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Abstract 

Chemical composition and atomizing gas of powders may affect properties of 17-4 PH fabricated 
via selective laser melting (SLM) process. This study investigates 17-4 PH stainless steel powders 
with various atomizing gases and compositions within 17-4 PH specification range. Material 
characterization demonstrated differences in flowability between the powders, but all produced 
fully dense parts. The as-built phase composition varied widely, with samples from Ar-atomized 
powders ranging from a mostly martensitic grain structure to containing a significant amount of 

-ferrite depending on their composition, whereas samples from N2 atomized powder contained 
largely austenite phase. After solutionizing and H900 hardening all Ar atomized powders produced 
homogeneous microstructure and improved mechanical properties meeting AMS 17-4 PH 
specification. The N2 atomized powder produced a martensitic microstructure with retained 
austenite and only ultimate strength meeting AMS specification. 

Keywords: selective laser melting, additive manufacturing, 17-4 PH stainless steel, 
microstructure, mechanical testing 

Introduction 

Additive manufacturing (AM) refers to a broad category of methods for turning computer aided 
design 3D models into a fabricated functional part. At its core, AM is the process of fabrication 
wherein material is added in a layer-by-layer fashion to form the part geometry. Modern AM 
methods appeared in the early 1950’s with polymer material and has steadily grown. In the past 
decade AM has experienced rapid development as industry has begun to leverage its capabilities 
[1]. Metal AM has been at the forefront of research and development in the manufacturing field 
[2]. The ability to construct near net shape, fully functional metal components quickly in a cost-
effective manner means limitless possibilities for many industries, particularly aerospace. Weight 
reducing brackets and assemblies printed as one large part are only the beginning for metal AM in 
aerospace [3]. Inside the category of metals AM there are several methods for fabrication, but the 
most widely used is powder bed fusion (PBF) [4]. This includes selective laser melting (SLM) and 
electron beam melting (EBM) and operates by mechanically spreading metal powder over the build 
followed by a laser or beam that melts the powder in the desired geometry. Following this the build 
volume drops and the process repeats until the part is complete. 

A significant advantage for metal AM is that all the major metals used in traditional manufacturing 
are available for AM. For example, titanium alloys, inconel and variety of steels. One that is 
commonly used for its strong combination of properties and the focus of this study is 17-4 PH 
stainless steel. The precipitation hardening stainless steels are used in manufacturing for their 
heavily martensitic microstructures. When compared with austenitic steels, PH stainless steels 
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have a higher corrosion resistance and strength. This property combination applies up to 
temperatures of 315 °C meaning that this material is suitable for use in many applications [5]. For 
these reasons, 17-4 PH stainless steel is often used in AM research and there are numerous studies 
on the material.  

For peak performance many metals, particularly precipitation hardening stainless steels, use 
thermal treatment to change the microstructure and improve mechanical properties. There are 
industry standards for these heat treatments which provide a certain set of properties dependent 
upon temperature, environment, and time of the treatment. Many past investigations examine 
thermal treatments and the resulting improved mechanical and microstructural properties of the 
materials [6-12]. In studies comparing 17-4 PH heat treatments it is found that the H900 treatment 
not only outperforms the solutionized material, but other hardening steps as well in achieving 
highest ultimate strength for tensile results [12]. This concurs with industry standard. Fabrication 
parameters also effect mechanical properties. In several studies it was found that build orientation 
results in anisotropy of mechanical properties with higher measured ultimate stresses in the 
horizontally fabricated specimens [8, 10, 13-15]. In one study it was found that higher treatment 
temperatures reduced anisotropy in specimens that were fabricated using SLM [8]. While this 
study does not involve 17-4 PH it demonstrates how thermal treatment can improve mechanical 
properties further specifically to AM.  

To ensure that the parts fabricated are of the highest quality all steps of the process must be 
examined, especially materials. There are various methods for testing powder quality used in 
industry and research [16-20]. It is found in one study that particle characteristics have a strong 
influence over part density [18]. It was also noted that powder with a higher tap density resulted 
in greater densification. Another study determined that there should be more than one method used 
to characterize a powder, both static and dynamic testing [17]. 

