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Abstract

An additive manufacturing (AM) approach, via laser direct deposition, is investigated in printing 
transparent magnesium aluminate spinel (MAS) ceramics. Using AM, traditionally difficult or 
expensive to manufacture shapes, such as optical lenses, can be rapidly manufactured to near net
shape, reducing time consuming and expensive post processing requirements. The transparency of 
MAS ceramics is highly dependent on the microstructure, with porosity and microcracking having 
the largest effect on the transparency of fabricated parts. With high localized heat inherent in the 
laser deposition process, the microstructure of ceramic parts can be controlled by adjusting 
processing parameters. In this study, thin wall MAS structures were fabricated by varying 
processing parameters. Processing parameters including laser scan speed and laser power had a
large influence on the part quality. To fabricate transparent magnesium aluminate spinel ceramics 
with high mechanical properties, the effects of processing parameters on part porosity, density,
and microstructure were studied. Dense MAS parts were successfully fabricated through the laser 
direct deposition process. Low scan speed and high laser power showed the most promising results 
in fabricating MAS parts of low porosity. Using a low powder flow rates of 0.58 g/min, a relative 
density of nearly 98% was achieved. Directional cooling through the substrate and from the 
powder conveying gas led to columnar grain growth at a tilt angle from the build direction. The 
primary defects of fabricated MAS ceramics were found to be residual porosity and microcracking, 
which negatively affected part transparency and mechanical properties. Typical microcracking 
patterns included transverse and longitudinal cracking, with longitudinal cracks being more 
prevalent due to the existence of columnar grains and intergranular fracture mode. A preliminary
study demonstrated that a certain degree of transparency was achieved in additively manufactured 
MAS ceramic parts via laser direct deposition.

Keywords: Transparent ceramics, Magnesium aluminate spinel, Laser direct deposition, Additive 
manufacturing

Introduction

Transparent ceramics have many useful applications including transparent armor, lenses,
and other optical elements. Among them, magnesium aluminate spinel (MAS) ceramics are of
particular interest due to high in-line transmittance [1] and the highest hardness compared to other 
transparent materials [2], along with other desirable properties including cubic crystalline 
structure, which is optically isotropic and has high transmission values through a wide variety of 
grain sizes [3]. Non-cubic polycrystalline ceramics, such as α-alumina, are much more difficult to 
manufacture with high transparency due to birefringent nature, where light is scattered by grain 
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boundaries [4], and non-cubic polycrystalline ceramics must have sub-micrometer grain size to be 
transparent [5]. In particular, considering the challenges still encountered in controlling grain size 
and orientation via additive manufacturing (AM) [6], cubic polycrystalline ceramics, including 
MAS, work as a better alternative in fabrication of transparent parts over non-cubic polycrystalline 
ceramics for the laser direct deposition process described in this paper.

Previous studies showed that a major challenge of laser deposition-based AM was the 
difficulty in fabricating fully dense parts due to residual porosity. Porosity negatively affects the 
optical properties of transparent ceramics through radiation scattering mechanisms [5-6]. Residual 
porosity is the main cause of reduced transparency of fabricated parts, especially in the visible and 
ultraviolet range [9]. Depending on the number of pores and void size, fabricated parts can either
exhibit opaque or translucent characteristics instead of true transparency. If pore size is close to 
the optical wavelength, transmittance through the ceramic is at a minimum, with small pores 
showing much less optical scattering than larger pores [10]. To be transparent, materials must have 
a residual porosity of <0.1% with pore sizes less than 100nm [1]. To have very high-glass like
transmittance, residual porosity must be further reduced to <0.01% [11]. Porosity formation is
highly process dependent; by adjusting processing parameters, the prevalence and size of pores 
can be affected to a large extent. Mahamood et al. [12] found that laser power and scan speed 
played significant roles in residual porosity. It was shown that with increased laser power, and 
decreased scan speed, porosity was reduced. Porosity-free Ti6Al4V parts could be obtained at a 
laser power of 800 W and a scan speed of 5 mm/min fabricated by laser metal deposition. Ning et 
al. [13] found that using an ultrasonic vibration table, porosity was significantly reduced for 
Inconel 718 parts fabricated with the laser engineered net shaping process. This was attributed to 
the acoustic streaming and cavitation effect caused by ultrasonic vibrations.

