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Abstract 

Hybrid manufacturing systems provide a platform for integrated additive, subtractive and 
inspection methods on a single machine setup. The present work explores use of hybrid 
manufacturing for hardfacing of performance components for improving wear resistance. In this 
work, Stellite-6 was applied to a 410 stainless steel substrate using a hybrid manufacturing system 
incorporating multi-axis directed energy deposition and machining. Experimental testing was 
conducted to determine the effects of hybrid manufacturing parameters on internal porosity, 
surface porosity and microstructure in the cladded material, as well as on the roughness of the final 
machined surface. Correlation between porosity measurements made by x-ray tomography and 
surface inspection is presented and determination of ideal process parameters for hardfacing of 
components using hybrid manufacturing systems is briefly discussed. A deposition process is 
presented and implemented on a large industrial component. The component is inspected using 
dye-penetrant testing and metallographic techniques. 

Introduction 

A product’s lifecycle is often limited, not due to fracture, but rather to wear over time. 
Eventually, worn parts lose dimensional accuracy and functionality. In order to extend a 
component’s lifecycle, one solution is to improve wear resistance or repair parts once they have 
worn down to an unusable state. Currently, there are different processes available to improve the 
wear resistance of steel parts including: heat treatment, surface alloying, and application of a more 
wear resistant material to the surface [1].  Hardfacing refers to the latter process whereby a harder 
or wear-resistant material is applied to a base metal by welding [2].  Hardfacing can be performed 
as a value-added process on a new part or as a repair process thereby increasing the functional life 
of the component. This process is widely used in a variety of industries including mining, steel 
manufacturing, sugar refinery, petrochemical, farming, and others [3]. 

In hardfacing, material is added to the surface through a process of welding or joining. 
Many different welding processes can be used to deposit metal onto the parent surface. However, 
many of these processes suffer from high thermal input leading to higher dilution rates and larger 
heat affected zones (HAZ) [4].  Dilution is defined as the ratio of area of the substrate melted 
divided by the total area of the weld. Increased temperatures can also result in distortion of the 
parent geometry. Consequently, directed energy deposition (DED) is a desirable technique because 
it is highly accurate and repeatable and involves lower and more focused heat input [5].  Compared 
with other thermo-mechanical processes, laser-cladding / DED is capable of generating coatings 
with lower dilution levels and a more refined microstructure [6].  In DED, feedstock, in wire or 
powder form, is fed into a melt pool generated by a high-power laser. In the coaxial laser cladding 
process, the powder absorbs some of the laser energy and becomes partially melted before 
impacting the base material. The remaining, unattenuated laser energy is absorbed into the surface 
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of the substrate generating a melt pool, which allows for the formation of strong metallurgical 
bonding between the two materials [7].  As the laser scans the surface of the part material is built 
up in its path. If adjacent tracks overlap to a sufficient degree and the cladded tracks have 
satisfactory geometric characteristics then fully dense, porosity free layers can be built. Multiple 
layers can be deposited in the same region to build geometric features or thick coatings. In the 
blown powder configuration, an inert carrier gas, such as argon, is used to deliver the feedstock to 
the melt pool while the entire process is shrouded in an inert shielding gas to prevent oxidation. 
Similar to many AM processes, post processing is required on DED components to meet geometric 
accuracy or surface quality specifications. Post processing techniques include, but are not limited 
to, machining, electrical discharge machining (EDM), or surface treatments such as sandblasting 
or shot peening. 
 

