
manufactured part can be predicted without actual manufacturing by utilizing previously obtained 
in-process measurements. For AM quality prediction, the AVM system is based on in-situ data 
sensed during prior manufacturing [17-18].  
 Layerwise parameter-optimization functions re-plan the process settings for the subsequent 
layer. These functions consider outputs from the quality prediction, OCT, the residual stress 
estimation, and the defect detection functions, and perform path re-planning using ANNs or 
genetic algorithms [19].  

Today’s AM machines are instrumented with a myriad of sensors.  In addition, many of 3rd 
party provided sensors can be easily integrated which generate and produce data over extremely 
short periods of time. Not like the traditional machine tools using 1d sensors, many of today’s 
AM-sensors are generating vast amounts of 2d (image data) and even 3d data at increasingly faster 
rates – much different than the traditional numerical data.  Tens of thousands images from high 
speed co-axial cameras are generated each layer.  In addition, staring cameras produces multiple 
high-definition global view images each layer.  Fusing the images with the machine control 
commands and other sensor measurements are critical for layer-wise control, planning and 
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decision making. The computation requirements to perform the data analytics and control are very 
high.   

4. Computing Requirements in AM 
Computational speed is the major issue for the real-time control system. The traditional 

method can deliver precise melt pool measurement but deficiencies of processing efficiency. For 
real-time control in AM, a major problem is that current single node systems cannot meet the real-
time computing requirements.  For example, a traditional melt pool classification method takes 3.5 
milliseconds to process a melt pool image. If a co-axial camera generates approximately 3000 
images each layer, classifying the full layer of melt pool images would require approximately 10 
seconds. This calculated time does not include the data transfer time; sending such a large amount 
of data to the cloud for processing will require additional time for transferring and processing. Due 
to these problems, currently manufacturing automation systems fail to meet the AM requirements 
for real-time monitoring and control [20].  

The computing requirements for AM processes are dictated by the volume, velocity, 
variety, and veracity of the data. According to Wang et al., there are up to 2.3 trillion voxels in a 
typical build volume; about 600 variables logged during AM processes on a per seconds basis, 
giving up to 300 MB of data per build; and up to 0.5 TB of data collected per build using in-situ 
monitoring [21]. Photodiodes and pyrometers are the most common devices used in SLM 
monitoring systems due to their fast response and easy integration. Both devices boast acquisition 
rates above 50 kHz. If process is monitored with a high-resolution camera (20 kHz or more) for a 
few seconds, even for very short time interval, several GB of data per second can be collected.   

Figure 4 shows the correlation between camera frame rate and resulting data. Clearly the 
high volume of data cannot be transferred using current industrial interface communication 
protocols [22]. For real-time data acquirement and transfer, the data rate may not exceed the  

           Figure.4 Ratio of FPS to Data Rate 

limit defined by communication protocol; for example, USB3.0 can handle a maximum rate of 
640 Mbps. Studies show that data rate is fairly higher than range of the current available 
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communication protocol [22]. AM in-situ monitoring data processing for near real-time control 
is a big data problem. In the following sections we propose an AM process monitoring and 
control architecture based on fog computing. 

5. Fog Computing and Architecture 
Owing to the amount of data and the data’s dynamic nature, processing it within the time 

constraints required for real-time applications is a big challenge in AM. In the AM process, the 
huge amount of data produced in a very short time leads to time constraints and latency problems.  
Both problems make it impractical to use a cloud-computing architecture for real-time, process-
control applications. 
 The cloud model can be organized using three major concepts: infrastructure as a service, 
platform as service, and software as service. Some of the main benefits of the cloud model are 
virtualization, scalability, on-demand self-service resource pooling, and location freedom.  In 
contrast with cloud-based manufacturing, fog computing shifts the heavy data workload from the 
centralized cloud to near edge devices. Due to the latency problem, the amount of data 
communicated using the cloud must be reduced for online, real-time machine monitoring, 
diagnosis and control. In fog-empowered architectures, manufacturers can save sensitive data on 
local machines while using the intelligence, data analysis and training applications provided by 
high-performance, cloud computing [23].  
Fog Based Systems 

Fog computing works as an intermediate layer between IIoT (Industrial Internet of Things) 
and cloud for more responsive services. In fog computing, each computer node works 
independently to provide intelligence on the outer edge of ubiquitous networks, without requiring 
a persistent network connection. This reduces network traffic and enhances scalability and security 
[24-25].  Fog computing is a geographically distributed computing architecture with a resource 
pool consisting of one or more ubiquitously connected heterogeneous devices (including edge 
devices) at the edge of the network and not exclusively seamlessly backed by cloud service. The 
architecture provides elastic computation, storage and communication in isolated environments to 
several clients in proximity [26]. 

