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Abstract 

Due to the great popularity of the Fused Deposition Modeling (FDM) process, the material market is 
growing. In particular, processing of high-temperature materials such as PEEK is demanding. 
The aim of the investigations is to test different PEEK materials regarding their processability in the FDM process. 
An unreinforced PEEK, a thermally conductive PEEK as well as a carbon fiber reinforced PEEK are investigated. 
The processability is assessed with the help of the weld seam strength. The assessment of the weld seam strength 
is carried out by building tests. For this purpose, a special method developed at the DMRC is used. In addition, a 
welding width factor between the strands deposited on each other is calculated and compared. Finally, a welding 
factor is determined to enable the comparison between the different materials. With this procedure, the influences 
of varying nozzle and build chamber temperatures on the achievable weld seam strengths are evaluated. 

Introduction 

One of the most commonly used additive manufacturing processes is the Fused Deposition Modeling 
(FDM) [1]. Due to the great popularity of the FDM process, the material market is growing with new materials. 
There is a large number of plastics that can be processed using the FDM process. Additives can be mixed with 
the materials in order to influence the basic properties as well as certain material properties such as fire resistance, 
chemical resistance, fracture resistance or heat resistance. In principle, almost all thermoplastics are suitable for 
the FDM process. Especially PLA, ABS, polyimides or PA6, for example, are frequently used. The demand for 
new material concepts for the production of highly stressed components has driven forward the research of 
additive manufactured components made out of high-performance plastics. This can be seen as an example in 
investigations of polyether ether ketone (PEEK) as an application in gear technology [2] or for medical 
applications, where prostheses were manufactured using PEEK [3]. Due to the high material price of PEEK, it is 
important to aim for a waste-free production. Since FDM printers have no distribution systems or sprues compared 
to injection molding, they have an advantage in this field [4]. Therefore, in this publication the processability of 
different PEEK materials (injection molding grades) in the FDM process is investigated with regard to the weld 
seam strength. 

State of the Art 

The components are generated by a heated thermoplastic strand, which is applied layer by layer in a 
defined process. The thermoplastic filament is pulled into the FDM head by motors, plastified there and deposited 
through a nozzle onto the building platform or on an existing structure in a defined way through a nozzle [5]. The 
FDM process is an extrusion process [6]. The protected brand name FDM [7] is often synonymous with the term 
FLM (Fused Layer Modelling) or FFF (Fused Filament Fabrication) [8] [9]. 
The construction of an FDM machine consists of an FDM head and a building platform, which are located in a 
heated build chamber [8]. The filament is continuously fed into the FDM head and the material is melted by an 
electric heating element and extruded through a nozzle. After a layer has been applied, the molten material 
solidifies [9]. Due to the heat conduction into the previously deposited layer a thermal fusion results and a further 
component layer is formed [10]. The building platform is then lowered by one layer thickness and the next layer 
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is applied. This process is repeated until the component is completed [8]. Factors which influence the FDM build 
process according to [11] include the nozzle diameter, nozzle temperature, build chamber temperature, material 
viscosity and working pressure during material feed. The adhesion between the strands and layers in the FDM 
process is achieved by temperature-driven molecular diffusion [12]. A good bonding of the individual 
layers/strands is favoured by a high nozzle temperature, since the temperature increase results in an improved 
diffusion of the individual molecule chains into each other [13].  
PEEK is a thermoplastic semi-crystalline material which belongs to the group of high-performance plastics [14]. 
The mechanical properties of the material include high tensile strength, flexural strength and stiffness. PEEK is 
used in many different fields. These include aerospace, military, machine and automotive, electrical and medical 
industries [15]. For this reason, the processing of PEEK is also of particular interest for the FDM process. 

Experimental Approach and Testing Methods 

Three different PEEK materials are studied in the investigations. An unreinforced PEEK 
(VESTAKEEP 1), a thermally conductive PEEK (VESTAKEEP 2) and a carbon fiber reinforced 
PEEK (VESTAKEEP 3). 

For the experimental investigation of different PEEK materials in the FDM process, the FDM printer must 
fulfill various requirements. Diverse challenges occur during the processing of PEEK materials in the FDM 
process. A high melting temperature of about 343 °C makes processing more difficult compared to thermoplastics 
with a lower melting point [2]. In addition, the semi-crystalline behavior leads to material shrinkage which results 
in warpage during processing. These challenges lead to different requirements for the FDM system. A heated 
build chamber is required in order to limit the shrinkage behavior of the material. Stresses caused by warpage can 
be compensated by keeping the temperature difference between the heated material and the build chamber as 
small as possible. In addition, nozzle temperatures above the PEEK melting temperature are required. Another 
requirement is a heated bed to ensure good adhesion of the first layer. The mechanical testing samples were 
printed using the Gewo HTP260. The technical data can be found in the following table. 

