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Abstract 

Wire arc additive manufacturing (WAAM) expands the possibilities of cost effectively producing 
large-scale, complex metal objects at high deposition rates. Austenitic stainless steel is a 
commonly used material and has many applications in the marine and nuclear industry due to its 
high toughness and corrosion resistance. Processes parameters such as heat input and interpass 
temperature can greatly affect the materials properties, part functionality and the economics of 
WAAM production. However, the effect of these process parameters is not well understood for
WAAM of 316LSi. In this research, the effects of the interpass temperature and heat input process 
parameters on WAAM of austenitic AISI 316LSi stainless steel are experimentally analysed and 
evaluated. It was found that the heat input and interpass temperature influences the
cellular/dendritic morphology and the formation of macro-scale grains within the microstructure.
Additionally, use of higher heat input, resulted in a 28.7% improvement in average Young’s 
modulus compared to lower heat input, although this remained lower than provided by wrought 
annealed material.

Keywords: Wire arc additive manufacturing, Additive manufacturing, Interpass temperature,
316LSi, Directed energy deposition.

Introduction 

Wire Arc Additive Manufacturing (WAAM) is a directed energy deposition (DED) additive 
manufacturing approach [1] that uses an electric arc to melt metallic wire feedstock for the 
production of new parts or repair applications. Compared to other DED technologies that use 
electron beam or laser beam as a fusion source, the benefits of WAAM include the cost 
effectiveness of the process. This is due to the ability to source the open architecture equipment
required for WAAM from a wide range of suppliers in the arc welding industry. Compared to 
powder-based additive manufacturing (AM) methods, the wire-based approach in WAAM offers 
the benefit of cheaper wire feedstock in many materials, and higher deposition efficiency [2].
Notable industrial applications of WAAM in recent years include the first additively manufactured 
metal bridge [3] and offshore crane hook [4].

Austenitic stainless steels find many applications within the marine, construction, nuclear 
industries due to its excellent corrosion resistance, adequate high temperature mechanical 
properties, formability and weldability [5].  Although AISI 316L has been intensively investigated 
as an AM material for powder bed fusion applications [6-11] and has been shown to show 
unexpectedly high combination of strength and ductility [12], exploration of the material 
characteristics has been comparatively limited for processing by WAAM. To date, a number of 
studies highlighted in table 1 have demonstrated that WAAM can achieve an ultimate tensile 
strength, yield stress and elongation in excess of cast material and in the region of that provided 
wrought annealed material across a range of WAAM process types [13-17].
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Table 1 Material properties reported for AISI 316L categorised by WAAM process type, specimen orientation and interpass build 
strategy. 

WAAM process type Specimen 
orientation

Interpass build strategy –
dwell duration

UTS
(MPa)

YS
(MPa) El (%) Ref

GMAW1 Vertical Fixed dwell – 2 min 533±23 235±6 48±2 [13]

GMAW-CMT2 continuous Vertical

Fixed dwell - unspecified

547 336.9 42.0
Horizontal 577.3 364.3 43.4

GMAW-CMT pulsed Vertical 536 331.7 45.6 [14]
Horizontal 588.0 374.0 45.1

GTAW3-TopTIG Vertical 539.9 322.2 43.1
Horizontal 590.3 365.5 42.3

GMAW-CMT Vertical 100°C interpass 
temperature

537.0 313.0 41% [15]Horizontal 551.0 369.0
GMAW – Speed Pulse
GMAW – Speed Arc

Horizontal Fixed dwell – 20 s 550.0 ± 6 418.0 - [16]Horizontal Fixed dwell – 20 s 553.0 ± 2 417.9 -

GMAW

Vertical Fixed dwell – 10 s 603.1 357.6 -

[17]Horizontal Fixed dwell – 10 s 557.7 334.3 -
Vertical Fixed dwell – 15 s 614.4 361.4 -

Horizontal Fixed dwell – 15 s 605.4 340.7 -
Wrought (annealed) - - 480 170 40 [18]Cast - - 552 262 55

1 Gas Metal Arc Welding (GMAW)
2 Cold Metal Transfer (CMT)
3 Gas Tungsten Arc Welding (GTAW)

To reliably produce high quality materials and ensure the consistent performance of AM materials 
in service, the process-structure-property relationship must be well understood [19]. It is also
preferable for the desired material properties to be realised in-process due to enhancement of 
process efficiency. This is particularly beneficial for localized manufacture of large parts, or 
feature addition or repair applications where sizing and access to a heat treatment furnace might 
be an issue. To control the material microstructure and properties developed, suitable process 
parameters must be selected that provide a specific cooling rate, thermal gradient and solidification 
rate during the build [20].