Cobalt-based alloys are a popular and widely used hardfacing material due to their 
excellent hardness, resistance to corrosion, and ability to retain mechanical properties at elevated 
temperatures. Stellite alloys are popular, trade named Co-alloys, of which Stellite-6 is the most 
common. Stellite-6 has proven to have a balanced mix of desirable mechanical properties, as 
compared with other available Co-alloys. Stellite-6 combines high strength and ductility with 
outstanding wear resistance while maintaining high hardness at elevated temperatures; showing 
good resistance to oxidation at elevated temperatures, which is necessary for various pressure 
vessel applications [8, 9]. The favorable hardness and wear properties of Stellite-6 are derived 
from carbides that form in the alloy and are suspended within the cobalt matrix.  These carbides 
are primarily chromium-carbide M7C3 groups which make up approximately 16-17% of the alloy 
by volume (other carbide groupings are also present in lower quantities) [10, 11]. Because of low 
heat input associated with rapid cooling of the laser cladding process, the resulting microstructure 
of the clad layer is much finer than with other processes such as Plasma Transferred Arc Welding 
[9]. It has been reported that the hardness of Stellite 6 coatings is strongly dependent on 
solidification microstructures, with a refined microstructure generally being favorable [6]. It is 
worth considering the safety hazards using this powdered alloy, particularly the powder toxicity. 
Stellite-6, and the majority of other cobalt-based alloys, have a high oral toxicity compared to 
nickel or iron based hardfacing alloys [12]. However Cobalt family of hard facing alloys provides 
an unsurpassed combination of wear resistance, corrosion resistance, and usability in high 
temperature applications [11].  

 
Hybrid manufacturing seeks to reduce potential setup and material handling errors 

associated with disjointed manufacturing processes by combining them within one machine. Of 
note are hybrid systems which combine additive manufacturing with machining. While hybrid 
manufacturing systems have been a subject of research for some time [13, 14], commercial systems 
have only been recently introduced [15, 16]. These systems can be used to refurbish or create new 
components with up to a 50% reduction in manufacturing costs [17]. Industrial implementation 
has already occurred in the mold and die repair industry [18], and has opened the door to further 
industrial application development [19-21]. For creation of most components, additive 
manufacturing (AM) is often a cost prohibitive when compared to other manufacturing methods. 
Yet, research has shown that the implementation of hybrid manufacturing can reduce material 
costs up to 97% in the manufacture of complex components by selectively producing features 
using deposition as opposed to machining from a single billet [15].  
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Significant savings could be realized by replacing traditionally separate hardfacing and 
machining operations with a hybrid process. The low dilution of DED and accurate numerical 
control should improve the quality of deposition while also reducing setup time between processes. 
The development and analyses of this process is demonstrated via the framework of a specific 
application – a component which calls for hardfacing with the Stellite-6 alloy.  This component is 
a 410 stainless steel ring of approximately 8in in outer diameter and 5in in inner diameter.  
Hardfacing is applied to a portion of the face and inner chamfered edge of the ring – a geometry 
typical of many wear-heavy applications. First, initial tests were performed on test geometries to 
determine proper parameters for the process. Section two discusses the materials and methodology 
used the experiments. Section three presents the results observed in the sample studies and the on-
component execution. Section four contains an additional discussion on the results observed and 
present additional findings to give better insight into the on-component execution. Section five 
summarizes the main conclusions drawn from this study and proposes the future course of study. 

 
Methodology 

 
The system used in this project was a commercially available hybrid manufacturing 

machine, Mazak VC500-AM, which combines a high-speed milling spindle with a coaxial 1-
kilowatt 1 mm spot-size diameter continuous wave Ytterbium fiber laser blown powder (coaxial) 
DED system in a multi-axis machine tool.  The elemental composition of the Stellite 6 powder 
used in this study, as reported by the powder manufacturer [22], is reported Table 1. 
 
Table 1:  Stellite-6 Chemistry  

Elem. Co Cr W Fe Si Ni C Mo Mn 
% Bal. 30.3 5.0 1.9 1.5 1.20 1.12 0.6 0.04 

 
To quantify the morphology of the powder used in this study, a scanning electron 

microscope (SEM) equipped with a Schottky FEG gun operating at an acceleration voltage of 15 
kV was employed. Figure 1a shows satellites attached to the powder as is typical in atomized metal 
powders. Using a custom MATLAB algorithm for segmentation and powder size characterization, 
the size distribution of powder seen in Figure 1b was obtained. Particle diameter was calculated by 
calculating a diameter based on the area of each powder particle measured.  

