
Figure 8 Vickers micro-hardness of a) first 25mm of the wall height b) last 25mm of wall height c) average of both sections

Fractography 

Fracture surfaces were observed by SEM and the representative images are reported in Fig. 9. The 
specimens all show typical fracture features of ductile materials, with small dimples of less than 1 
��m in diameter visible throughout the surface.

LIT-LHI HIT-LHI LIT-HHI HIT-HHI

H
3

H
1

Figure 9 SEM micrographs of the surface of the fractured tensile specimens
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Whilst no significant differences in the morphology of dimples could be observed between the 
experimental test conditions, the low interpass temperature with the high heat input condition (LIT-
HHI) appeared to reduce the dimple diameter compared to the high interpass temperature 
condition. Future work will explore possible correlations of dimple size and frequency, with the
tensile properties of 316LSi produced by WAAM for each of experimental test conditions 
investigated in this research.

Distortion 

The profile of maximum distortion in the XZ and YZ planes for each wall are shown in Fig. 10. It
can be seen that in the XZ plane, a high interpass temperature can reduce the residual stress induced 
distortion by a small amount, with the greatest improvement seen for high heat input experiments. 
Reduction in distortion was also found with increased interlayer cooling time for the lower heat 
input experiments in the YZ plane. However, the results are less conclusive for high heat input 
condition where the high interpass temperature distortion (HIT-HHI) exceeds that of the low 
interpass temperature (LIT-HHI) on one side of the YZ plane. This indicates that a high interpass 
temperature build strategy may not be as effective at reducing distortion for the YZ plane with 
higher levels of heat input. 

Figure 10 Maximum distortion profiles in the XZ plane for 
a) HIT-HHI and LIT-HHI b) HIT-LHI and LIT-LHI and in YZ plane for c) HIT-HHI and LIT-HHI d) HIT-LHI and LIT-LHI.
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Conclusions 

This paper has experimentally investigated the effect of heat input and interpass temperature on
the microstructure, hardness, tensile strength, and stiffness for stainless steel 316LSi walls 
manufactured by WAAM identifying the following new findings and conclusions:

1. The microstructures of AISI 316LSi produced by WAAM generally consisted of a mixture
of fine columnar dendrites and isolated cellular regions. The microstructures varied
periodically across the layer bands, with fine, transitional and coarse grain regions.

2. The inter-layer cooling time between layers affected the development of macro-scale grain
structures within the microstructure. These exceeded 5 mm with the low interpass
temperature and low heat input condition. Macro-scale grains were also observed with the
high interpass temperature with high heat input experiment however, these were more
equiaxed which was attributed to break-down by competitive grain growth.

3. The heat input was found to have a significant effect on the Young’s modulus of AISI
316LSi produced by WAAM with high heat input processing parameter providing an
average of 164.3GPa, compared to low heat input with an average of 127.7GPa.

4. The tensile specimens extracted in the horizontal orientation provide statistically
significant greater ductility, with an average elongation of 45.2% compared to 40.0%
provided by the vertical specimens.

5. Inter-layer cooling time influences the distortion of WAAM produced parts, with results
indicating that a higher interpass temperature could be used to reduce the residual stress
induced distortion of the substrate, although further research is required.
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