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Abstract 

The Arburg Plastic Freeforming (APF) is an additive manufacturing process that allows three-
dimensional, thermoplastic components to be produced in layer by layer. The components are generated by 
depositing fine, molten plastic droplets. One of the main advantages of the APF process is the open machine 
control. Thus, the process parameters can be adapted and optimized for the individual applications. 

The optimization is carried out on the basis of a variation of the process parameters using a statistical 
design of experiments. Relevant process parameters are the layer thickness, the form factor, the raster and delta 
angle as well as the overlap between the contour and the filling of a layer. In addition, the nozzle and build 
chamber temperatures are varied. Using this procedure, the effects of the influencing parameters on the 
mechanical properties and the interactions between the influencing parameters are analyzed and converted into 
mathematical models. On the basis of the results and the models, guidelines will be developed to assist the user 
of APF technology in the systematic process configuration for their own applications. The material used is ABS, 
one of the most frequently used amorphous thermoplastics in additive manufacturing. The mechanical properties 
are determined on the basis of tensile tests and the characteristic values tensile strength, elongation at break and 
Young's modulus. The results should show the performance of the APF technology in regard to the mechanical 
properties. 

Introduction 

With its official market launch in 2013, the Arburg Plastic Freeforming (APF) is a relatively new 
technology in the field of additive manufacturing. This technology enables the production of three-dimensional 
thermoplastic components in one process from standard plastic granulate without the use of molding tools [1]. 
One of the main advantages of the APF technology is the open machine control which allows the variation of 
almost all process parameters. Thereby the process can be individually optimized for each component, and a large 
number of thermoplastics in granulate form can be processed. This results in a diversity of processable materials. 
It is possible to process cost-efficient materials, known from injection-molding. For the process parameter 
optimization and the processing of new materials, the exact influences and interactions of the process parameters 
on the component quality must be known. These influencing variables and interactions are not yet sufficiently 
known, so that a material qualification or optimization of the mechanical properties for a new material is currently 
based on the try and error principle. 

The aim of this research is the development of manufacturing guidelines for a rapid process configuration 
and optimization for the APF process. A detailed understanding of the process itself and the most important 
influencing factors should be developed. At the same time, manufacturing restrictions are to be identified during 
the investigations. 

State of the Art 

The Arburg Plastic Freeforming is characterized in particular by the processing of standard plastic 
granulates as well as by the production of components out of very fine molten thermoplastic droplets. The 
associated machine system for this technology is the Freeformer from Arburg GmbH & Co KG. Its most important 
machine components are shown in Figure 1. The raw material, a qualified standard thermoplastic granulate, is fed 
via a hopper. In the material preparation unit, the granulate is molten with a screw as in the injection molding 
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process. The molten material is then pressed into the material reservoir. Here, a piezo actuator performs a pulsed 
nozzle closure. The nozzle moves up and down, producing almost 250 droplets per second. The movement of the 
building platform, for the precise positioning of the discharged droplets in the X- and Y-direction, is realized by 
two linear motors. After the completion of a layer the building platform is lowered by one-layer thickness, using 
a spindle drive. [1, 2, 3] 
Figure 1: Schematic setup of the Freeformer [1] 

There are many process parameters that could influence the mechanical properties of plastic freeformed 
components. One of the most important process parameters with an influence on the component strength is the 
form factor. It is a special process parameter for the plastic freeforming. The form factor is used to vary the 
distance between the single droplets and between the droplet chains (Figure 2 a) [4]. Consequently, this parameter 
influences the porosity and filling of the components. Figure 2 b) shows the influence of the form factor on the 
surface quality. The left figure shows an overfilled component with an uneven surface from an overfilled 
specimen. The illustration on the right shows an ideal surface with the individual droplets of a not overfilled test 
specimen. Based on such an analysis of the surface, a simplified visual determination of the form factor is carried 
out. This must be done with every new material, in order to process it with the Freeformer. In addition to the form 
factor, there are other process parameters that could have an influence on the mechanical and visual properties of 
the manufactured components. These include for example the layer thickness, nozzle and build chamber 
temperature, overlap between raster and filling and the raster angle. [5] 

Figure 2: a) Schematic description of the process parameter form factor [4], b) Evaluation of the component surface of overfilled and 
non-overfilled test specimens 

In principle, the APF process is similar to the Fused Deposition Modeling (FDM). The decisive difference 
is that the APF process generates a chain of many droplets while in the FDM process a continuous strand is 
deposited. The assumption suggests that the strength values of an FDM strand is higher than those of the APF 
droplet chain. Nevertheless, there are probably some general trends with regard to the influencing variables. In 
[6, 7], the influences of the filling strategy on FDM co ponents were investigated, allowing initial conclusions 
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to be drawn, regarding the behavior of plastic freeformed components. In [5, 8, 9] first investigations on the 
resulting mechanical properties of plastic freeformed components were carried out. For example, process 
parameters which influence the filling strategy and the build direction were varied. In addition, comparisons of 
the mechanical properties of APF, FDM and injection molded components were made. Nevertheless, the literature 
does not provide comprehensive studies of the influencing variables and their interactions on the mechanical and 
visual properties, so that no summarizing manufacturing guidelines can be derived from them. 