Table 1: Technical data Gewo HTP 260 
Technical data Gewo HTP 260 

Max. nozzle temperature / °C 450 
Max. build chamber temperature / °C 260 

Max. heating bed temperature / °C 270 
Build envelope / mm 350 x 150 x 165 

The aim of the experimental investigations is to investigate the processability of PEEK materials with 
regard to the weld strength. In order to assess the suitability of these materials for the use in the FDM process, 
the weld quality is determined. For this purpose, a method developed by [16] is used. The method is tested whether 
it is suitable for high-temperature materials. For this purpose, test specimens with single-stranded areas are built. 
The used component (see Figure 1) consists of three elements which are connected by a bridge to improve stability 
during the building process. In addition, the groove in the lower part of the component should prevent warpage 
of the components due to material shrinkage. 
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Figure 1: Process chain to determine the weld seam strength 

After manufacturing the components, rectangular areas are cut out of the component and then the geometry 
of the tensile bar is milled out. The tensile bar geometry for determining the tensile properties was selected 
according to DIN EN ISO 527-3 with type 1B specimens. Afterwards, the weld strength between the single layers 
can be determined with the help of tensile tests. 
In order to ensure comparability between the different materials, a welding factor is determined. The welding 
factor is the weld seam strength in relation to the tensile strength of the used filament (according to equation 1). 

=
  

  tensile 
(1) 

The weld seam strength is the maximum force resulting from the tensile tests in relation to the real weld 
area. To determine the real weld area, a small piece is separated from the tensile test specimen and embedded in 
resin. After grinding the surface, the width of the weld seam can be measured with the help of a macroscope.
With the weld seam width determined by using this method and the known weld seam length, the actual welding 
area is calculated. The following illustration (Figure 2) shows a schematic representation of the weld seam and a 
microsection taken from a section of a milled tensile bar. 
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Figure 2: Left: schematic illustration of the weld seam / right: microsection of a weld seam 
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and would therefore heat the heating bed as well. The minimum nozzle temperature used is 430 °C and the 
maximum temperature is 450 °C. The temperature of the build chamber has been varied between 150 °C and 
250 °C in order to cover a temperature range as wide as possible. Thus, an influence of the build chamber 
temperature on the weld seam strength of semi-crystalline materials can be detected. The combination of the 
individual test points is shown in the following table. 

Table 2: Overview of the test points 

Build chamber temperature 
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150 °C 200 °C 250 °C 

430 °C X x 

440 °C x 

450 °C x x 

The tests are carried out with the following building parameters. The VESTAKEEP 1 is processed with a 
0.4 mm nozzle. The layer height is 0.25 mm and the strand width is 0.5 mm. Both the VESTAKEEP 2 and the 
VESTAKEEP 3 show insufficient material extrusion with a 0.4 mm nozzle. The nozzle also clogges during 
processing. For this reason, the nozzle diameter for the thermally conductive and carbon fiber-reinforced material 
has been adjusted to 0.6 mm. This modification leads to an adjustment of the layer height to 0.375 mm and the 
layer width to 0.75 mm. The printing speed is 30 mm/s for all three materials. The filaments are dried before 
processing 

Results and Material Comparison 

With the help of the test method [16], the three different PEEK materials are evaluated and finally 
compared with each other. Figure 3 shows the analysis of the weld seam strength of VESTAKEEP 1.  

Figure 3: Analysis of the weld seam strength VESTAKEEP 1 
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 The diagram on the left side of Figure 3 shows the evaluation of the weld seam strength (the tensile 
strength in relation to the actual welding area). The unreinforced PEEK shows strength-increasing influences of 
the nozzle temperature and the build chamber temperature. The weld seam strength at the low nozzle temperature 
of 430 °C increases from 19 MPa to 73.5 MPa due to an increasing temperature of the build chamber. The 
difference of the weld seam strength is also significant at a nozzle temperature of 450 °C. In this case the weld 
seam strength is increased from 27 MPa at 150 °C build chamber temperature to 88 MPa at a build chamber 
temperature of 250 °C. In summary, the results show that a build chamber temperature of 250 °C is recommended 
in order to achieve high weld seam strengths. The analysis of the microsections (on the right side of Figure 3) 
shows that a phase boundary occurs between the strands at a build chamber temperature of 150 °C. The phase 
boundary indicates that the heat supply was too low and that the strands could not be sufficiently welded together. 
This explains the low weld seam strength compared to the weld seam strength at a higher build chamber 
temperature. At 200 °C, this phase boundary is not visible. The significantly lower strength compared to 250 °C 
build chamber temperature probably indicates an incompletely formed molecular compound. At 250 °C, there are 
also no phase boundaries between the strands detectable. 

