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Abstract 

Small amounts of nanometer-sized flow aids are typically added to polymer powders 
for selective laser sintering to increase flowability. These additives reduce friction between 
particles by electrostatic repulsion, leading to better bed density and part properties. The same 
repulsion however can hinder particle coalescence in the melt, reducing part density. This study 
investigates the effect of different amounts of flow aid on flowability and coalescence. A 
polybutylene terephthalate (PBT) powder with spherical morphology, specially designed for 
selective laser sintering, is used as a base and ideal model material. The coalescence is 
monitored by hot-stage optical microscopy. It was found that with increasing amounts of flow 
aid, the flowability could be characterized by three regions; one of low flowability where the 
powder contained insufficient flow aid, followed by a sharp transition region towards a high 
flowability region, where the flow aid was most effective. Addition of flow aid impacted the 
coalescence, which was marked by an increase of the temperature at which the particles started 
to melt and flow. At the maximum concentration of 0.5 wt.-% flow aid, the melting of some 
particles was delayed, and they remained solid for longer time at temperatures beyond the 
melting temperature. The optimum amount of flow aid therefore lies in the plateau region of 
high flowability, but before the occurrence of delayed melting. 

Introduction 

Selective Laser sintering (SLS) is a primary shaping process; the properties of parts 
depend on many material- and process-based factors. One of these is the flowability of the 
powder. A key step during the LS process is the deposition of a powder layer, which is typically 
between 80 and 120 μm thick. The flowability determines to what extent powder can be 
deposited in a layer, and how densely the powder particles are packed. The density of the 
powder layer is closely related to the density of produced parts, shown for example by Schmid 
et al. [1]. To obtain dense parts with optimal mechanical properties, the powder flowability 
must be optimized. The most widely applied method to improve powder flowability is to add a 
small amount of nanometer-sized flow aid, demonstrated amongst others in [2–7]. These flow 
aids are typically a variant of fumed silica and added in quantities between 0.01 % and 0.5 % 
by weight.  

Flow aids work based on the principle of electrostatic and steric repulsion, explained in 
[8]. Without flow aid, polymer particles may cling together because of interparticle van-der-
Waals forces, which is elaborated in detail by Rumpf [9]. The presence of flow aid increases 
the interparticle distance, thereby decreasing the adhesive forces between them. On a 
macroscopic scale, this improves powder flow. The right choice of flow aid is critically 
important. Blümel et al. [7] added 0.5 wt.-% of hydrophobic and hydrophilic flow aid to high 
density polyethylene (HDPE) powder. The powder flowability was measured with a shear cell 

 806

 Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

Reviewed Paper



and by determination of the bulk density. They found that while the hydrophobic flow aid 
drastically increased the powder flow properties, the hydrophilic flow aid had no significant, or 
in the case of the bulk density, even detrimental effect. Most authors opted for hydrophobic 
flow aids and obtained their desired results. Lexow and Drummer [2] measured an increase of 
bulk density of a cryogenically ground polypropylene (PP) powder upon addition of 0.1 wt.-% 
Aerosil® 8200. The influence of varying amounts of Aerosil® R106 on the flowability of 
cryomilled HDPE and PP powders, expressed amongst others by the Hausner ratio, was 
investigated by Laumer et al. [3]. They found an optimal flowability for HDPE at 0.25 wt.-% 
flow aid concentration. Addition of more flow aid was less effective. This was attributed to 
saturation of the particle surface, and subsequent agglomeration of the flow aid itself. The same 
effect was not observed for the PP powder; a continuous increase of powder flowability up to 
concentrations of 1.0 wt.-% flow aid was reported. To improve the flowability of a 
cryogenically ground PBT copolymer powder, Arai et al. [4] added 0.1 wt.-% Aerosil® R200H. 
They observed enhanced flowability, and were able to determine that the flow aid did not have 
any effect on the thermal properties of the material. 