Experimental Investigation 

The influences of the process parameters on the mechanical properties of APF components are 
investigated with statistical design of experiments. Based on preliminary investigations, the production 
restrictions were identified and analyzed previously to the investigations in order to exclude any impact on the 
investigations. In the following, the basic conditions for the production of the test specimens and the execution 
of the design of experiments are defined. The material ABS Terluran GP35 from INEOS Styrolution is used for 
the production of the test specimens. Type 1B test specimens from DIN EN ISO 527-2 standard are used in the 
XY-direction to determine the mechanical properties (Figure 3 a). Three of these test specimens are produced 
together for each build job (Figure 3 b). The distance between the individual test specimens is 5 mm. 

Figure 3: a) Flat orientation on the building platform, b) Positioning of the test specimens in a build job 

The discharge level is an important process parameter which regulates the volume of a single droplet. This 
parameter must be monitored during the production of the test specimens because even a small variation in the 
droplet volume during the manufacturing process has an effect on the porosity of the component. For reproducible 
production of the test specimens, the discharge level must be within a tolerance range of ± 5 % around the set 
point. The issue is that due to the smallest irregularities on the building platform, the discharge level varies widely, 
especially in the first component layer. The machine software does not readjust the discharge pressure in this 
layer, which leads to strong variations in the discharge level. This procedure was chosen by Arburg because 
unevenness on the building platform is compensated and at the same time the discharge level in the following 
layer achieves the previously calibrated value due to the constant pressure. As a result, the tolerance range of the 
discharge level of ± 5 % is exceeded and the build job is aborted by the machine. The solution is to "raise" the 
test specimens by 0.2 mm in the Z-direction. To fill the gap, support material is used in the first two layers. The 
tolerance regarding the discharge level of the support material is set to ± 50% to prevent a termination of the build 
job. The test specimen is then manufactured on these correction layers without exceeding the tolerance range. 
After each build job the production report is checked for compliance with the tolerance range (Figure 4). 
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Figure 4: Production report for checking the tolerance of the discharge level 

Five process param
eters are analyzed w

ith the design of experim
ents. These include the form

 factor, the 
nozzle and build cham

ber tem
perature, the layer thickness and the overlap betw

een filling and contour. The 
R

esponse Surface M
ethod (R

SM
) is used in com

bination w
ith the softw

are M
initab. In detail, a C

entral C
om

posite 
D

esign (C
C

D
) w

ith four continuous and one categorical factor, the layer thickness, is used. The influences of the 
raster angle and the delta angle are exam

ined individually after the evaluation of the design of the experim
ents. 

The categorical factor layer thickness is fixed in the first step at 150 μm
 and 200 μm

. The reason for selecting 
these layer thicknesses is that the layer thickness of 200 μm

 is used as standard by A
rburg for the nozzle diam

eter 
of 200 μm

. A
 layer thickness of 150 μm

 is in the range of the low
er lim

it for the m
aterial A

B
S Terluran G

P35. 

Table 1: Individual factor levels of the process param
eters of the design of experim

ents 

Param
eter / Factor 

Param
eter / Factor L

evels 
Layer thickness 

150 μm
 

200 μm
 

N
ozzle tem

perature 
230 °C

 
240 °C

 
250 °C

 
260 °C

 
270 °C

 
B

uild cham
ber tem

p. 
80 °C

 
(87.5 °C

) 
95 °C

 
(102.5 °C

) 
110 °C

 
Form

 
factor 

150 μm
 

1.615 (- 0.05) 
1.640 (- 0.025) 

1.665 (± 0) 
1.690 (+ 0.025) 

1.715 (+ 0.05) 
200 μm

 
1.315 (- 0.05) 

1.340 (- 0.025) 
1.365 (± 0) 

1.390 (+ 0.025) 
1.415 (+ 0.05) 