Despite the attractive nature of AM, particularly SLM, and the use of materials such as 17-4 PH 
stainless steel, there remain certain obstacles that hinder the progression of this technology into 
mainstream manufacturing. A large obstacle currently is that there is not a full understanding of 
the process and how slight composition variation may affect part properties. It is currently 
unknown how vendor variation and powder manufacturing method will influence mechanical and 
microstructural behavior. This study seeks to characterize and understand the differences in 
powder and as-built properties between vendors and manufacturing methods. Following this, it is 
the goal of this study to effectively eliminate any variation through means of industry standard 
heat treatment and create uniform microstructural and mechanical properties for the 17-4 PH grade 
stainless steel AM materials and compare those to wrought specimens. Accomplishing this study 
will provide those necessary answers and help to further progress AM into the mainstream. 

Materials and Methodology 

Material 

For this study the material used was 17-4 PH stainless steel. The 17-4 PH powder was received 
from three vendors with a particle size distribution of 15-45 m. Two powders were procured from 
one manufacturer, each with a different gas atomizing manufacturing method, Ar and N2. A 
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complete sample set stating anonymized vendor nomenclature and powder information can be 
found in table 1 below. The powders were selected due to their high frequency of use is SLM 17-
4 PH processes.  

Table 1. 17-4 PH stainless steel powder sample set basic variations. 
Manufacturer Powder State Atomization Gas 

Powder A New Ar 
Powder B New Ar 
Powder B New  
Powder C New Ar 

There is some variation in chemical composition although all conformed within UNS S17400 
specification range. The chemical compositions of the specimens were from the vendor provided 
datasheet and are given in Table 2.  

Powder Testing 

Powder flowability was tested using the Hausner ratio. The Hausner ratio is the ratio of tap to 
apparent density. Tap density is measured according to ASTM B527-06, in which powder is loaded 
into a graduated cylinder and tapped repeatedly allowing the powder to compact, removing void 
volumes. The volume is measured, and density is calculated from the total weight of the powder. 
Apparent density is determined by measuring the volume prior to tapping then calculated using 
the total weight of the powder. A powder is considered to have poor flowability with a Hausner 
ratio greater than 1.25 [23]. 

Particle size distribution was measured using light scattering method in accordance with ASTM 
B822-10. Utilizing the Microtrac S3500, ~1010 particles were measured then sectioned into 20 
bands by diameter size. The test provides a particle size distribution of the powder sample by 
volume of powder for the measured diameter of the powder.  

Internal powder porosity was measured and is the presence of the atomizing gas becoming 
entrapped within the powder particle upon powder fabrication. A small sample of each powder 
was mounted in epoxy resin and polished using a standard metallography preparation method. 

Table 2.  Composition of powders in wt % 
powder Cr Ni Cr/Ni Cu N Mo Nb 

Powder A 16.12 4.15 3.88 3.21 0.006 - 0.2

Powder B Ar 16.70 4.29 3.89 4.49 0.031 0.05 0.27

Powder B N2 15.50 4.55 3.41 4.50 0.099 .26 .24

Powder C 15.60 4.70 3.31 3.61 0.036 - 0.22

Wrought 15-17.5 3.0-5.0 - 0.0-5.0 - 0.0-0.5 0.0-0.45
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Once polished, optical micrographs were taken of each powder in five separate fields. For each 
field an area fraction porosity was measured using an image analysis code written in MATLAB. 
The script converts each image to binary and traces each particle individually. The script then 
examines inside of each outlined powder particle and outlines each pore. Following this a 
calculation is made of total pore area to total area outlined and a percent porosity is output. A 
standard deviation is calculated from all measurements made. 

Sample Testing 

A standard coupon set was fabricated for each powder using a commercial EOS M290 SLM 
machine. The exposure parameters were: power = 195 W, scan speed = 750 mm/s, hatch spacing 
= 0.100mm, and layer thickness = 0.040mm with standard contour/hatch scanning strategy and 
67° scan rotation angle. A standard coupon set included microscopy coupons 9 x 10 x 11 mm cubes 
and larger rectangular bars, arranged in horizontal and vertical orientations for mechanical 

Figure 1. Polished sections of atomized powder show gas entrapped within some 
particles.  The porosity is greater in Ar-atomized Powder B Ar (L) and N2 -atomized 
Powder B (R). 

Figure 2.  MATLAB script calculates internal porosity from micrograph images, 
Powder B Ar (L) and N2 (R). 
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properties. After thermal treatments, if applicable, specimens were wire EDMed into the shape of 
standard rectangular tensile bars.  