Wu et al. proposed a real-time remote computational framework based on fog architecture 
for process monitoring and prognosis in cyber physical system (CPS). That framework utilized the 
wireless sensors, cloud, and machine learning [27-28]. Fog was shown to perform well in smart 
city applications including data demonstration, feature extraction, anomalous and hazardous event 
classification, and security measures.  A fog-based distributed architecture was proposed to 
support the data collection and analysis in fast response applications [29-30]. A combination of 
PMML-encoded ML models and fog computing was proposed for gaining the key ideas of 
decentralization, security, reliability, and privacy in Industry 4.0 [31]. We could not find any 
literature on fog-based functional and control architectures specialized to AM. 

Fog-centered computing models are currently utilized more and more to fulfill the 
requirement of IIoT, CPS, and mobile computing. It is suitable for applications where instant 
feedback and response are required. To handle time limitations, fog computing architecture plays 
an important role in real-time application [32]. In the remainder of this paper, we will discuss our 
proposed architecture to deal with AM, time constraints. 
Proposed Fog Based Architecture   

The proposed architecture is a combination of edge, fog, and cloud methods, as shown in 
Figure 5, which mirrors the temporal decomposition of control functions shown in Figure 3. As 
shown in Figure 5, The Intelligent In-Situ Monitoring and Computing System (IIMCS) comprises 
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five major layers: sensors, intelligent edge per sample, intelligent fog per layer and per build 
decision making, and cloud. The corresponding data residency is divided in terms of sources, 
models, knowledge and database; the time flow represents the general time required by each 
component of the IIMS data analytics function for processing. 
 
 
 
 
 
 
 
 
 
 

       
 
 
 
 
 
 
 

Figure.5 Intelligent AM In-situ Monitoring and Control System 
Intelligent Edge Per Sample  

In AM, advanced, high-speed sensors capture variations in the process to improve quality 
control at the lowest possible scale. These sensors capture huge amounts of image data  (on the 
order of gigabytes) within an extremely short period of time (on the order of seconds). To 1) 
transfer this amount data to the cloud, then 2) to analyze the data using some kind of AI tool, and, 
finally 3) to return it to AM controller who then must make a decision will certainly take more 
than the microseconds allowed for the analysis of each sample (on the order of microseconds). 
Consequently, utilizing service to perform that analysis, the cloud is not possible – primarily due 
to communication delays (latency). The reason is that no currently available communication 
protocol supports the transfer of that amount of data involved within the time constraints required 
for real-time AM quality control. 

 As an example, we describe a concept for a new, open-source, smart camera that 
eliminates the need to transfer image data to the cloud (see Figure 6 left side).  Our smart camera 
is an edge device that both collects and analyzes melt-pool images in real time.  Analysis 
operations are performed as part of the real-time, monitoring functions shown in Figure 3. The 
smart camera performs various different kinds of operations, such as anomaly detection, 
preprocessing and feature extraction, on the images obtained in monitoring the melt pool.   

If no anomaly is detected, the smart camera outputs the feature data to the fog layer for 
further analysis.  If an anomaly is detected, the relevant raw data is sent to the fog layer for further 
analysis. The smart cameras only send raw data from involved images to the fog layer for in-depth 
analysis if they find abnormalities in the melt pool. 
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Figure.6 Fog based Monitoring and Control System 
Intelligent Fog Per Layer 

This layer consist of multiple near real-time functions run on the dedicated fog node, which 
will likely reside on the AM process control computer.  This lower layer of fog fuses the data from 
multiple sensor systems as shown in Figure 6.  It then uses the data to control multiple systems 
including the scanning system, the environmental system,  and in-situ systems [33]. There are 
many, third-party, commercial, in-situ control systems available such as SLM solutions, Stratonics , 
EOSSTATE, QM melt pool 3D and Sigma Labs [34]. To achieve successful real-time control, data 
from the AM system, as well as from any utilized commercial and custom systems, needs to be 
fused for further analysis. 