In addition to porosity, microstructural characterization and control of resultant 
microcracking, grain size, and grain distribution are very important due to the potential impacts 
they have on transparency and mechanical properties of fabricated parts. Cracks severely weaken 
the mechanical properties and negatively affect the transparency of parts. Therefore, research work 
has been done to minimize or eliminate process-induced cracks as much as possible. Niu et al. [14]
found that crack formation and prevalence was significantly affected by layer thickness for pure 
alumina structures fabricated with laser engineered net shaping. In this study, it was found that 
crack prevalence significantly decreased with increasing layer thickness, and at layer thickness of 
0.8 mm and above, nearly crack-free specimens were produced. In a related study, Niu et al. [15]
found that increasing laser scan speed decreased the number of cracks in pure alumina ceramics 
produced by laser engineered net shaping, and a scan speeds greater than 700 mm/min produced 
crack-free structures. This result was attributed to increased scan speed decreasing thermal stress 
and increasing fracture strength. Inclusion of ultrasonic-vibration during laser engineered net 
shaping of alumina-zirconia parts was studied by Hu et al. [16]. It was found that crack initiation 
and propagation were suppressed due to the addition of ultrasonic vibration, which was primarily 
attributed to grain refinement and reduced thermal stress. Additional benefits of using ultrasonic 
vibration during fabrication were increased mechanical properties including microhardness, wear 
resistance, and compressive strength. Balla et al. [17] found that alumina ceramics fabricated with 
laser engineered net shaping showed anisotropic mechanical properties due to columnar grain 
solidification along the build direction, with marginal increases in strength after additional high-
heat treatment. Niu et al [18] found that columnar grains in pure alumina ceramics produced by 
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laser engineered net shaping are typically larger in ceramics produced by sintering methods, and 
metals prepared with the same method. It was proposed that a primary reason for this was due to 
the low thermal conductivity of ceramics causing heat accumulation during fabrication. 

With a focus on transparent ceramics, the goal of this work is to study the effects of 
processing parameters and powder precursors on part residual porosity and microstructure as well 
as investigate the viability of laser direct deposition for MAS. Due to the critical role that porosity 
plays in transparency of these ceramics, the effect of processing conditions on resultant porosity 
was a key focus in this paper. While there has been considerable work on AM of non-transparent 
ceramics via selective laser melting (SLM) [19]–[22] and laser engineered net shaping [16], [18], 
[23], [24], there is a lack of work on transparent ceramics, including MAS. This could be attributed 
to difficulties in additively manufacturing MAS ceramics due to process related porosity and 
cracking. Therefore, it is necessary to characterize the microstructure of direct laser deposited 
MAS ceramics and determine which processing conditions mostly affect residual porosity on the 
fabricated parts. 

Experimental Procedure

2.1 Powder Preparation

The materials in this study included MgO powders purchased from Sigma-Aldrich (Part 
No. 342793) with a purity greater than 99% and average particle sizes less than 44 μm. The MgO
powders were used with Al2O3 powder from Almatis (A3500 UG) with a purity of greater than 
99.5% and D-50 particle size of about 2.2 μm. An excellent flowability was observed for the 
selected powders during the fabrication processes in this study. Following the stoichiometric ratio 
of MAS, the powder was first mixed in a ball mill for two hours using alumina grinding media and 
acetone solvent. Acetone solvent was removed with a Buchi R124 rotary evaporator. Following 
the rotary evaporation, the powder was calcined with forced air flow for eight hours in a Lindberg 
furnace at 600 °C to burn out any organic contamination, especially residual acetone and dehydrate 
the MgO powder.