All tensile specimens were in either of the two conditions: as-built/received or heat treated. The 
thermal treatment was a standard solutionizing and H900 hardening step. All AM samples not 
being tested in the as-built condition went through the solutionizing and H900 hardening step. The 
wrought material was already solutionized as-received and only hardened. The full heat treatment 
procedure can be found in Table 3 below. 

Microscopy coupons were sectioned in the XY (perpendicular to build direction) and Z (parallel 
to build direction) planes, mounted in epoxy resin and polished using standard metallography 
methods. The porosity of the as-built cubes was measured from optical micrographs using ImageJ 
software. Mean and standard deviation were calculated using five image fields. All samples were 
etched using Kalling’s reagent # 2 to observe the microstructure, a mixture of copper chloride, 
hydrochloric acid, and ethanol.  

Mechanical properties of the specimens were examined using monotonic tensile method according 
to ASTM E8-16. The tests were conducted on an Instron 50 kN load cell mechanical testing device 
(Model: 5569A). The test was conducted in a strain-controlled elongation to failure mode, with 
axial strain measured using a mechanical extensometer with gauge length of 12.5 mm. Three 
specimens of each condition were tested, and specimens met ASTM E8 standard design and 
dimensioning. 

Results and Discussion 

Table 4 contains results from the apparent and tap density measurements given as percentages of 
the true density of 17-4 PH stainless steel and the calculated Hausner ratio of tap to apparent 
density. Powders A, B N2, and C all have similar flowability and are in the range of good 
flowability with a Hausner ratio < 1.10. Powder B Ar has a lower level of flowability compared to 
the other powders but is still within the range of good flowability (<1.25 [23]). Figure 3 shows the 
distribution of particle size for the powders.  

Table 3. Heat treatment procedure. 

Heat Treatment Step Temperature (°C) Treatment Time (hr.) Cooling method 
Solutionizing 1038 1 Air Quench 

H900 Hardening 482 1 Air Quench 
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Table 4. Powder packing and flow behavior. 

Material Apparent Density (%) Tap Density (%) Hausner ratio 
Powder A 55 58 1.06 

Powder B Ar 49 59 1.21 

Powder B N2 58 63 1.09 

Powder C 54 59 1.10 

Powder A and B Ar both have similar particle size distributions with a narrower particle size. 
Powder C has a similar narrow particle size; however, the distribution is shifted a small fraction 
towards a larger size distribution. Powder B N2 has a wider distribution of particles, demonstrated 
by the shorter distribution peak. This is also reflected in the particle cumulation, Fig 3 (b). Powder 
B N2 accumulates powder more rapidly with the cumulation line to the left of the other powders. 
Powder A and B Ar overlap completely and Powder C is significantly separated to the right again 
indicating a larger size distribution. There is no indication that particle size leads to any change in 
flowability. The three powders tested that were in the range of good flowability, Powders A, B N2, 
and C, all had slight variations in their distribution and particle sizes and Powder B Ar, considered 
to have the poorest flowability, had a similar distribution to Powder A.  

The porosity values measured are in Table 5 and the micrographs captured in Figure 4. The Powder 
B Ar had a significantly higher level of internal powder porosity than the other powder specimens, 

Figure 3. Differential (a) and cumulative (b) particle size distribution of powders. 
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despite large variation in porosity. The other three powders all had lower levels of internal powder 
porosity. There appears to be a correlation between internal powder porosity and flowability that 
could be a source of examination in the future to determine the cause. This is the possible 
explanation for powder B Ar having a substantially far poorer flowability than the other powders. 
Due to the higher level of internal powder porosity, there may be some deformation in morphology 
of the powder causing the difference in flowability. 

Table 5.  Porosity in coupons and in powder. 

powder 
% porosity

couponXY couponYZ powder 

Powder B Ar 0.40 (.05) 0.44 (.06) 1.44 (.37) 

Powder B N2 0.03 (.01) 0.03 (.01) 0.17 (.10) 

Powder C 0.10 (.01) 0.10 (.03) 0.29 (.27) 

Powder A 0.05 (.01) 0.07 (.01) 0.24 (.23) 

The porosity measured in the XY and YZ planes are similar throughout all samples, that coupled 
with the low standard deviations suggests that the porosity was evenly distributed throughout each 
of the specimens. In the Powder B Ar coupon there was a significantly higher measured level of 