 The comparison of the welding factors in Figure 4 shows that high welding factors can be achieved, 
especially at a build chamber temperature of 250 °C. In relation to the base material strength of the filament, a 
welding factor of 0.8 is obtained at the low nozzle temperature of 430 °C. At a nozzle temperature of 450 °C, the 
weld seam strength is even close to the base material strength. This shows a good processability of the material 
with regard to weld seam strength. 
 
 The thermally conductive PEEK shows an increase in weld seam strength from a build chamber 
temperature of 200 °C to 250 °C (Figure 5). The highest weld seam strengths are achieved at a build chamber 
temperature of 250 °C. An increase of the nozzle temperature from 430 °C (60 MPa) to 450 °C (61 MPa) does 
not significantly increase the strength. 
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The comparison of the weld seam formation shows that, in contrast to the VESTAKEEP 1 (Figure 3), no 
phase boundaries are formed between the strands at a low build chamber temperature of 150 °C. All test points 
have no phase boundaries. This can be explained by the increased thermal conductivity which supports the 
bonding of the strands. Nevertheless, the thermally conductive particles have a reducing influence on the weld 
seam strength, which can be seen in the lower strengths compared to VESTAKEEP 1. The base material strength 
of the filament is slightly higher than the base material strength of the VESTAKEEP 1. The resulting welding 
factors are shown in the right part of Figure 5. At a build chamber temperature of 250 °C, no significant difference 
of the welding factor between the nozzle temperatures can be detected for the thermally conductive material. 

 
 In the case of carbon fiber reinforced PEEK, at the minimum build chamber temperature of 150 °C no 
weld seam strength of the tensile test specimens can be determined. A preparation of the test specimens was not 
possible and the specimens broke while milling the tensile specimen geometry. This leads to the conclusion that 
at this temperature setting the weld seams cannot form sufficiently. 

 
Figure 6: Analysis of the weld seam strength (left) and the welding factor (right) VESTAKEEP 3 

 Figure 6 shows the weld seam strengths and the welding factors of the VESTAKEEP 3. The low weld 
strength at a build chamber temperature of 200 °C confirms the poor weld seam formation at the minimum 
temperature combinations. It is significantly lower than the weld strength of the other PEEK materials. The 
insufficient weld seam formation can also be demonstrated by the microsections shown in the left diagram. At 
the build chamber temperature of 200 °C, phase boundary lines are formed between the strands, which explains 
the low weld strength and the low welding factor at this test point. Only at a build chamber temperature of 250 °C 
no phase boundaries between the strands can be observed. Therefore, a build chamber temperature of 250 °C is 
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Figure 5: Analysis of the weld seam strength (left) and the welding factor (right) VESTAKEEP 2 
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necessary to ensure a complete formation of the weld seams. The base material strength of the filament is more 
than twice as high as the base material strength of the other two PEEK materials. The increase in strength is due 
to the carbon fibers. The welding factors calculated from the weld seam strength and base material strength are 
accordingly lower than the VESTAKEEP 1 as well as the VESTAKEEP 2. The welding factors can be improved 
by increasing the temperature in the build chamber. While the weld seam strength at the nozzle temperature of 
450 °C is higher than the weld seam strength of the thermally conductive PEEK, the high base material tensile 
strength results in smaller welding factors of VESTAKEEP 3. 
 
 

Conclusion and Outlook 
 

 In summary, it can be concluded that the different PEEK materials can be processed in the FDM process. 
In addition, it was shown that the method developed by [16] can also be applied to high-temperature materials 
such as PEEK. An increased build chamber temperature shows a positive influence on the weld seam strengths. 
In any case, the weld seam strength is increased at the same nozzle temperature by increasing the temperature of 
the build chamber. An increase in the nozzle temperature also causes an increase in strength. All in all, the highest 
weld strengths are achieved at the maximum nozzle temperature of 450 °C and the maximum build chamber 
temperature of 250 °C. While the base material strengths of the VESTAKEEP 3 are higher in comparison to 
VESTAKEEP 1 due to the additives (fibers are oriented in the deposition direction of the strand), the weld seam 
strengths are lower compared to the unreinforced PEEK. As a combination of this effect, the welding factors of 
the reinforced/modified PEEKs are lower than those of the VESTAKEEP 1. The highest welding factors can be 
achieved with the VESTAKEEP 1. A reduction in the strength of the materials due to a high nozzle temperature 
cannot be determined. 
 For further analysis of the processability, investigations of the shrinkage and warpage behavior have to be 
carried out. In addition, it will be investigated how the process parameters affect the shrinkage and warpage 
behavior in order to determine optimized parameters for the materials. Furthermore, the materials should be 
optimized and adapted.  
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