It is worth noting that in this study, the MAS ceramics were directly synthesized from the
Al2O3-MgO powder mixtures via melt-grown methods during laser direct deposition. This method 
of synthesis was chosen due to the difficulties in purchasing commercially available MAS powders 
that showed consistent and repeatable flowability required in the powder feeding process for laser 
deposition in this study. Therefore, alumina and magnesia powders that showed good flowability 
were first chosen and mixed as described previously. Due to low availability of spinel powders, 
options are very limited with respect to particle shape and size, both of which significantly 
influence how powders will flow in the powder feeding processes. Preliminary studies were
performed using the MAS powder from Sigma-Aldrich with an average particle size of < 50 nm. 
Testing with this powder proved the difficulty of maintaining a consistent powder flow, which
resulted in very poor deposition quality, as depicted in Figure 1. In addition to the improved 
flowability needed in powder feeding processes, the synthesis method used in this study showed 
greater potentials in reducing the manufacturing costs, considering the availability of magnesia 
and alumina powders separately. In contrast, commercially available spinel powders are 
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commonly more expensive and difficult to obtain at the specific stoichiometric composition for 
MAS.

Figure 1: Image showing poor deposition quality of commercially available MAS powders due to 
inconsistent powder flow, which illustrates the main benefit of the laser-melting method of spinel 
synthesis from magnesia and alumina powder mixtures.

It has also been observed that a potential issue with this synthesis process was related to
MgO, which is a hygroscopic substance and readily reacts with water vapor in the air to form 
magnesium hydroxide (Mg(OH)2). If the powder was exposed to moisture before processing, the 
flowability of the powder was seen to be severely limited, making it difficult to accurately control 
the powder flow rate. Hydrated powder may introduce additional gasses into laser processing, thus 
increasing residual porosity in fabricated parts. Decomposition of Mg(OH)2 occurs at temperatures 
greater than 450 °C [27], [28], thus requiring calcination immediately prior laser deposition. This 
necessitates the need of careful preparation of Al2O3-MgO powder mixtures with a burn-out 
procedure added in this study. 

2.2 Experimental Setup and Characterization

CoorsTek AD-998 alumina substrates with 99.8% purity were used in this study for thermal 
expansion compatibility with deposited MAS. The laser direct deposition setup used in this study 
is shown in Figure 2 and includes a Convergent Energy Arrow Ultimate CO2 laser with maximum 
continuous wave (CW) output of 1.7 kW at 10.6 μm wavelength. The alumina substrate was 
mounted onto a 3-axis motorized table for positioning and movement. Powder delivery was 
controlled with a Powder Motion Labs X2W powder feeder and controller exhibiting a feed rate 
repeatability of less than 1%. Argon inert gas was used to feed the prepared powder mixture at a 
flow rate of 3 L/min. A 1.6 mm inner diameter alumina tube was used to guide the powder into 
the melt pool parallel to the scan direction and at an angle from the substrate.
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Figure 2: A schematic diagram of the experimental setup for laser direct deposition

The processing parameters used for this study are summarized in Table 1. Laser spot size 
was maintained at a constant diameter of 2.5 mm in this study. Parametric studies were performed 
by varying laser power and scan speed to study their effects on the printed ceramic parts. Thin-
wall structures were built using a reciprocal scanning motion. After each track, the laser head 
would increment in the z-direction by Δz, which was equivalent to the layer thickness. 

Table 1: Process parameters used in this study

Laser Power (W) 275, 485
Laser Spot Size (mm) 2.5
Scan Speed (mm/minute) 1000, 2000, 3000, 4000, 5000

The printed thin wall samples were then sectioned and polished for microstructural 
characterization. The images of the polished samples were captured using a Hirox KH-8700 digital 
microscope. Due to limitations in the field of view of the optical microscope, image stitching was 
performed in Fiji software using an image stitching plugin [29]. Due to the variations in processing 
conditions for the top and bottom layers, the middle sectioned were analyzed to obtain the typical 
microstructural characteristics. ImageJ software was used to analyze the porosity area of the 
fabricated MAS samples, and Archimedes’ method was used for the density analysis of as-
fabricated thin wall structures. To reveal the typical grain size and distribution, the polished 
structures were thermally etched in accordance with the guidelines in the ASM Handbook Volume 
9 [30], at 1400 °C for 10 minutes. 