This fog component deals with the layer-by-layer data of the AM process. The area of the 
melt pool and correlates that estimate with the current laser power and scan speed. Layerwise data 
analytics provides the information needed to adjust the parameters before the next fabrication layer 
begins, if that information indicated any kind of problem in the process. Our design provides 
feedback in real-time. Thus we need to analyze the layerwise data and provide suggestions or 
warnings to a feedback controller for better process parameters adjustment as soon as possible. 
Layerwise analysis function data transfer to the parameters adjustment as soon as possible. 
Layerwise analysis function data transfer to the next layer for build level decision.  
 
Intelligent Fog Per Build Decision Making 

The intelligent fog per build consists of knowledge decides whether to continue or stop the 
process, based on current data. This component controls the main functionalities of the proposed 
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architecture. The designed architecture performs all these tasks locally within the boundary of the 
factory, which enhances the trust of manufactures in term of data security. Due to privacy and 
security concerns, technology manufacturers do not want to send their data outside the factory. 
Why Fog-based Architecture? 
          The proposed architecture is a combination of cloud and fog services. The advantages of fog 
computing are location awareness, mobility, low latency and physical dispersion. Fog computing 
is not an alternative to cloud computing. Rather, it eliminates the drawbacks of cloud computing 
and improves the efficiency [4]. Fog computing has the following advantages compared to cloud-
based solutions: [35, 36] 

1) Latency Constraint 
 Fog computing has the capability of solving any latency issues by performing 
data analysis, control and time-restricted tasks near to the end user. Cloud technology often 
fails in time-restricted applications because it works in a centralized fashion; all processing 
is done in a distant location requiring a substantial amount of time to transfer data, process 
data, and send it back to the user’s location.  In AM quality-control processes continuously 
generate huge amounts of data and require near instantaneous feedback for effective quality 
control.  Consequently, typical Cloud technology, owing to its substantial latency, is not a 
feasible computing choice for AM control.  

2) Network Bandwidth Constraint  
 Fog supports hierarchical data processing in conjunction with the cloud. It 
creates balance among application conditions and available computer resources by 
allowing different processing at different levels or locations. In this way, fog reduces the 
quantity of data transferred to the cloud that requires higher bandwidth. The frame rate is 
very high for in-situ AM measurements, making it impossible to transfer these large 
amounts of data in a very short period to the cloud. Fog technologies, however, have the 
capability to perform operations on large amounts of data without transferring them to the 
cloud. In the suggested architecture, the fog dedicated layer handles the complex task of 
data allocation for real-time analysis.     

3) Resources Constrained Devices  
 Cameras and pyrometers are examples of resource-constrained devices 
because they possess very small amounts of both processing power and storage memory. 
That means the data they collect must be communicated somewhere and processed very 
quickly.  These devices typically are incapable of sending data to the cloud due to reasons 
like power, bandwidth, and cost. Fog address this limitation.  

4) Uninterrupted Service/Irregular Connectivity with Cloud 
 Fog systems provide services even when there is an irregular connection with 
the cloud. 

5) Security Challenges  
 Fog systems work as proxies for all limited-resource devices for software and 
security authorization updates. Further, as limited-resource devices have poor security 
capabilities, the fog system can provide antivirus scanners. 

6) Reduce data movement across the network  
            By limiting data movement across the network, fog systems significantly reduce 
network congestion, remove the drawbacks of centralized computing systems, allow the 
necessary data to stay closer to the end user, and provide enhanced scalability arising from 
the use of virtualized systems. 
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7) Removes the core computing environment 
 By removing the central computing setting, fog systems make real-time 
quality control in AM manufacturing possible. 

8) Faster response  
 In addition to providing a sub-second response to end users, it also 
delivers high levels of scalability, reliability and fault tolerance. 
 

Conclusion  
The proposed fog-based architecture addresses the challenges of the real-time quality 

control for additive manufacturing using big data. The fog architecture shifts the high bandwidth 
and latency-sensitive processing to near-the-edge devices in order to perform necessary functions 
without sending data to the cloud. The intermediate layer of fog solves the problems of insufficient 
bandwidth and latency for real-time data analytics and decision making applications in the AM 
process. The proposed architecture also helps the machine builders, in-situ system providers, and 
software vendors to understand the function requirements for better integration of their products 
and services.  
In future work, the proposed control architecture will be prototyped in a research environment for 
validation, and performance will be measured and shared with the AM community. 
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