The heat input from the welding torch, based on the current and voltage, directly influences the 
cooling rate experienced during a WAAM build. However, a range of heat input values are often 
possible whilst maintaining a stable melt pool and deposition geometry. The advantages of lower 
heat input in metal AM processes include a refined microstructure, which can translate to improved
hardness and tensile strength. However, a decrease in residual stress-induced deflection is observed 
for increasing energy per unit length [21]. High levels of residual stress can have a detrimental 
effect on fatigue performance and corrosion resistance. Furthermore, higher residual stresses 
require more robust, and expensive fixturing to constrain the part during the build, the often-cited
benefit of tool-less manufacture in additive manufacturing. Distortions that occur during the build, 
can reduce the quality of the deposition due to variation in contact tip distance. In addition, the 
volume of δ-ferrite is also affected by the cooling rate in AM. The volume δ-ferrite can be 
important to control due to its detrimental effect on pitting corrosion resistance [22]. Applications 
that require low magnetic permeability and high toughness at cryogenic temperatures may also
require δ-ferrite to be controlled to acceptable levels through WAAM process.

The strategy employed for build temperature management can also affect the cooling rate and part 
quality. A fixed or time-variant dwell period may be used to set the inter-layer cooling time and
prevent undesired heat accumulation that can destabilise the deposition geometry. Alternatively, 
an active cooling process may be used to increase the cooling rate post-deposition [23]. By 
increasing the interpass temperature a significant reduction in baseplate distortion was found for 
laser DED of Ti-6Al-4V control due to greater recrystallisation with associated dynamic reduction 
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of plastic strain and also stress relaxation at the higher build temperature [24]. As shown in table 
1, in all cases a fixed or time variant interpass temperature dwell was used, indicating that this is 
an important aspect of WAAM 316L/LSi production. However, except for Wu et al. (2019) [17]
where the effect of a small difference in dwell periods was considered, the effect of interpass dwell 
on the structure-property characteristics of the deposited material has not been explored.

The aim of this research study is to investigate the effect of heat input and interpass temperature 
on the WAAM location-specific material properties in relation to conventionally manufactured 
material.

Material fabrication 

Thin-wall samples of length 150 mm and approximately 100 mm height as shown in Fig. 1 were 
produced in this study using a parallel path deposition strategy. Wire of type and 1 mm diameter
was deposited onto 316L substrates of 50 mm × 200 mm × 6 mm dimension. The chemical 
composition of the wire and substrate is shown in table 2.  Prior to commencing each build, the 
substrate surfaces were polished and then cleaned with acetone. The substrate was fixed during the 
WAAM build with bolts in each corner of the substrate.

Figure 1 As-built geometry of 316LSi thin-walls and co-ordinate system.

Table 2 Chemical compositions of the wire and substrate used in the wire arc additive manufacture of the test samples.

Cr Ni Mo C Mn S Si N Cu Fe

Wire - 316LSi 18.250 12.070 2.530 0.008 1.600 0.0110 0.790 0.0320 0.083 Bal.
Substrate - 316L 17.010 10.107 2.152 0.023 1.232 0.0049 0.460 0.0507 - Bal.