Figure 1: SEM Powder Characterization. a) SEM image of powder at ~500x magnification. b) Powder size distribution Fi 1 SEM P d Ch i i ) SEM i f d 500 ifi i b) P d i di ib i
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After characterization of powder was complete, an initial investigation of deposition 

parameters could begin. Small test cubes which could be machined to 8mm per side were created 
to characterize subsurface porosity while mimicking the deposition of bulk material. Traversal 
speed (100mm/min – 300mm/min) and laser powder (400-600W) were varied across the tests. 
Held constant in these tests were the carrier gas flowrate (5 L/min), the shielding gas flowrate (10 
L/min), the nozzle gas flowrate (2 L/min), powder feed disk speed (70%), and toolpath geometry. 
These tests were evaluated for build quality, and overall build height. The specific settings used in 
the tests and the layout on the build geometry can be seen in Table 2. The tool path geometry 
utilized was a raster pattern whose orientation was alternated by 90 degrees from layer to layer, as 
seen in Figure 2.  

 
Table 2: Initial characterization sample parameters

Sample Speed (mm/min) Power (W) Layer Height (mm) Number of Layers  
1 200 400 0.53 16 
2 200 600 0.53 16 
3 300 600 0.53 16 
4 300 400 0.53 16 
5 100 400 0.53 16 
6 200 400 0.5 17 

 
Based on observations that will be presented in the results section, a second round of tests 

were performed with the selected parameters which focused on tuning the toolpath geometry. The 
goal of the second set of tests was to produce samples with little porosity and as-designed build 
height. In these samples, laser power was held constant at 400W. The powder delivery and gas 
flow rates were held constant at the previously stated values. The laser scanning speed, layer 
height, number of layers, and toolpath type were manipulated while analyzing the build geometry 
and surface porosity after machining. In AM components, a contour path is often used to surround 
an internal raster pattern to improve external surface quality, and better simulates conditions that 
will be used in the deposition strategy of the actual component. The different tool path types can 
be seen in Figure 3. 

 
The contour tool path was executed for three of the samples to examine the effect of 

toolpath type on the component geometry and the surface porosity (post-machining). The laser 
scanning speed and layer height were manipulated to investigate the effect of minor feed rate 
changes on the overall build height. The parameters used for each sample can be seen in Table 3. 
 

Figure 2: Tool path geometry for initial testing 
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Table 3: Parameters used for secondary testing   
Sample Speed (mm/min) Layer Height (mm) Number of Layers  Toolpath Type 
7 200 0.53 19 Raster 
8 200 0.5 20 Raster 
9 200 0.53 19 Raster w/ Contour 
10 200 0.5 20 Raster w/ Contour 
11 238 0.5 20 Raster w/ Contour 
12 238 0.5 19 Raster 

 
After deposition in this test was completed, the samples were machined to size on five sides 

for subsurface inspection. This was done using a 9.525 mm diameter four flute end mill at a surface 
speed of 30.48 m/min and a feed-rate of 0.03 mm/tooth. After the machining was complete, the 
samples were separated from the substrate using wire electrical discharge machining (EDM). The 
samples were then qualified using non-destructive techniques. 

 
X-ray computed tomography (CT) was utilized to nondestructively inspect the separated 

samples. Using a VisiConsult XRH222 CT machine, samples were inspected at an acceleration 
voltage of 220 kV and 3.6 mA. A prefilter of 1 mm Cu was used to mitigate beam hardening effects 
common in laboratory CT sources. The traditional Feldkamp reconstruction algorithm was used to 
reconstruct 700 radiographic projections into a 3D volume of each inspected coupon at a resolution 
of 65 μm/voxel. The five machined surfaces of the samples were inspected for defects which 
surpassed the maximum allowable defect diameter of 381 μm using a Leica DVM6 10-megapixel 
digital microscope.  