To achieve high density laser sintered parts, not only the flow behavior of the powder is 
important, but also the rheology and surface tension of the polymer in the melt, which is 
described by Schmid [10]. Fumed silica’s are also used as additives to influence rheology, and 
to create materials with thixotropic behavior. Even though the flow aid concentration in SLS 
materials is relatively low compared to the concentration used to influence rheology, it is 
imaginable that particle coalescence in the melt can be affected by the flow aid presence. 
Benedetti et al. summarized the usability of various evaluation methods based on different 
optical features of particles in hot-stage optical microscopy (HS-OM) [11].  The coalescence of 
polymer SLS powders has been investigated by various other researchers. The coalescence rate 
of three polyether(ether)ketone (PE(E)K) powders with different viscosities was determined by 
Berretta et al. [12], by tracking the neck formation with HS-OM. Particle coalescence was 
slower for the grades with higher viscosities, but the interpretation of the results is difficult due 
to the irregular shape of the cryomilled particles. Verbelen et al. [13] tracked the coalescence 
of different commercial polyamide-based SLS powders with HS-OM. In a later study, 
Dadbakhsh et al. [14] used HS-OM to view the coalescence of polyamide-12 powders at 
different degrees of aging. They identified a slow softening region up to the onset melting 
temperature of the polymer, followed by a fast coalescence and a subsequent molten phase 
region. Coalescence occurred slower for powders that had aged more, which was attributed to 
the increased molecular weight and associated melt viscosity due to the aging. Hejmady et al. 
[15] used a special setup to observe the coalescence of two laser sintering particles as they are
molten by laser irradiation, providing further insight to the melting and coalescence behavior
of particles during the actual laser sintering process.

HS-OM has been identified as a method to both qualitatively and quantitatively assess 
the coalescence of polymer powders. It is used in this work to assess the effect of different 
amounts of flow aid on particle coalescence of a spherical polybutylene terephthalate (PBT) 
powder. Complemented with determination of the powder flowability as expressed by the 
Hausner ratio, as well as the avalanche angle and avalanche fractal from powder rotational 
measurements, the optimal concentration can be determined. Comparable results are, according 
to the authors’ knowledge, not available in present literature.  
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Materials and Methods 

Materials. PBT TORAYCON 1200M (TORAY, Tokyo, Japan) was obtained in 
granulate form. The material did not contain any stabilizers or other additives to prevent these 
from affecting the SLS process. Hydrophobic fumed silica Aerosil® R812 flow aid (Evonik 
Ind., Essen, Germany) was obtained and used without further modification. Aerosil R812 is a 
trimethyl terminated fumed silica, and considered a good general choice for improving the 
flowability of different polymer powders. 

Powder Production. The PBT powder was produced via melt emulsification. During 
this process, the target material is melt blended in a single-screw extruder with a water-soluble 
resin. The production of the particular powder used in this study is extensively described in [16] 

Material preparation. The PBT powder was dry blended with R812 flow aid in a 
rotating mixing drum with a diameter of 200 mm. The drum shown in figures 1 and 2, was 
specially designed to facilitate mixing of two components. Each blend was mixed for 30 
minutes with a rotation speed of 60 rpm. First, a masterbatch containing 0.5 wt.-% of flow aid 
was prepared. This masterbatch was used to prepare the blends listed in table 1. The weight of 
each blend totaled 100 g.  

Table 1. Prepared blends of PBT and flow aid. 

Designation 
Flow aid 

concentration 
[wt.-%] 

Comment 

PBT_0.5 0.5 Masterbatch 
PBT_0.1 0.1 
PBT_0.05 0.05 
PBT_0.01 0.01 

PBT_0.005 0.005 
PBT_Virgin 0.0 No flow aid 

Figure 1. Schematic cross-section of the used mixing 
drum 

Figure 2. Mixing drum on mixing stage (shown here 
without lid) 

Particle size distribution. The particle size distribution was measured by dynamic light 
scattering on an LS230 (Beckman Coulter, Brea, CA, United States) instrument. Approximately 
0.1 g of powder was added to approximately 20 ml acetone and thoroughly stirred. The particle 
size was calculated based on the Fraunhofer diffraction model, for the range between 0.4–2000 
μm. 