Powder A Powder B Ar

Powder B N2 Powder C 

Figure 4. Optical micrographs of coupons from different powders. 
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porosity than the other powders, this is reflected in the micrographs in Fig 4. The two measured 
porosity levels, powder and coupon, demonstrate a strong positive correlation. This indicates that 
the cause of the coupon porosity is most likely due to the internal powder porosity. The fact that 
the measured powder porosity is higher than that of the coupon also suggests that much of the 
entrapped atomizing gas escapes. The morphology of the pores in powder and coupon, shown in 
Fig. 2 and 4 respectively, are similar in that they are spherical furthering the correlation. However, 
despite variation in powder characteristics all powders were able to fabricate fully dense specimens 
(>99.5% density) with the only measured porosity being spherical and attributed to internal powder 
porosity.  

Figures 5 and 6 show tensile behavior and microstructure of the standard wrought material. After 
H900 hardening the yield stress increased by approximately 700 MPa after heat treatment and the 
ultimate strength increased by 400 MPa. The elongation to failure is typical for this material and 
the slight increase in elongation is indicative of the thermal treatment.  

 

 
Figure 5. Wrought specimen as-received and H900 hardened tensile behavior 

 

Figure 6. Wrought specimens as-received (a) and hardened (b) microstructure. 

a b 
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As expected for wrought 17-4 PH, a coarse-grain martensitic microstructure can be seen in 
Fig. 6 (a). The H900 thermally treated specimen in Fig. 6 (b) retains the martensitic grain structure 
but becomes more homogenous and refined with the aging process.  

Fig. 7 is a full set of tests completed for the tensile specimens fabricated using SLM. All materials
produced repeatable data in their tensile specimens. There was prevalent anisotropy in all materials
with the ultimate strength of the horizontal being greater than the vertical direction. In Powder C
the vertical specimens displayed a much smaller yield plateau, smaller elongation and lower 
ultimate strength.

 

 

 

 

 

Figure 7. As-built specimen tensile data (a) horizontal and (b) vertical. 
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Powders A and B Ar had similar tensile performance with ultimate strengths of 900 MPa in the 
XY and 800 MPa in the Z. Powder B N2 atomized tensile specimens performed completely 
different than the Ar atomized powders. There was a significant period of strain hardening at a low 
yielding strength in the initial necking region followed by another curve of increased strength. This 
strain hardening resulted in a significantly larger elongation to break for the Powder B N2 
specimens in addition to a high ultimate strength compared to Powder A and B Ar. This mechanical 
behavior indicates that the atomizing gas does influence part performance. Compared to the 
wrought solutionized (condition A) specimens all argon atomized powders behaved similarly, 
except the experienced anisotropy in the vertical Powder C specimens. Powder B N2 reached both 
the same elongation and ultimate strength but behaved completely different. As for the H900 
specimens, none of the powders performed as well as the hardened material in their as- built state. 
The microstructures for each as-built specimen is shown in Figure 8. 

 

Despite using an identical parameter set with same grade stainless steel a range of differing 
microstructures were produced. Powder A and Powder B Ar produced similar microstructures with 

  

  
Figure 8. As-built microstructure of AM specimens (horizontal reference plane). 
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larger ferritic grains (lighter contrast). Powder A also displays visible martensitic grain structures 
(darker) at the ferrite boundary. This similarity in microstructure is reflected in the similarity of 
mechanical properties. Powder B N2 contains an inhomogeneous microstructure with large ferrite 
grains accompanied by a fine and equiaxed austenite grains. There is a significant amount of 
retained austenite present which is presumably the cause of the strain hardening, the dislocations 
were moved during plastic deformation upon which they became pinned and tangled. This reduced 
the mobility of the dislocation improving the strength and resulting in the material hardening 
effect. Finally, Powder C displays a microstructure that contains largely martensite with some 

 [21]. The martensitic fine-grain structure improved mechanical strength as 
displayed in the tensile results. The as-built microstructure of SLM-processed 17-4 PH stainless 
steel is highly unpredictable. Before this material could be used in industry it would require a 
homogenized microstructure. 