 
After all samples were evaluated and processing parameters were chosen, deposition was 

completed on the component. The parameters used in sample nine were utilized to deposit on the 
actual component. The toolpath for this process was completed in two distinct sections, as seen in 
Figure 4. The chamfered section at 45 degrees was completed first at a fixed orientation of the 
machine’s B axis while the C axis rotated 360 degrees. After one path was completed, the C axis 
was incremented by 30 degrees in order to stagger the start position of each concentric ring around 

Figure 3: Toolpath geometry a) Raster b) Raster with exterior contour
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the component’s axis. Once the chamfered region had been completed, the B axis was repositioned 
to 0 degrees, and concentric rings were once again deposited using an incremental rotation of 30 
degrees between each stepover. This portion of the deposition did not utilize the rotation of the C 
axis and instead utilized the movement of the X and Y axes. After deposition, the component was 
allowed to cool to room temperature. The top face of the cylindrical component was milled using 
a facing strategy, followed by a swarf machining strategy to bring the chamfer to final form. Both 
of these milling strategies utilized identical processing conditions to those previously stated. 

 
The application for which this process was developed calls for fluorescent dye penetrant 

inspection as a pass/fail measure to asses surface porosity with no pores over 381 μm allowable in 
the final as-machined surface. This inspection method (more often referred to as ‘dye-pen’) is 
commonly utilized in industry to inspect parts for surface porosity and cracks in as-manufactured 
castings, forgings, welded components, machined components, and structurally tested 
components. ASTM standard E1417 [23] defines penetrant types, inspection methods, equipment 
and personnel requirements, and best practices. The penetrant used in this application is a product 
of Magnaflux, ZYGLO ZL-60D, which is utilized in combination with the developer ZYGLO ZP-

Figure 4: Machine simulation (top) and simulation of resultant geometry (below) after each step. The cross sectioned face is 
shown it red with deposited geometries shown in green. a) Chamfer deposition b) Vertical deposition c) Face milling d) Swarf 

milling 

Figure 5: A schematic representing the area of the deposition from which metallographic samples, with the 410 substrate 
shown lighter than the Stellite-6, were taken from, and the face which was polished an etched for microscopy. 
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9F (both commercially available). This is a fluorescent penetrant which has high visibility when 
exposed to UV light and is designed for level 2 sensitivity for test type 1, method A or C as defined 
by ASTM E1417. As a level 2 penetrant, it has ‘medium sensitivity’ and is adequate for identifying 
the maximum allowable flaw size for this application while not providing too many false positives. 
Per E1417, inspection is to be performed by-eye by an ANSI/ANST certified inspector, which was 
not possible for this study.  

 
The process of inspection defined by E1417 method C was utilized. The deposition region, 

previously finish-machined and sectioned from the bulk part using wire EDM, was cleaned with 
isopropyl alcohol, removing all oils, grease, and surface contamination that could affect penetrant 
effectiveness. After drying, aerosolized penetrant was applied and left to dwell for 10-30 min after 
which excess penetrant was removed via light wiping of the part with a first a dry then a damp, 
clean, lint-free cloth. After completely drying the aerosolized developer is applied and left to dwell 
for 10-60 min.  Then, as with the penetrant, excess developer is removed.  The deposition region 
was then inspected with a UV lamp, corresponding to the requirements of the E1417. If no 
fluorescent traces were identified a part ‘passed’ inspection. If traces were identified they were 
assessed as a false or true positive by the inspector and accordingly passed or failed.  In this study 
photography was performed in a darkened environment primarily illuminated by UV light to 
record results. A Nikon D200 DSLR camera was used with a 105 mm focal length, f/2.8 maximum 
aperture, 35 mm format lens. With a 1:1 reproduction ratio, photos closely mimic the resolving 
ability of the human eye under close inspection of the part, the method of inspection that this test 
is designed for. 

Samples were taken from the component for additional metallographic analysis to asses 
deposit-substrate fusion, deposit dilution, deposit microstructure, and porosity. A representation 
of the sectioned geometry can be seen in Figure 5. This produced a face transverse to the deposited 
tracks for subsequent polishing and etching, also pictured in Figure 5. Once sectioned, samples 
were mechanically polished with silicon carbide abrasive paper from 240 to 4000 grit, suspended 
diamond of 9 to 1 um in size, and finally vibratory polished with .05 um alumina. Etching was 
performed with aqua regia with samples fully immersed in the agitated etchant for approximately 
45 seconds. Samples were then cleaned and inspected via digital microscopy with a Leica DVM6 
microscope. 