O
verlap 

40 %
 

50 %
 

60 %
 

70 %
 

80 %
 

For the statistical validation tw
o build jobs, therefore six test specim

ens are produced for each testing 
point. D

ue to the choice of five param
eters, the design of experim

ents results in a total of 124 test points 
respectively 124 build jobs. Since this large num

ber of build jobs cannot be realized, the num
ber of test points is 

reduced to 80 w
ith the D

-optim
ality criterion. The D

-optim
ality criterion is a function of the M

initab 
softw

are. W
hen this function is used, an algorithm

 only selects certain test points w
hich are particularly 

im
portant for the m

odeling process. This allow
s to reduce the num

ber of test points w
ithout strongly affecting the 

quality the m
odel. Table 1 provides an overview

 of the factor levels used in the design of experim
ents for the 

individual process param
eters. The determ

ination of the factor levels is based on experiences and prelim
inary 

investigations. O
ne of the prelim

inary investigations is that a visual m
aterial qualification m

ust be carried out 
for the tw

o selected layer thicknesses. The m
ost im

portant aspect of this m
aterial qualification is the 

determ
ination of a form

 factor depending on the layer thickness, the discharge level as w
ell as the nozzle 

and build cham
ber tem

perature. A
 special characteristic of the experim

ental design is that the form
 factor is 

varied betw
een -0.05 and +0.05, because the exact values of the form

 factors for the tw
o different layer 

thicknesses are different (table 1). 

Discharge Level / % 

Tim
e / hh:m

m
:ss 

Support m
aterial 

 M
odel m

aterial 
 Tolerance: ± 5 %

 

 708

00:00:08 
00:07:49 
00:15:43 
00:23:28 
00:31 :28 
00:39:08 
00:47:08 
00:55:08 
01:02:48 
01 :10:48 
01:18:47 
01 :26:28 
01:34:27 
01 :42:08 
01:50:08 
01 :58:08 
02:05:48 
02:13:48 
02:21 :48 
02:29:29 
02:37:29 
02:45:29 
02:53:09 
03:01 :09 
03:08:49 
03:16:49 
03:24:48 
03:32:29 
03:40:29 
03:48:29 
03:56:10 
04:04:10 

r,,.,)(.,.).,J::i.U,O) 
0 0 0 0 0 0 0 

I I I 



Based on the results of the investigations of the mechanical properties, mathematical regression models 
for the individual target values are set up with the help of Minitab. These models are used to identify and describe 
the main influencing parameters and interactions.  

Figure 5: Main influencing factors on tensile strength 

Figure 5 shows the main influencing factors on tensile strength. The most important influencing factor is 
the form factor. With a low form factor, a higher tensile strength is achieved due to the higher filling degree of 
the components. The second main influencing factor is the layer thickness. Higher tensile strength values are 
achieved with a lower layer thickness. The third main influencing factor is the nozzle temperature, followed by 
the overlap between filling and contour. The evaluation shows no remarkable interactions of the influencing 
parameters on the tensile strength. The main influence diagram for the Young's modulus looks very similar to 
that of tensile strength, so it is not discussed here further. 

Figure 6: Main influencing factors on elongation at break 

Figure 6 shows the main effects on elongation at break. The main effects are the build chamber and the 
nozzle temperature. Higher process temperatures result in higher elongation at break values. The third most 
important influencing factor is the layer thickness. With a layer thickness of 150 μm, a higher elongation at break 
is achieved than with 200 μm. With regard to the form factor, the model probably has some minor weaknesses in 
the marginal area, since an increase in elongation at break with an increase in the form factor is not to be expected. 
In this case, the model must be validated or, if necessary, improved by further test points. 

Figure 7 summarizes the influences of the interactions on elongation at break. The most significant 
interactions concern the build chamber temperature, the form factor and the overlap in combination with the layer 
thickness. Depending on the layer thickness, the build chamber temperature has a different influence on the 
resulting elongation at break. With a low layer thickness (150 μm), the influence of a higher build chamber 
temperature is bigger than with a layer thickness of 200 μm. This means that the welding of the fine droplets of a 
small layer thickness is better at a high build chamber temperature. Another interaction shows diverging effects 
of the form factor on elongation at break depending on the layer thickness. With a small layer thickness of 150 
μm, a small form factor must be used to achieve high elongation at break values. With a layer thickness of 200 
μm, this influence is reversed. 
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 Figure 7: Influences of interactions on elongation at break 

In addition to the mechanical properties, the surface roughness of the test specimens is also analyzed. The 
reason for these investigations was that in the preliminary period of these investigations, the components with the 
best strength usually had the worst surface properties due to slight overfilling. Nevertheless, the investigations 
have shown that the mechanical and visual properties can be optimized at the same time. The most important 
influencing factors are the layer thickness and the form factor. With a small layer thickness and a small form 
factor, the surface roughness Rz is minimized. The influences of the process temperatures and the overlap between 
filling and contour are significantly lower and not so significant. 