The factors of interpass temperature and heat input were investigated in a full factorial 
experimental design shown in table 3 with test walls built from process parameter combinations 
of low interpass temperature with low heat input (LIT-HHI), low interpass temperature with low
heat input (LIT-LHI), high interpass temperature with high heat input (HIT-HHI), and high
interpass temperature with low heat input (HIT-LHI).The heat input levels to be investigated were 
derived from the minimum and maximum travel speeds that could be achieved without excessive 
build-up of the weld bead or humping respectively to prevent any instabilities in deposition 
geometry during deposition and were achieved by varying the travel speed of the weld torch only.
The upper level of interpass temperature was determined by the maximum temperature possible to 
achieve passively with continuous deposition for the lower heat input condition.
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Table 3 Experimental wire arc additive manufacturing build parameters.

Experiment Ref. Interpass temperature (°C) Heat Input (kJ/mm) Travel speed (mm/s)
LIT-HHI 50 (LIT) 0.47 (HHI) 2.32
LIT-LHI 0.26 (LHI) 4.90
HIT-HHI 160 (HIT) 0.47 (HHI) 2.32
HIT-LHI 0.26 (LHI) 4.90

The build parameters were fixed throughout all of the experiments and the values are provided in 
table 4.

Table 4 Fixed wire arc additive manufacturing build parameters

The WAAM equipment consisted of an Aristo 4004i power supply and wire feeder (ESAB Group 
(UK) Ltd), a fume extractor, controller and shielding gas supply configured as shown in Fig. 2.
The weld torch cable which supplies the wire and shielding gas was routed through the WAAM 
enclosure, where it was affixed to the final motion system stage along with a pyrometer (Micro-
Epsilon, CTM-2CF75-C3). The pyrometer provided continuous feedback of the surface 
temperature 30 mm in front of weld torch in the travel direction and was driven to the weld start 
point between passes to monitor the interpass temperature. The temperature readings were 
calibrated with a k-type thermocouple, and accuracy of the readings was monitored at regular 
intervals throughout the experimental builds.

Figure 2 WAAM experimental set up.

Parameters Values
Wire feed rate 2 m/min
Contact tip distance 7.5 mm
Shielding gas flow rate 20 L/min
Shielding gas composition 97.5%Ar/2.5%CO2
Welding angle 0°
Wire diameter 1 mm
Pulse type Primary
Pulse frequency 5 Hz
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Materials Analysis 

To examine the microstructure through the build height of the experimental thin-walls, a section 
of 4 mm thickness was extracted from the location shown in Fig. 3 using a conventional band-saw. 
These sections were polished mechanically with SiC from grit number 400 to 4000, and 
subsequently polished with 0.5μm colloidal silica. A chemical etch using Marble’s reagent solution 
(4g CuSO4, 20ml HCl, and 20ml H20) was performed for 10 s to provide contrast between the γ-
austenite and δ-ferrite phases. The YZ surface of each specimen was examined using an optical
microscope and scanning electron microscope (SEM) (JEOL JSM-6480LV) was used to analyse 
the fracture surfaces of the tensile specimens. To investigate the variation in phase content and 
morphology in each sample, images were made at a magnification x 1000 with a spatial scanning 
frequency of 1 mm along the build height in YZ. These images were converted to binary using 
ImageJ and the ratio of white to black pixels recorded representative of the γ-austenite to δ-ferrite 
content respectively

Figure 3 Orientation of tensile specimens within the WAAM experimental walls and specimen dimensions

The tensile coupon specimens were water jet cut from the experimental thin-walls in the 
orientations as shown in Fig. 3. The specimen dimensions were specified in accordance to ASTM
E8 [25], with all specimens CNC machined to a uniform thickness of 3.3 mm. Uniaxial tensile 
tests were performed at room temperature using an Instron 3369 50 kN load cell with a clip gauge 
extensometer to study the plastic deformation behaviour on the macroscopic scale. The extension 
strain rate used was 0.00007 s-1 in the elastic deformation region, followed by 0.00024 s-1 upon 
transition to plastic deformation.

The experimental data was processed to determine the Young’s modulus, yield strength, the 
ultimate tensile strength and fracture elongation. The Young’s modulus was determined by
considering the linear part of the stress–strain curve, and the yield strength adopted the 0.2% proof 
stress. Statistical analyses were carried out to identify significant effects and interactions via three-
way analysis of variance (ANOVA) tests using Minitab® 18 software. The factors considered were 
the interpass temperature, heat input (quantitative factors) and specimen orientation (categorical 
factor). Main effects and interactions were determined to be significant if p-value was less than 
0.05. The data was also checked for violations of normality and equivalence of variance as required 
for performing ANOVA.

