




Figure 8. Optical images of the surface after the laser treatment, chemical etching, and polishing 
sequence. (a) as-laser-treated part, (b) chemically etched, (c) polished, (d) chemically etched again.

3.3. Improvement of surface roughness 

There are representative parameters which describe surface roughness in one and two dimensions 

with numerical values including; (1) arithmetic media of all measured values on the profile (�4�Ô, 

�5�Ô), (2) maximum profile height (�4�í, �5�í), and (3) Japanese industrial standard for �4�í (�4�íJIS). In 

this study, arithmetical mean deviation represents the surface roughness as it is the most common 

and accurate value that calculates the entire profile. The average of five Ra from the five-line 

roughness and Sa from the area roughness provided the final surface roughness values. The Ra of 

as-built specimen was 13.27 µ m and Sa was 15.46 µ m, on the other hand, the Ra of the laser-

treated specimen was 3.80 µ m and Sa was 4.15 µ m. Laser surface treatment process reduced 

~70% of surface roughness on the loading direction. Rough surface conditions typically cause

microcracks which exert a negative influence on fatigue behavior, especially in high cycle 

environments. In addition, the reduction of surface roughness in the direction perpendicular to the 

loading was verified by Sa change. In short, the surface condition was improved by laser treatment, 

hence improving the mechanical performance as observed from our current ongoing tests. 
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4. Conclusion

In the present paper, the laser surface treatment of AM Ti-6Al-4 specimens using a CW fiber

laser was studied. This technique provided the ability to reduce the surface roughness of additive 

manufactured parts while allowing fine control over the structure of the surface materials as the 

melt and recrystallize during the process. This method, compared to the conventional methods, 

allows processing of complex surfaces without the need for further sample preparation at lower 

operation cost and at higher processing speed. The cyclic mechanical tests are currently under 

investigation which demonstrates noticeable improvement in their fatigue life.  
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