Figure 8: Main influencing factors on surface roughness 

Based on the mathematical models, a parameter optimization for the maximization of the target properties 
tensile strength, elongation at break and Young's modulus is carried out. Table 2 summarizes the optimized 
process parameters with the predicted and experimentally determined mechanical properties and their deviations. 
The comparison between the predicted values from the mathematical model and the experimentally determined 
values shows that the models overestimate the influence of the process parameters. The deviations are in the range 
of between 10 % and 16 %. Considering that the test points are extreme values in the marginal area of the models, 
this deviation is acceptable. 

Table 2: Optimization of tensile strength, elongation at break and Young's modulus using the mathematical models 

Type of Load TN TB F dL wR dS Model Exp. 
Investigation 

Deviation 

Tensile Strength / MPa 230 °C 110 °C 1.615 80 % 45° 150 μm 44.93 36.30 - 15.44 %
Elongation at Break / % 270 °C 110 °C 1.615 80 % 45° 150 μm 9.38 8.45 - 9.91 %
Youngs modulus  /MPa 230 °C 110 °C 1,615 80 % 45° 150 μm 2.532 2.113 - 16,54 %
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In the following, the physical mechanisms behind the experimental results will be examined in more detail. 
With regard to the surface quality there are two effects which will be mentioned here. The layer thickness is the 
most important influencing factor on the surface roughness. The reason for this is shown schematically in 
Figure 9 a). Between the larger droplets there are deeper notches than with a small layer thickness with small 
droplets. 

Figure 9: a) Schematic influence of the layer thickness on the surface roughness, b) Overfilling in the edge area due to high overlap 
between filling and contour 

A further effect results from the parameter overlap between filling and contour. The models show no 
significant influence of this parameter on the mechanical or visual properties. Nevertheless, a strong overfilling 
occurs in the contour area of the specimens if the overlap is too large. This uneven surface quality must be avoided. 
Figure 9 b) shows this effect. The affected contour area is marked in red. In addition, the investigations have 
shown that combination of thin-walled components and a too high overlap between filling and contour, results in 
completely overfilled components. Thus, the resulting filling level of the components depends on the wall 
thickness. Since real components have different geometries with different wall thicknesses, overfilling of this 
kind must be avoided. The parameter overlap between filling and contour should be kept constant at the standard 
value of 50 % and should only be varied in exceptional cases. 

After the evaluation of the experimental design and the subsequent modelling and optimization, the 
influence of the filling strategy is investigated with a variation of the raster angle. The test specimens were 
produced with the optimized process parameters. Figure 10 b) schematically shows the raster angles 0° and 90° 
on the basis of the test specimens. The green lines represent the individual filling lines. The results show that 
almost the same mechanical properties are achieved with all three filling strategies (Figure 10 a). Based on 
previous findings from the FDM research and preliminary investigations, this is a surprising result. Figure 11 
shows two failure analysis for a raster angle of 0° and 90°. Although the load direction is vertical to the filling 
lines at a raster angle of 90°, a finer and more homogeneous structure can be seen in figure 11 b). 

Figure 10: a) Comparison of the maximum tensile strength at different raster angles, b) Schematic illustration of the raster angles 

Figure 11: Failure analysis at a raster angle of a) 0° and b) 90° 
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The almost identical mechanical properties using different raster angles can be explained by the effects 
shown in Figure 12. Two specimens with a raster angle of 0° and 90° and the corresponding filling lines are 
illustrated. The difference between the two filling strategies is that the nozzle remains above certain areas of the 
component for different periods of time. This results in a more intensive heat-affected zone and a higher 
temperature for the welding process during droplet deposition at a raster angle of 90°. Therefore, a better strength 
is achieved at a raster angle of 0° in combination with the used test specimen geometry. The second influence is 
the anisotropy caused by the droplet chain. This leads to a better strength at 90° raster angle. At a raster angle of 
45° there is a mixture of both effects. Overall, the effects are balanced out, resulting in the same mechanical 
properties for the used test specimen geometry. Since the effects are dependent on the filling lines, it must be 
considered that this does not apply to any component geometries. 
Figure 12: Schematic illustration of the heat-affected zone with a raster angle of 0° and 90° 

The following section provides a brief insight into the influence of the build direction on the mechanical 
properties. Using the optimized parameters from the design of experiments, test specimens were produced and 
analyzed in the Z-direction. Figure 13 a) compares the maximum values of the two build directions with the 
mechanical properties of injection-molded test specimens. For the XY-direction, the APF specimens are very 
close to the properties of injection molded specimens. 90% of the tensile strength of injection molded specimens 
is achieved. The Young's modulus is identical and the elongation at break reaches 70% of the maximum value of 
injection molded specimens. In the Z-direction, the mechanical properties are significantly lower than those of 
the XY-direction. The tensile strength drops to under 30 % and the elongation at break to less than 10 % of the 
injection molded test specimens. Further investigations are currently being carried out to determine whether the 
mechanical properties in the Z-direction can be further improved. 