Scanning electron microscopy. Scanning electron microscopy images were obtained 
on a JSM 7100F scanning electron microscope (JEOL, Tokyo, Japan). Samples were deposited 
on a piece of carbon tape on an aluminium SEM stub and sputter coated with a 10 nm layer of 
Pt/Pd (80/20). 
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Thermal analysis. Differential Scanning Calorimetry (DSC) measurements were 
carried out on a DSC 25 (TA Instruments, New Castle, DE, United States). All measurements 
were conducted under a nitrogen atmosphere, from 25°C to 250°C, with heating and cooling 
rates of 10°C/min. 

Powder flowability. The powder flowability as expressed by the Hausner ratio was 
determined by measurement of the powder bulk and tapped density. The bulk density was 
determined by filling a 25 ml brass cup with powder through a Carney funnel and recording the 
weight. Each powder blend was measured three times. The tapped density was determined with 
a BeDensiT3 Tap Density Volumeter (Dandong Bettersize Instruments, Liaoning, China). One 
measurement consisted of filling three measuring cylinders with 25 g of powder each. The 
cylinders were then automatically tapped 1’500 times with a frequency of two taps per second. 
The powder volume at the end of the tapping cycle divided by its weight gives the powder 
tapped density. 

The powder flowability was also evaluated with a Revolution Powder Analyzer (RPA) 
(Mercury Scientific, Newtown, CT, United States). An exact measure of 25 mL, respectively 
21.8 g powder at tapped density was added to a drum with a diameter of 50 mm. The drum was 
rotated with a speed of 0.6 rpm, while a camera recorded 384 avalanche events. Each time 
directly following an avalanche, the avalanche angle and roughness of the powder surface were 
evaluated. 

Optical microscopy. Optical microscopy was performed with a DM6 optical 
microscope (Leica Microsystems, Wetzlar, Germany) in transmitted light mode with 100 times 
magnification. For the evaluation of coalescence behavior, a THMS 600 hot stage (Linkam 
Scientific Instruments, Tadworth, United Kingdom) was installed. The following temperature 
program was used: (1) 25 – 210°C @ 50°C/min; (2) isothermal 5 min; (3) 210 – 230°C/min @ 
5°C/min; (4) isothermal 10 min. An image was acquired every four seconds. 

Results and Discussion 

Particle size and shape 
The volume-based size distribution of the starting virgin powder, measured with 

dynamic light scattering, is shown in figure 3. A typical SLS powder exhibits a particle size 
distribution that stretches from 10 to 150 μm [10]. In case of the PBT powder under 
investigation, 90% of the particle size by volume falls within this range. The powder has a D10 
of 10.0 μm, a D50 of 41.5 μm, and a D90 of 100.8 μm.  

Figure 3. Differential (black, solid line) and cumulative (blue, dashed line) size distribution of the starting PBT 
powder. 
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The particle shape and morphology was qualitatively evaluated with SEM, two images 
are shown in figures 4 and 5. The particles have a clear spherical shape. The magnified image 
in figure 5 shows that the surface of the particles is smooth, no porosity neither satellites are 
observed. As is also indicated by the small initial peak around 1 μm in the size distribution in 
figure 3, there is a considerable amount of small particles, which mainly seem to be clustered 
around the larger particles.  

Figure 4. Overview of spherical PBT particles Figure 5. Detail of PBT particles 

Thermal properties 
The first heating and cooling DSC traces of the investigated PBT and flow aid blends 

are shown in figure 6. The curves have been overlaid to emphasize any differences. The melting 
peaks in the first heating curves overlap almost perfectly, indicating that the addition of flow 
aid does not have any effect on the macroscopic melting behavior. Similarly, no significant 
effect of the presence of flow aid on the crystallization during cooling is observed. These results 
correspond well with findings from Arai et al. [4], who also did not find any difference in 
thermal behavior between PBT powders with and without 0.1 wt.-% Aerosil®RA200H flow 
aid. 