The differences in microstructure can be explained by chemical composition, Table 2, namely in 
the elements of chromium and nickel. All materials meet the specified chemical composition of 
wrought material, but the variation may be the cause of differences in mechanical and material 
properties. The chromium-nickel ratios of Powder A and Powder B Ar are extremely similar. This 
is again reflected in both the microstructure and mechanical performance. Powder C has 
chromium-nickel ratio that is much lower than the other specimens, but one that also overlaps with 
the specification of another grade of stainless steel, 15-5. This grade stainless steel also displays a 
heavily martensitic microstructure in the as-built condition [22]. The Powder B N2 also has a lowed 
Cr/Ni ratio, but a much higher nitrogen and molybdenum content. This dissimilarity in 
microstructure between the same grade material is due to the variation in chemical composition 
within the specification boundary.  

The complete set of tensile results for thermally treated specimens using the solutionizing and 
H900 hardening steps is provided in Figure 9. The solutionizing thermal step removed any 
anisotropy in the specimens that was noticed in the as-built state, the same result demonstrated in 
past studies. The hardening step improved mechanical strength properties greatly. However, 
elongation to failure was not improved during the H900 process in fact it was reduced. However, 
the reduced elongation does not inhibit these specimens from meeting full AMS specification. All 
Ar atomized specimens deformed between 10% – 12% before failure. The yield and ultimate 
strength were, however, greatly improved for each of these Ar atomized materials, comparable to 
the strength in the H900 state of the wrought. All Ar atomized specimens exceeded minimum 
specification for H900 processed 17-4 PH yield and ultimate strengths (1172 MPa and 1310 MPa, 
respectively). Powder B N2 specimens’ ultimate strength of the material was comparable with the 
wrought H900 specimen. However, the results display a far lower yield strength than the AMS 
specification. This yield strength is comparable to that of the material prior to strain hardening, 
implying that the material has not fully eliminated this effect. However, there was no noticeable 
hardening step, only a steady increase of stress and strain. In summary the solutionizing and H900 
hardening step improved the AM argon atomized specimen yield and ultimate strength exceeding 
AMS strength specification, and all elongation met the standard. The yield strength of the N2 
atomized material do not meet standard due to a limitation in fabrication process. 
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Figure 9. Solutionized and H900 hardened specimen tensile data (a) horizontal and (b) vertical. 

The solutionized and hardened microstructures of the powder specimens are displayed in Fig. 10 
below. The solutionizing step completely homogenized the microstructure into fine martensitic 
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H900 thermal treatment. This microstructure concurs with results from past studies that have 
performed a solutionizing step prior to hardening. The improved mechanical properties and 
similarity between that of the Ar atomized specimens can also be attributed to the thermal 
treatment microstructure. Powder B N2 has an inhomogeneous microstructure with brighter 
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shown in Fig. 11. The darker and brighter regions could be transformed martensite and retained 
austenite, respectively. From tensile data we can see the strain-hardening behavior of LPW N2 
even after solutionizing and hardening indicating that there is a significant amount of retained 
austenite. However, further phase analysis is necessary to quantify the phase composition. Fig. 11 
below demonstrates the mentioned darker lathy region and brightly contrasted regions found in the 
microstructure of Powder B N2. 

  

  
Figure 10. Solutionized and hardened microstructure of AM specimens.  
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Figure 11. Microstructure of Powder B N2. 

Conclusion 

In conclusion, there were measurable variations in powder flowability, particle size, and internal 
powder porosity. Despite these variations fully dense parts were fabricated. Internal powder 
porosity was shown to be the major cause of as-built porosity and is unavoidable despite an 
optimized parameter set. Chemical composition variation in same grade 17-4 PH stainless steel 
resulted in differing microstructures and mechanical properties. Atomizing gas also displayed an 
effect on microstructural and mechanical properties with N2 atomizing gas producing an austenitic 
microstructure and strain hardening during tensile test. Ar atomizing gas produced both martensitic 
and -ferritic microstructures and displayed no strain hardening. Solutionizing thermal treatment 
successfully homogenized the microstructure and mechanical properties of each Ar atomized 
specimen, despite variations in chemical composition and powder characteristics. It improved the 
ultimate and yield strengths of all Ar atomized specimens, allowing them to meet AMS 
Specification, and the ultimate strength of the N2 atomized specimen. The yield strength of the 
nitrogen atomized specimens was not improved through thermal treatment and retained some 
elements of its as-built strain hardening effects due to retained austenite post treatment. The 
solutionizing and thermal treatment removed anisotropic behavior that was present in the as-built 
specimens.  
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