Figure 13: a) Comparison of the maximum values between injection moulding, APF in XY-mounting direction and APF in Z-direction, 
b)Comparison between simulated and experimentally determined mechanical properties
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Finally, a comparison between the simulated and experimentally determined mechanical properties is 
made. The deviations for tensile strength and Young´s Modulus are within the tolerance range of ± 15 %. Figure 
13 b) shows an example of the validation diagram for tensile strength. All randomly selected validation test points 
are within the tolerance range. This means that the predicted results are almost identical to the experimental results 
for these parameters. The model shows significant deviations regarding elongation at break. Accordingly, there 
is potential for further improvement. Looking at the validation diagrams, it is noticeable that the models tend to 
deliver too high values and overestimate the positive influence of the process parameters. 

Summarized Manufacturing Guidelines 

Subsequent, the results are summarized in the form of manufacturing guidelines. The most important 
process parameter is the form factor. This parameter should be as low as possible without overfilling the 
components. It must be considered that this process parameter is slightly dependent on the component wall 
thickness. This means that the form factor must be adjusted partially for large-area layers or very small wall 
thicknesses. Such an adjustment is currently not possible in the data preparation software. Further investigations 
are planned for this aspect. For the process parameter layer thickness, the investigations show that a low layer 
thickness improves the mechanical and visual properties. With regard to this process parameter the build time and 
the associated economic efficiency of the application must be considered, since with a lower layer thickness the 
build time increases drastically. At the same time, the residence time of the material has to be considered due to 
the low discharge level. The process parameter overlap between filling and contour has no significant influence 
on the mechanical properties. Since this process parameter can quickly lead to overfilling of thin-walled 
components or the contour area, this parameter should be set to the standard value of 50%. The nozzle temperature 
should be as high as possible. Nevertheless, the thermal degradation of the material must be considered. As an 
indicator for the thermal degradation, the color of the material in the resulting component can be observed. The 
guidelines for the build chamber temperature are similar. The temperature should be as high as possible. The glass 
transition temperature provides a first indication for this process parameter. It should be noted that in the case of 
a component with short layer times, the build chamber temperature should be adjusted in exceptional cases, as 
otherwise the deposited droplets will not cool sufficiently and the component will behave unstable. The following 
aspects must be observed for the filling strategy. An ideal filling is achieved with a raster angle of 45° in 
combination with a delta angle of 90°. It is important that the raster filling does not run parallel to long contours. 
Otherwise, the surface of the contour area is not exactly shaped. The investigations have shown that the heat-
affected zone below the nozzle could have an influence on the resulting mechanical properties. This influence 
cannot be specifically taken into account due to different component geometries. This is different with the 
orientation of the components in the build chamber. In the Z-direction, the mechanical properties are significantly 
lower than in the XY-direction. This anisotropy must be considered for the component orientation. 

Conclusion and Outlook 

The influence of the process parameters on the mechanical and visual properties of APF components were 
identified during the investigations. Based on the models a process parameter optimization with a maximization 
of the target parameters (tensile strength, Young's modulus and elongation at break) could be achieved. The model 
validation showed that the deviations between the predicted and the experimentally determined values for tensile 
strength and Young's modulus are 15 %. Only for the elongation at break, larger deviations occurred. The findings 
of the investigations finally result in the manufacturing guidelines for the APF process. These manufacturing 
guidelines in combination with a detailed understanding of the process should help the user of the APF technology 
to configure the process for the individual application at an early stage. 

In further investigations, the applicability of the model and the developed guidelines to other materials 
will be examined. The tendencies of the influencing variables will probably be similar. Nevertheless, the question 
is whether it is possible to adapt the model using a material-dependent factor. This could enable the early 
predictability of the resulting mechanical properties of plastic freeformed components. In addition, further 
investigations are to be carried out regarding the mechanical properties in the Z-direction. The results underline 
clear weaknesses in this build direction, which limits the maximum load of the components. A specific process 
parameter optimization, aimed at improving the mechanical properties of the Z-direction, is planned. 
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