 911

IPo;;:r ~iv::; 1- - - -
System I 

1 Beam Delive1y 

Argon 

I Powder 
Convey ing 

r 
I 
I 
I 

L _system 

Powder 1 

Feeder I 
Powder 

Feed Tuber 

Powder 
Delive1y 
Nozzle ---Deposition 

Chamber 

Laser System 
----1 

CO2 Laser Generator 

Laser Power 
Supply ---, I Laser Focusing I 

Lens & Z-axis 
Positioning I 

Gas 
Mixer 

Laser Chiller 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L~- ..l X-Y Positioning Table 



Results and Discussion

3.1 Microstructure Characteristics of MAS Samples

Figure 3 shows the typical microstructure characteristics observed in the printed MAS 
samples after thermal etching. Columnar grains were primarily observed for MAS samples 
fabricated by laser direct deposition. Figure 3B shows the cross-sectional view of the whole sample 
and highlights areas taken for closer microstructural examination. Figure 3A shows the 
microstructure of a region deposited near the substrate. Initially deposited layers exhibited 
columnar grains grown at a tilt angle of approximately 20 degrees from the build direction. This 
was mainly due to the solidification principal of columnar grain growth occurring in the orientation 
of thermal gradients, opposite to the direction of heat flow, where rapid cooling rates are present 
[17]. The 20-degree grain orientation with respect to the build direction was attributed to the 
primary cooling mechanism being conducted through the substrate, with lesser convective cooling 
rates by the argon powder conveying gas. Hence, the largest thermal gradient for initially deposited 
layers was along the build direction, resulting in the observed columnar grains. 

Figure 3: Typical microstructure of thin wall sample fabricated at 275 W laser power, 2000 
mm/min scan speed, and 2.1 g/min powder flow rate by laser direct deposition showing: A. 
Columnar grains grown at a small angle from the build direction for the layers deposited near the 
substrate; B. Cross-sectional view of the entire sample; C. Columnar grains grown at a larger angle 
from the build direction for the layers deposited further from the substrate

Figure 4 depicts the side view of thin wall structures and illustrates the effects of the 
conveying gas plume around the thin wall structure on the side adjacent to the powder feed nozzle. 
The powder feed nozzle was aimed at the melt pool perpendicular to the scan direction, and at an 
angle from the build direction in this study. This causes a continuous flow of cool argon gas around 
the outer surface of the deposited structure on the right side, thus producing relatively high cooling 
rates, and hence thermal gradients, on one side. The opposite side was mostly blocked from the 
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argon flow by the structure itself and therefore experienced much lower cooling rates, which are 
sufficient to significantly affect grain growth. 

It is also interesting to note that the layers deposited further from the substrate had an 
increased tilt angle of approximately 40 degrees from the build direction as shown in Figure 3C.
Since the MAS ceramics were a good type of insulator materials, heat flow to the substrate reduced
considerably at an elevated distance from the substrate. Therefore, the percentage of total heat loss
to the side of the structure, due to convection from the powder conveying gas, increased. With this 
increase in transverse heat flow, grain orientation shift away from the build direction increasingly 
with an increased distance from the substrate.

Figure 4: Schematics depicting convective cooling due to the powder conveying gas plume on 
one side of thin wall structures during fabrication

3.2 Cracking Characterization of MAS Samples

The primary microcrack propagation directions for MAS thin wall structures are in the 
build direction (longitudinal cracks) and along the scan direction (transverse cracks). Figure 5
shows a backlit sample to highlight typical cracks observed. Very high cooling rates due to laser 
melting and solidification processes, of up to 105 K/s [17], create large thermal gradients and 
thermal stresses in the deposited materials. The relatively high hardness of the deposited MAS 
ceramic material makes it very susceptible to brittle fracture, which occurs when the tensile 
stresses are higher than the mechanical strength [31].
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It was observed that longitudinal cracks are more prevalent, and typically extended further 
than transverse cracks. It could be attributed to the columnar grains extended primarily along the 
longitudinal (build) direction. As higher fracture energy was often required for transgranular 
fracture, intergranular cracking would be more common in the brittle materials and thus primarily 
propagated along the grain boundaries of vertically elongated columnar grains [14]. On the other 
hand, the cooling and solidification processes of recently deposited layers led volume contraction,
which was constrained by the previously solidified but cooler layers [15], thus yielding tensile 
stresses in the newly deposited layer. The tensile stresses initiated microcracks, which 
preferentially propagated along the grain boundaries as discussed above.