The variation in micro-hardness throughout the build height was established with Vickers micro-
hardness test equipment (Leco M400) with the same samples that were used to examine the 

Units
(mm)
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microstructural properties In accordance the ISO 6507-1 [26], a load of 500 g was applied for 10
s, with the first indentation located 3 mm inwards from the bottom surface of substrate and at the 
centreline of the WAAM layers. Subsequent measurements were made along the sample in 
increments of 1 mm in the build height direction.

The distortion of the substrates following release from the build fixture was captured using a 
ROMER Absolute scanning arm (Hexagon Manufacturing Intelligence, UK) and Geomagics 
Wrap software (3D Systems Inc). The data was processed to obtain the profile of maximum 
deformation in the XZ and YZ planes. 

Microstructure and periodicity 

The LIT-LHI and HIT-HHI thin-wall specimens showed large irregularly shaped columnar macro-
grains which grew across the layer bands in the build direction (BD) as shown in Fig 4. The LIT-
LHI columnar grains displayed the greatest aspect ratio due to the strong thermal gradient
developed by the combination greater inter-layer cooling and low heat input deposition. The 
reduced melt-pool temperature also minimizes the time for heterogeneous nucleation to occur 
ahead of the solidification front, encouraging epitaxial growth dominant along the <100> easy 
growth direction due to the strong thermal gradient. The HIT-HHI thin-wall specimen, experienced 
the most elevated build temperatures and consequently had a strong tendency for grain growth
[27]. However, with less directional heat transfer along the build height, more diverse competitive 
grain growth was able to occur, reducing the length and aspect ratio of the grains that formed to 
impart a less extreme texture. 

Figure 4 Columnar grain growth visible through the macro-structure in a) LIT-LHI and b) HIT-HHI experimental thin walls.

The as-built cross section morphologies of the banding zones at 15 mm from the bottom of the 
substrate are shown in Fig. 5, respectively for each of the experimental thin-walls. It was evident 
from each of the experiments that the δ-ferrite developed was of dendritic morphology within an 
austenite matrix. Three periodic zones are visible, including a fine grain zone (FZ) immediately to

b)

a) BD

BD
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the left of the re-melt banding line caused by recrystallisation. This was primarily lathy δ-ferrite
morphology, although for HIT-HHI and LIT-LHI cellular regions were also observed. The 
transition zone (TZ) displayed a progressive coarsening of this FZ microstructure due to increasing
re-heat effect from the superimposed layers in this direction and conversely a progressive 
refinement of the coarse grain zone (CZ) due to diminishing re-heat effect. The CZ was positioned
to the right of the re-melt banding line, received the most re-heat without re-melting and was 
subsequently of the most coarsened vermicular morphology.

Figure 5 Experimental thin wall morphologies at the banding zone 15mm from the bottom of the substrate for a) LIT-HHI b) LIT-
LHI, c) HIT-HHI d) HIT-LHI. Note: Vickers Micro-hardness indentations are visible in c) and d) are circled in black.

The δ-ferrite network within LIT-HHI (Fig 5a inset) was observed to be more extensive with larger 
primary dendrite arm length, whereas the δ-ferrite is discontinuous in CZ of the HIT-LHI (Fig 5d 
inset). This indicated that greater decomposition of δ-ferrite occurred, possibly due to greater 
reheating effect due to reduced layer height or increased interpass temperature. It is known that 

Dendritic 
δ-ferrite

Dendritic 
δ-ferrite

Dendritic 
δ-ferrite

Dendritic 
δ-ferrite
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vermicular δ-ferrite morphology transforms to fine short ferrite precipitates when subject to 
repeated repair welding of 316L [28]. The similarity of the process to WAAM and the lengthy re-
heat distance for HIT-HHI can explain the relatively fine microstructure observed within the 
macroscale grains. As the morphology within the FZ of LIT-LHI could not be observed clearly 
with optical microscopy, this sample was analysed with SEM. As shown in Fig. 6, colonies of cells 
were present which were grouped into sub-grains, with a sub-grain boundary highlighted. Lathy
dendritic primary arm δ-ferrite could be observed within the fine cellular austenitic matrix.