 
Results 

Parameter Test Results 
 
Figure 6 shows the samples created during the initial parameter testing phase. Samples two 

and three yielded nozzle sputtering and overall poor deposition, and the process was terminated 
prematurely after the fourth layer. Sample five was also terminated after the sixth build layer after 
it was observed that clearance between the nozzle and the deposited material had significantly 
decreased. Sample four was built to completion. However, the layer height for this condition was 
less than initially anticipated. This caused the deposition zone to move out of the focal plane of 
the laser and yielded a component far shorter than the intended height. Samples one and six yielded 
geometry close to the intended design and the processing parameters used here were selected for 
further testing. 
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Secondary testing showed encouraging results. Comparing the effect of the tool path type, 
it was seen that the use of an exterior contour path improved the form of the top surface of the 
deposition. Between samples seven and nine, a more consistent (flat) surface was observed as a 
result of the contour toolpath used in sample nine. This can be observed in Figure 7a. Sample ten, 
which utilized a contour pass, again showed better form on the top surface of the sample compared 
to that of sample eight. However, significant overbuild was observed for these samples. This can 
be seen in sample ten in Figure 7b., in which the machining process has been interrupted to reveal 
the depth of cut taken to produce the final top surface. A reduction in overall as-deposited height 
in samples eleven and twelve was noted where the traversal speed was increased. The samples 
were then examined for internal porosity. 

 
Following thresholding of CT data to determine the part surfaces of each sample, a porosity 

identification algorithm internal to Volume Graphics VGSTUDIO MAX 3.2, a CT data analysis 
software, was used to identify internal pores. Image processing algorithms were used to suppress 
the interference of image artifacts such as ring artifacts in porosity identification. CT inspection 
results shown in Figure 8, below, revealed that no internal pores beyond the inspection criterion  

Figure 6: Results of initial parameter testing 

Figure 7: Creation of secondary samples a) Deposition of samples 7 and 9 b) Machining of samples 7-10
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of 381 μm  diameter existed in any of the test coupons, meaning that print parameters were 
sufficient to build parts passing the manufacturing criterion for internal porosity.  

 
The machined surface inspection yielded similar results. No visible surface defects were 

noted on samples seven through nine and eleven. Two surface pores were found on face three of 
sample ten. These are displayed in subsets of the overall face in Figure 9 and measured 155 μm 
(top) and 171 μm (bottom) in maximum diameter. A similar surface defect was also found on face 
five of sample twelve which measured 104 μm in maximum diameter. While surface defects were 
observed in these samples, they were small enough to still meet the inspection criteria. However, 

                   
a) b) 

Figure 8: CT of inspection coupons. a) Fixtured samples in CT machine. b) 85% Transparent CT analysis results of samples 
11 and 12 showing no internal porosity in excess of specification. 

 

Figure 9: Digital microscopy images of several samples 9,10,12 
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with these small defects in mind, the parameter set from sample nine was chosen for the on-
component implementation.   
 
On-component results 

The completed component can be seen in Figure 10. Subset (a.) of this figure shows the 
component following the deposition process. One region of the component appears to have 
insufficient coverage of the substrate. This can be seen in Figure 10c. However, the opposite 
quadrant of the component appears to have an excessive buildup of material, shown in Figure 10b. 
Figure 10d. shows the component after the completed machining process. Overall, the component 
shows good machinability and adequate surface finish for the process. However, surface defects 
are still present and can be seen in Figure 10 e. and f. These surface defects are more apparent in 
the dye penetrant inspection. 

Figure 11: Photos of fluorescent dye-pen test results under UV light.  Note that the fluorescent traces on the inner diameter of 
the specimen are not indications of flaws, but simply remnants of the penetrant adhering to the sharp edge on that area of the

specimen. 