Figure 5 Side view of a MAS sample showing significant cracking in the longitudinal direction 
with fewer transverse cracks

Transverse cracks (along the scan direction) were observed mostly near the sides of thin 
wall structures, extending up to 5 mm along the scan direction. Transverse cracks initiated at
defects typically located near the edges of the deposited thin wall structures. Immediately after 
deposition, the part of the melt pool at the interaction zone with the previous layer solidified first 
due to the high conduction rates through the lower layers. Volume contraction, during 
solidification, of the upper portion of the melt pool creates a bending moment on these layers
resulting in tensile forces parallel to the build direction at the sides of thin wall structures [15].
Cracks would be formed if the tensile stresses were higher than the strength of the newly deposited 
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material. However, transverse crack length was typically limited due to crack bifurcation into the 
preferential fracture direction, i.e., along the grain boundary of columnar structures as discussed 
above. Further studies will be performed to investigate the effects of processing parameters on 
crack prevalence within the deposited MAS ceramics.

Transverse cracks were seen to be susceptible to crack bifurcation, but also crack deflection 
guided by residual pores. Figure 6 shows a transverse crack extending through the cross-section 
of a polished MAS sample. This crack was subject to crack deflection during propagation, forming 
a zig-zag pattern by connecting residual pores, indicating that the cracks consumed less energy by 
connecting pores as opposed to planar propagation. Thus, it is necessary to investigate how to 
lower the porosity level, which helps minimize the crack formation within the deposited ceramic 
samples. 

Figure 6: Cross-sectional view of MAS sample showing a transverse crack with crack deflection 
due to residual pores and crack bifurcation

Longitudinal cracks commonly occurred near the substrate of the printed samples as shown 
in Figure 7. This was mainly due to the high temperature gradient near the substrate-deposition 
interaction zone. The solid substrate was at a lower temperature than the deposited material, and 
therefore contracted considerably less during cooling processes. Thus, the substrate would undergo 
compression stresses while the deposition layers was under tensile stress. As a result, the tensile 
stresses exceeded the strength of the deposited material causing crack initiation and propagation 
to occur at the substrate-deposition interaction zone. The longitudinal cracks present at the 
substrate-deposition interface typically only extended approximately 1 mm in the build direction 
since the temperature differential, and therefore tensile stress, decreased with an increasing 
distance from the substrate. 

Another consequence of the high temperature differential at the substrate-deposition 
interaction zone was that the deposited material experienced much more volume contraction than 
the substrate during cooling. The volume contraction causes a bending moment to run through the 
sample, and as a result, high tensile forces were present along the sides of the deposited material 
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near the substrate-deposition interaction zone. Occasionally, single and long cracks were observed 
in the deposited samples as shown in Figure 7, which were deflected by the residual pores. Tensile 
forces generated were also typically large enough to cause brittle failure between deposited layers 
and the substrate and frequently led to the delamination of the thin wall samples from the substrate. 
Due to the bending moment, warping of the deposited material was typically seen, especially in 
long thin wall structures (length >25 mm) in the preliminary tests. To minimize or even eliminate 
the longitudinal cracks near the substrate, as well as the delamination of the deposited part, it is 
suggested to preheat the substrate prior to the deposition process. Sufficient substrate preheating 
would significantly reduce thermal gradients in this region and thus reduce tensile stresses and 
bending moment in the samples. 