Figure 6 SEM (BEI) micrograph of 85mm build height of LIT-LHI showing the lathy δ-ferrite within cellular austenite and a sub-
grain boundary.

The LIT-LHI and HIT-HII demonstrated the most consistent average white pixel concentration
along the built height as shown in Fig. 7, which was attributed to the more refined and 
homogeneous morphology between the CG, TZ and FZ for these samples. Overall, the LIT-LHI
displayed the greatest volume of δ-ferrite which was expected due to the high cooling rate achieved 
with the combination of low heat input and interpass temperature. These conditions would lead to 
the most retained metastable δ-ferrite and least opportunity for decomposition through the reheat 
cycles.

Figure 7 Average white pixel concentration along the WAAM experimental wall height. 
Etching and the converting to binary process resulted in austenite = white, δ-ferrite = black.
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Mechanical properties and deformation behavior 

The tensile properties of AISI 316LSi samples fabricated by WAAM were evaluated as shown in
table 5 with the data are expressed as mean ± standard deviation from sample group number, n.
Table 5 Young’s modulus, yield strength, ultimate tensile strength, and elongation of the investigated as-built materials including 
standard deviation within sample group of size, n.

The statistical analyses revealed that orientation of the specimens has a significant effect (p=0.018) 
on the elongation properties of the as-built material. The horizontal specimens provided an average 
elongation of 45.2% compared to 40.0% provided by the vertical specimens. This indicates that on 
average the specimens extracted in the horizontal orientation provide greater ductility. Previous 
studies investigating ductility of 316L have shown that when more grain boundaries are 
encountered, higher strength and lower elongation are expected [29]. A higher number of grain 
boundaries and lower elongation are expected in horizontal specimens due to directional grain 
growth, suggesting that another mechanism is providing the additional ductility in WAAM 
horizontal specimens. The heat input was found to have a significant effect on the Young’s 
modulus, with high heat input providing an average of 164.3GPa, compared to low heat input with 
an average of 127.7GPa. This could be significant for high strength applications as in both cases 
plastic deformation would proceed at a lower load than for wrought annealed material. Besides 
Young’s modulus and elongation, the other mechanical properties investigated generally exceed
that provided by wrought annealed material.

As identified in other research by Yang et al. [30], there is a general decrease in micro-hardness 
with increasing distance from the substrate. The high heat input level with high interpass 
temperature substantially reduced the micro-hardness for the start section of build height compared 
to the same heat input with longer cooling between passes. In contrast, for the low heat input 
samples there was little difference in start section micro-hardness for both interpass temperatures. 
This is reflected in the similarity of the microstructure as shown in Fig. 8 and is explained by the 
limited heat accumulation in the high interpass temperature at the start of the build. As the build 
proceeds, the effect of the high interpass temperature becomes more apparent with the low heat 
input experiments, with the high interpass temperature negatively impacting on the micro-hardness 
within the top section of the build height. This indicates that selection of an appropriate interpass 
temperature is important to maintain micro-hardness properties and reducing micro-hardness 
heterogeneity in the build direction for high heat input WAAM build strategies. 