Figure 6. 1st Heating and cooling DSC traces of PBT with different amounts of flow aid. 
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The bulk, free-flowing density of the powder as a function of the amount of flow aid is 
shown in figure 7. The virgin powder with no flow aid has a low bulk density, indicative of a 
poorly flowing powder. Addition of 0.005 and 0.01 wt.-% flow aid does not contribute much 
to increasing density. When the powder contains 0.05 wt.-% flow aid however, a sharp increase 
of the density is observed. Flow aid concentrations above 0.05 wt.-% only slightly improve the 
bulk density.  

Figure 7. Powder bulk, free-flowing density for 
powders with different flow aid concentration. Dashed 
lines between data points are to guide the eye 

Figure 8. Hausner Ratio for powders with different 
flow aid concentration. Dashed lines between data 
points are to guide the eye 

Similar behavior can be observed in the development of the Hausner ratio with different 
amounts of flow aid, shown in figure 8. Two plateaus of low and high flowability exist, with a 
narrow transition region in between. The Hausner ratio shows the same behavior as the bulk 
density as it combines the bulk density with the tapped density. Even though the powder with 
0.05 wt.-% or more flow aid packs more densely in its free-flowing state than powder with no 
or low amounts of flow aid, the size and shape of the particles is the same for all powders. The 
tapped density depends on these two factors. After a sufficient amount of taps, the tapped 
density for a powder with the same size and shape of particles, is the same.  

(a) 
PBT_Virgin 

(b) 
PBT_0.005 

(c) 
PBT_0.01 

(d) 
PBT_0.05 

(e) 
PBT_0.1 

(f) 
PBT_0.5 

Figure 9. Snapshots of powders in the Revolution Powder Analyzer (RPA) drum. 

The powder flowability was also investigated in a Revolution Powder Analyzer (RPA). 
The RPA consists of a rotating drum with transparent lids, through which the powder flow is 
evaluated with a digital camera and image recognition software. Amongst other parameters, the 
RPA allows for the determination of the powder avalanche angle A and the avalanche fractal 
fA. The avalanche angle represents the resistance of the powder to flow, which strongly depends 
on the interparticle friction. The smoothness of the powder surface after an avalanche is 
expressed by the surface fractal, which is not only governed by the interparticle fraction, but 
also dependent on the particle size and geometry. Detailed investigations regarding powder 

Powder Flowability 
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characteristics and respective flow properties were carried out by Amado et al. [17] and Vetterli 
[18]. 

Figure 9 shows snapshots of the powder as seen by the camera through the drum during 
a measurement. With increasing flow aid amount, the powder surface transitions from very 
irregular for blends containing 0.01 wt.-% and less flow aid (figure 9a-c), to smooth for blends 
containing more than 0.01 wt.-% (figure 9d-f). The powder also sticks to the surface all around 
the sides of the drum for blends with equal or less than 0.01 wt.-% flow aid. Visually, it is 
already possible to distinguish between two flow regimes; one with poor powder flowability 
where the flow aid concentration is 0.01 wt.-% or less, and one with better powder flowability 
at higher amounts of flow aid.  

Figure 10. Average avalanche angle for powders with 
different flow aid concentration. Dashed lines between 
data points are to guide the eye. The shaded region 
indicates the width of the avalanche angle distribution 
as expressed by its standard deviation. 

Figure 11. Average surface fractal for powders with 
different flow aid concentration. Dashed lines between 
data points are to guide the eye. The shaded region 
indicates the width of the surface fractal distribution 
as expressed by its standard deviation. 