Figure 7: The optical micrograph of the polished sample side view showing severe longitudinal 
cracking near substrate-deposition interface due to contraction induced tensile stresses in the 
deposited MAS structure

3.3 Porosity Characterization of MAS Samples

3.3.1 Effects of Laser Scan Speed on Residual Porosity

The effect of scan speed on the porosity of fabricated parts was investigated and Figure 8
shows the primary results. The general trend for scan speed with respect to porosity was that as 
scan speed increased, there was an increase in porosity as shown in Figure 8A. The minimum
porosity was 9.8% and the maximum was 14.5% at scan speeds of 1000 mm/min and 5000 
mm/min, respectively. The results for the density of the entire structure can be seen in Figure 8B. 
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The highest average density was 96.6%, while the lowest was 92.5% at scan speeds of 4000 
mm/min and 1000 mm/min, respectively. The density analysis of the entire part showed a clear
trend, where increased scan speed resulted in increased relative density.

Figure 8 Results from scan study on A. Porosity area and B. Sample density, also showing C. 
Thin wall sample ground to cuboid shape, and D. Density measurements of the post processed 
samples. 

It should be noted that this trend was not correlated well with the porosity results for this 
study. It was expected that an increase in density would be related to a reduction in porosity. It is 
important to note that open porosity may have significantly affected measured density of samples 
showing higher porosity. As the frequency of pores increased, there was a greater chance that pores 
would connect. Connected pores that were open to the surface would fill with distilled water used 
during density testing, resulting in artificially high measured densities. Samples with lower 
porosity levels, and hence less open porosity, would have a smaller interior volume filled with 
distilled water, resulting in lower but more accurate measured densities. Increased open porosity 
could help to explain why density increased while porosity increased. The problem with measuring 
the density for the entire sample was that it may not be representative of the usable central portion. 
Since the area used for porosity analysis only represented a portion of the entire sample, it is 
possible that the porosity results could vary considerably depending on where the cross-section is 
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taken. When fabricating parts with this method, post processing would be necessary to remove the 
unstable regions which typically show atypical properties and porosity levels, especially within 
the top and bottom layers. Therefore, samples ground to cuboid shape, shown in Figure 8C, were
additionally analyzed through density measurements. To achieve the desired cuboid shape,
samples were ground on all sides via a 45 micron silicon carbide grinding wheel. Since a small 
number of samples were prepared in this manner, samples were hand ground by pressing one side 
of the sample onto the rotating grinding wheel until a plane surface was achieved. This was 
repeated for all six sides of each sample. The density results of the post-processed parts were 
shown in Figure 8D. It is interesting to note that the general trend for density measurements first 
increased and then decreased with an increasing scan speed, which was opposite of the findings
for the density of the entire samples. This indicates that the porosity levels in the unstable regions, 
primarily within the top most layers, significantly affected the average density for the entire 
sample. The general trend in the porosity analysis here was that increased scan speed results in 
increased porosity is similar to the results for laser engineered net shaping of 17-4PH stainless 
steel [32]. It was assumed that the initial powder porosity played a role in the increase observed.
An explanation for this result is that increased scan speed resulted in shallower melt pool depths, 
and decreased amount of time for gasses contained within powder conglomerates to escape before 
being covered by the following layer. At higher scan speeds, decreased laser-deposited layer 
interaction time also produced lower melt pool temperatures and increased viscosity, thus limiting 
gas removal mechanisms.

3.3.3 Effects of Laser Power on Residual Porosity

At high laser powers, the porosity was shown to decrease dramatically, e.g., with porosity
as low as 1.2% at a laser power of 485 W. As shown in Figure 9A, the fabricated samples at 275
W showed a wide range of pore sizes distributed throughout the cross-section. With many small 
pores, a significant number of medium-to-large pores were observed. On the other hand, thin wall 
samples produced at 485 W, seen in Figure 9B, showed only a few large pores with most pores 
being very small. Medium sized pores were primarily absent from the printed at 485 W.
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Figure 9: Results from laser power study including A. Micrograph of sample cross-section 
fabricated at 275 W showing a high frequency of large pores, B. Micrograph of sample cross-
section produced at 485 W with greatly reduced pore size and frequency, C. Thin wall structure 
printed at 275 W showing good printability and uniform layers, and D. Thin wall structure 
exhibiting irregular shape and poor resolution due to a higher laser intensity at 485 W. Both 
samples were printed using 1000 mm/min scan speed and 2.1 g/min powder flow rate.