Experiment ref. Specimens n Young’s modulus 
(GPa)

Yield Strength 
(MPa)

Ultimate Tensile 
Strength (MPa)

Elongation 
(%)

LIT-HHI

Average 6 179.2±42.7 320.2±26.9 570.9±22.1 42.1%±2.3

Horizontal 3 192.0±50.6 330.7±34.4 582.2±21.4 42.0%±2.9

Vertical 3 166.5±38.9 309.8±17.08 559.6±19.5 42.2%±2.2

LIT-LHI

Average 6 121.2±16.3 308.1±16.6 561.2±32.6 41.4%±8.6

Horizontal 3 130.1±19.1 313.8±14.8 549.4±34.5 47.3%±8.6

Vertical 3 112.2±7.7 302.4±19.2 572.9±32.5 35.5%±2.9

HIT-HHI

Average 6 165.4±42.0 302.6±25.0 579.0±29.9 44.1%±5.2

Horizontal 3 162.6±50.1 302.0±11.4 576.7±10.2 47.0%±5.9

Vertical 3 168.2±43.4 303.1±37.9 581.4±46.0 41.3%±3.0

HIT-LHI

Average 6 141.3±26.9 298.8±5.5 565.2±9.43 43.0%±4.8

Horizontal 3 134.0±20.3 300.1±5.4 551.9±10.2 44.4%±5.5

Vertical 3 148.6±35.1 297.5±6.8 578.4±26.5 40.9%±4.1
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Figure 8 Vickers micro-hardness of a) first 25mm of the wall height b) last 25mm of wall height c) average of both sections

Fractography 

Fracture surfaces were observed by SEM and the representative images are reported in Fig. 9. The 
specimens all show typical fracture features of ductile materials, with small dimples of less than 1 
μm in diameter visible throughout the surface.

LIT-LHI HIT-LHI LIT-HHI HIT-HHI

H
3

H
1

Figure 9 SEM micrographs of the surface of the fractured tensile specimens
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Whilst no significant differences in the morphology of dimples could be observed between the 
experimental test conditions, the low interpass temperature with the high heat input condition (LIT-
HHI) appeared to reduce the dimple diameter compared to the high interpass temperature 
condition. Future work will explore possible correlations of dimple size and frequency, with the
tensile properties of 316LSi produced by WAAM for each of experimental test conditions 
investigated in this research.

Distortion 

The profile of maximum distortion in the XZ and YZ planes for each wall are shown in Fig. 10. It
can be seen that in the XZ plane, a high interpass temperature can reduce the residual stress induced 
distortion by a small amount, with the greatest improvement seen for high heat input experiments. 
Reduction in distortion was also found with increased interlayer cooling time for the lower heat 
input experiments in the YZ plane. However, the results are less conclusive for high heat input 
condition where the high interpass temperature distortion (HIT-HHI) exceeds that of the low 
interpass temperature (LIT-HHI) on one side of the YZ plane. This indicates that a high interpass 
temperature build strategy may not be as effective at reducing distortion for the YZ plane with 
higher levels of heat input. 

Figure 10 Maximum distortion profiles in the XZ plane for 
a) HIT-HHI and LIT-HHI b) HIT-LHI and LIT-LHI and in YZ plane for c) HIT-HHI and LIT-HHI d) HIT-LHI and LIT-LHI.
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Conclusions 

This paper has experimentally investigated the effect of heat input and interpass temperature on
the microstructure, hardness, tensile strength, and stiffness for stainless steel 316LSi walls 
manufactured by WAAM identifying the following new findings and conclusions:

1. The microstructures of AISI 316LSi produced by WAAM generally consisted of a mixture
of fine columnar dendrites and isolated cellular regions. The microstructures varied
periodically across the layer bands, with fine, transitional and coarse grain regions.

2. The inter-layer cooling time between layers affected the development of macro-scale grain
structures within the microstructure. These exceeded 5 mm with the low interpass
temperature and low heat input condition. Macro-scale grains were also observed with the
high interpass temperature with high heat input experiment however, these were more
equiaxed which was attributed to break-down by competitive grain growth.

3. The heat input was found to have a significant effect on the Young’s modulus of AISI
316LSi produced by WAAM with high heat input processing parameter providing an
average of 164.3GPa, compared to low heat input with an average of 127.7GPa.

4. The tensile specimens extracted in the horizontal orientation provide statistically
significant greater ductility, with an average elongation of 45.2% compared to 40.0%
provided by the vertical specimens.

5. Inter-layer cooling time influences the distortion of WAAM produced parts, with results
indicating that a higher interpass temperature could be used to reduce the residual stress
induced distortion of the substrate, although further research is required.
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