Both the avalanche angle and surface fractal, shown in figures 10 and 11 respectively, 
show a similar trend in dependence of flow aid concentration as the Hausner ratio. In addition 
to the presence of two plateaus of low and high flowability with a transition region in between, 
the consistency of powder flow gradually increases with increasing flow aid concentration. This 
is indicated by the shaded region in figures 10 and 11. The region width is equal to the standard 
deviation of the avalanche angle and fractal distributions. A powder flows better and more 
consistently when these distributions are narrow. The high avalanche angle for PBT_0.01 shows 
essentially the same cohesiveness, initial resistance to powder flow as PBT_Virgin without flow 
aid. The associated avalanche fractal however indicates that the powder surface is smoother for 
PBT_0.01, showing that the flow aid is mainly acting when the powder is in movement. The 
gradual decrease of the surface fractal standard deviation with increasing amounts of flow aid 
very neatly describes its effect on the powder flowability. 

The existence of the two flowability plateaus and transition region can be explained by 
the working principle of flow aids. As discussed in the introduction, flow aids reduce friction 
between particles by electrostatic repulsion. There is an optimal flow aid concentration, close 
to the point where the particle surface is saturated. Less flow aid means the particles still rub 
against their own surfaces during flow, increasing friction and decreasing bulk density. More 
flow aid is not contributing to better flowability, because the particle surface is already 
saturated. This behavior is very similar to what happens with the surface tension of a liquid 
when a surfactant is added, until a certain critical micelle concentration is reached, described in 
[8,19]. 
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Particle Coalescence 
The coalescence of powder particles was tracked with HS-OM. The first column of 

figure 12 shows micrographs of the particles at 210°C, at the start of the measurement. 
Micrographs of the powders at increasing temperatures are shown in the subsequent columns. 
Compared to all other powders that contain flow aid, the particles of the virgin blend start to 
melt and coalesce at the lowest temperature.  
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Figure 12. Micrographs of PBT powders during the hot-stage optical microscopy measurement. The scale 
bar in the bottom left of each micrograph is equal to 200 μm. 
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Already at 224°C, almost all particles have lost their spherical shape, and have completely 
transitioned into the molten state. At this temperature, coalescence has also progressed 
considerably for the PBT_0.005 powder, yet some non-molten particles remain. At increasing 
amounts of flow aid, smaller amounts of powder are flowing and coalescing. 

The first melting curves of the DSC measurements show no effect of the flow aid on the 
onset of melting. This however is in contrast to the observations in HS-OM. The powders should 
all melt at the same temperature, but they do not seem to do so. There are two possible 
explanations for this effect. One reason could be differences in heat transfer to the particles. 
The particles are laying on a glass slide, heat is only supplied from the bottom through the slide. 
Since the particles are spherical, the contact area is quite small. For the smallest particles, this 
is no limiting factor. As can be observed, these are always the first to melt. If however a large 
particle with a much lower surface-to-volume ratio, is laying by itself, untouched by other, 
smaller particles, it can take a reasonable time before enough heat is transferred to melt it 
completely. Addition of flow aid separates particles from each other, which may explain why 
PBT_Virgin and PBT_0.005 melt relatively quickly; their particles are clustered together. 
Powders with higher amounts of flow aid are more dispersed, and therefore need more time and 
temperature to melt. 

One observation that seems to contradict this explanation is the melting behavior of 
PBT_0.5 in the bottom row of figure 12. At 230°C, a considerable amount of non-molten 
particles is still present. Some of these are surrounded by polymer melt, which should facilitate 
heat transfer, yet they melt only after several minutes at 230°C. At this temperature, no gradual 
melting is observed, but the particles seem to burst and disappear almost instantaneously. In 
this case, the flow aid can act as a thermal insulator. In sufficient quantities, the flow aid 
particles form a dense network with a structure comparable to the structure of aerogels. As 
described in [20], aerogels have an extremely low thermal conductivity. To investigate the 
amount of flow aid on the surface of particles, SEM images were acquired of PBT_Virgin, 
PBT_0.05, and PBT_0.5. The images are shown in figure 13. 