A possible explanation for this result is that a high laser power as sufficient to maintain a 
high enough temperature in deposited layers to allow gasses to combine and escape through the 
surface of the melt pool. In particular, the few trapped large pores in Figure 9B, larger than those 
seen in Figure 9A, indicated that the increased duration at a high temperature allowed the gasses 
to combine into larger pores. It should be noted that samples produced at 485 W exhibited a
decreased stability of the melt pool and thus exhibited a part of an irregular shape. Figure 12C
shows a thin wall structure fabricated with the laser power 275 W, which is uniform in shape along 
the build direction due to a relatively good print resolution. In contrast, Figure 9D demonstrates 
the difficulty of fabricating thin wall structures at a high laser power. The melt pool spread 
significantly due to decreased melt viscosity at the higher temperatures, meaning that the thin wall 
structure was much wider than structures produced at lower laser powers. The width of the sample 
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printed at 485 W was 6.3 mm, while the sample printed at 275 W was 3.8 mm wide. Hence, print 
resolution was reduced by nearly a factor of two by increasing laser power to 485 W. The decreased 
resolution seen at high laser powers would pose challenges in producing small structures with high 
dimensional accuracy without reducing laser spot size.

3.3.4 Translucency Demonstration

In order to examine the feasibility of the proposed deposition process in fabricating MAS 
samples with transparency, or at least translucency, thin wall samples were first prepared using the 
optimal processing parameters showing minimal porosity. The parameters used included 275 W, 
1000 mm/min, and 0.8 g/min for laser power, scan speed, and powder flow rate, respectively. the 
sample was polished to a thickness of 0.7 mm. Figure 10 shows that a MAS sample with
translucency was successfully made through laser direct deposition. The Missouri S&T logo was
visible through the sample. It should be noted that thicker samples appeared to be opaque primarily 
due to cracking and residual porosity. Though not showing a transparent sample, this well 
demonstrated the viability of the proposed laser direct deposition in directly printing MAS 
samples. In combination with other benefits of 3D printing samples of complex geometries, this 
process showed great potentials in the fabrication of high strength transparent ceramics. Further 
studies will be performed in optimizing the processing parameters and their effects on the 
transparency of laser direct deposited MAS ceramics.

Figure 10: Polished MAS sample demonstrating translucency over a grid of Missouri S&T logos
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Conclusions

This paper demonstrated the feasibility of laser direct deposition in rapidly fabricating 
MAS parts that would be otherwise difficult and expensive to manufacture using traditional 
methods. The effects of processing parameters on the microstructure of MAS ceramics fabricated 
by laser direct deposition was studied, with cracking and porosity being key issues in affecting the 
transparency of the fabricated parts. It was showed that translucent MAS ceramic samples could 
be successfully fabricated. The process described in this paper used precursors MgO and Al2O3

for direct laser synthesis, without the need for prior synthesis into MAS powders, typically a 
lengthy and expensive process. The typical microstructure of MAS ceramics was found to be 
dominated by columnar grains, orientated in the build direction but at a tilt angle toward the 
direction of incoming powder flow due to cooling by the powder conveying gas. Microcracks, as 
a significant defect of MAS ceramics by direct laser deposition, were primarily orientated in the 
build direction along grain boundaries. Future work will include an in-depth study on how grain 
size, and microcracks are affected by processing parameters including laser scan speed and powder 
flow rate. It was also shown that increased scan speed resulted in an increase in total porosity.
Increased laser power resulted in samples with the lowest porosity levels through increased 
localized temperatures and longer high temperature durations. However, this reduction in porosity
came at the costs of decreased resolution and dimensional accuracy. Future work includes studying 
the effects of processing parameters on the transparency of laser direct deposited MAS ceramics.
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