Figure 10: Images of the completed process. The overall component is shown after the deposition a) and defects noted from the 
deposition process b) & c). The as-machined component d) is shown along with observed defects in one section of the 

component e) & f). 
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Figure 11 displays a selection of photos from the deposition region. The specimen clearly 

displays many strung-together large pores on the Stellite-410 interface on the bottom right and left 
quadrants of the article. A thin and semi-continuous hairline pore on the chamfered section of the 
Stellite deposit is also visible on various sections, most clearly seen in the topmost portion of the 
article. These findings correspond with pores and cracks seen in the sectioning of test articles for 
metallography, as later discussed. This clearly fails the dye-pen test, with multiple pores of an 
unacceptable size in varying locations. The authors believe that these regional defects are the result 
of asymmetric gas flow from the deposition, as minor damage to the nozzle gas outlet was 
discovered after testing.  

 
Discussion 

 
  Figure 12 displays a sample from the top portion of the machined component, sectioned, 

polished, and etched according to earlier descriptions, similar to the section view in Figure 5. The 
inset of 12a from Ref. [24] displays a classic welding solidification microstructure as seen in cross-
section view of the weld bead, with a section-line drawn indicating the sectioning orientation of 
this sample. 

Several aspects are of note in these micrographs.  As can be seen clearly, the crack seen on 
the surface of the chamfered section (observable by eye and in dye-pen testing) of the machined 
test article continues down to the Stellite-substrate interface.  This indicates that lack of fusion 
during the deposition of the first layer, potentially aggravated by residual stresses, could have 
contributed to the crack in this portion of the test article. Also of note is the extremely low dilution 
of the Stellite-6 track, approximately 7%.  This low dilution level is somewhat typical of laser 

Figure 12: a) Micrograph of a sample from the bulk material sectioned transverse to the direction of deposition.  The sectioning 
lines correspond to the presented faces of the displayed micrographs. b) A track in the third deposition layer showing extremely 

rapid refinement of microstructure. c) A track from the first layer of deposition, showing a clear evolution of microstructure. 
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cladding / DED methods (depending on the deposition parameters used) [25-27], and indicates 
success from an efficiency-of-deposition standpoint in this application.  
 

The solidification microstructure of Stellite-6 via laser cladding and other high-energy 
density deposition methods has been studied previously, and is consistently composed of a fine 
cellular and dendritic microstructure which is displayed in this application as well [25-27]. This 
refinement is due to the extremely high thermal gradients and solidification rates that laser 
cladding produces [26]. The refined microstructure increases the hardness of the deposit, and it is 
reasoned that it also improves wear resistance properties, due to the more evenly distributed 
interdendritic carbides, though wear testing would be needed to confirm this hypothesis for this 
application [27].  

 
Poor dilution at the interface of the chamfered and flat section implies a degradation of the 

deposition condition in this region, which points to poor process design as the cause of failure. 
Furthermore, significant melt pool deformation, specifically degradation in the geometry of the 
bead, can be seen at this interface as a result of using a deposition strategy using two discrete build 
phases. A deposition strategy which smoothly transitions between the chamfered and flat regions 
within each layer will be investigated to resolve this. Along with continuing work on the blown 
powder system, parallel development of hot-wire hybrid technologies are being pursued by the 
team.  The hot-wire system can achieve much higher deposition rates due to a more powerful laser, 
larger spot diameter, and more efficient material utilization, this potentially providing conditions 
necessary for defect-free fabrication. 
 

Conclusion 
 
In this work, an exploration of implementing a hard-facing process which involved the 

deposition of Stellite-6 onto a 410 stainless steel substrate within a commercial hybrid 
manufacturing system was conducted. Initial test samples were created to characterize process 
parameters. Further samples investigated the effect of process parameters on build quality, internal 
porosity, and surface defects revealed by machining. Finally, the selected process parameters were 
used in the on-machine implementation. All samples produced within the second round of tests 
were shown to comply with the specified inspection criteria. However, the process caused flaws 
within the part, including surface voids and internal cracking. Future work will focus on 
modifications to the process design and additional microstructure characterization.  
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