(a) 
PBT_Virgin 

(b) 
PBT_0.05 

(c) 
PBT_0.5 

Figure 13. SEM images at 20’000x magnification of virgin and blended PBT powders. Length of the scale 
bar is equal to 1 μm 

As expected, no flow aid particles are visible on the surface of PBT_Virgin particles. 
Upon close inspection, flow aid particles are present in PBT_0.05, but they do not saturate the 
surface. For PBT_0.5 however, the flow aid completely covers the surface of the particles. 
Additionally, the flow aid is present in the form of aggregates between the particles. This 
confirms the similarity of the flow aid nanopowder and an aerogel in terms of morphology. 

The delayed melting is demonstrated by PBT_0.5 only. The other blends melt more 
gradually, even though that tends to happen at increasing temperatures with increasing flow aid 
concentration. In terms of powder flowability, at 0.1 and 0.5 wt.-% a plateau is reached, after 
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which it is unlikely to see drastic improvements. This indicates the particle surface starts to be 
saturated with flow aid only at these high amounts. PBT_0.1 does not exhibit delayed melting, 
but does show show optimal flowability in terms of Hausner ratio, avalanche angle, and 
avalanche fractal. The optimal flow aid concentration likely lies around this point. 

Conclusions and Outlook 

The effect of different amounts of flow aid on the flowability and coalescence of a PBT 
polymer powder consisting of spherical particles was determined. The flowability as a function 
of flow aid concentration can be divided into three regions; the first consists of a plateau of low 
flowability where there is no measurable effect of flow aid addition, up to amounts of 
approximately 0.01 wt.-%. This is followed by a sharp transition region over the range between 
0.01 and 0.05 wt.-% after which another plateau region of high flowability for concentrations 
higher than 0.1 wt.-% is reached. Addition of even the smallest amount of flow aid shifts the 
the coalescence of particles to a higher temperature by approximately 2°C. With increasing 
amounts of flow aid, coalescence is delayed further. A special case occurs for PBT with 0.5 
wt.-% flow aid. Some particles remain solid at high temperatures, disappearing almost 
instantaneously after a few minutes. Both the flowability and melting behaviors show analogies 
with surfactant behavior. Mechanisms that hold for surfactants may therefore be applied to 
systems containing flow aids, which can be helpful to determine the optimal amount of flow 
aid to add to a powder. 

The current work summarized the results from initial investigations into powder flow 
and coalescence behavior as a function of flow aid concentration. There are multiple 
possibilities to extend the study to gain a better understanding of the interplay between powders 
and flow aids. An obvious start is to investigate the effect of flow aids with different chemistry. 
The Aerosil ® R 812 used in this study is a general-purpose hydrophobic flow aid, but there are 
many other variants that are likely to have a different influence on powder coalescence and 
flow. To increase the resolution and validity of the results of the current study, it is necessary 
to investigate additional blends with different flow aid concentrations. The most interesting 
blends lie in the flowability transition region between 0.01 and 0.05 wt. 

Although it is possible to distinguish the differences in flowing behavior of powders 
containing different amounts of flow aid visually, quantification based on the current results is 
difficult. The particle size is related to the observed melting temperature. That also means that 
in order to evaluate the results properly, only particles with similar size should be considered. 
This was not possible with the current measurements, but it is possible to track the coalescence 
of two similar particles at higher magnification, similar to the method of Berretta et al. [12]. 
These measurements can also be done at lower heating rates such as 0.5°C/min. Coalescence 
then occurs quasi-isothermally, and can be related to existing models for the coalescence of two 
viscoelastic particles. In this way, the dominating effects can be determined and help to explain 
the observed behavior. 

Finally, it is important to establish the link between the results measured in the 
laboratory and the performance of the powder in the SLS process. This was not possible in the 
current study due to the limited amount of available material. Solutions that allow for the 
evaluation of part density also for small amounts of powder are currently being developed, and 
will be used in further research.  
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