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Abstract

Material extrusion is transitioning from a technology mainly for rapid prototyping to one that 
is increasingly finding use in manufacturing functional parts. Of particular interest in this regard 
is the reinforcement of extruded parts with Continuous Carbon Fiber (CCF). However, predicting 
the effective properties of 3D printed composite parts presents a unique challenge because of the 
strong effects of meso-structure on the mechanical behavior of printed parts. This work aims to 
develop a mathematical model that would enable such a prediction of behavior by incorporating 
the rule of mixtures commonly used in micromechanics modeling. Results from tensile tests on 
composite specimens with varying volume fractions produced from a blend of onyx (nylon and 
chopped carbon fiber) and CCF are reported. Volume fractions are varied through a range of 
factors including the layers with fiber, the distribution of fiber within layers and the angle of the 
fibers relative to the loading direction, though findings suggest that this has no significant influence 
on the model itself, and that volume fraction is a sufficient parameter. The predictive ability of the 
micromechanics model is put to the test for composite honeycombs under compression, and a wide 
discrepancy between model and experimental result is demonstrated, demonstrating the limitations 
of such a model and suggesting pathways for improvement. 
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Introduction

Over the years, material extrusion has slowly evolved from being the preferred technology for 
rapid production of prototype parts to a technology that is, in its own right, capable of producing 
functional parts. This has partly been as a result of development of novel high performance 
thermoplastics such as ULTEM (PEI), that can meet the design requirements imposed by industry 
users of the technology, and partly due to an overall improvement in the material extrusion process. 
Most relevant to this work, is the development of printing technologies that allow for printing of 
continuous fiber reinforced components. Continuous fiber reinforced components are made 
possible by a variation of the Material Extrusion process that allows for the combination of varying 
types of reinforced fibers with conventional polymers to produce parts that have been shown to 
have properties comparable to aluminum [1,2]. There are numerous ways to achieve integration of 
fiber into parts. When continuous fiber is the reinforcement material in question, Prüß et al. [3], 
propose that three methods are most favorable: (i) embedding before the printing process - this
involves , incorporation of the fiber before the printing process, achieved normally with filaments 
that are by themselves composites; (ii) embedding in the printing head-which involves the 
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combination of two materials/filaments as they pass through a single extruder, and, (iii) embedding 
in the component itself. The latter case was the method employed for this work and involved using 
the commercial MarkForged Mark Two 3D printer, which employs two independent extruders, 
each operating with its own distinct material, with fiber laid after the matrix material [1,3]. 

The mechanical properties of conventional material extrusion 3D printed parts have been 
studied in literature [4,5]. Dickson et al. [2] studied nylon composites fabricated with an array of 
Markforged’s fiber reinforcement materials such as CCF, Kevlar and glass fibers, and established 
comparisons between their mechanical performance. Their work also used the Rule of Mixtures 
(ROM) approach to estimate the modulus of reinforcing fibers, by performing an inverse
calculation using experimentally obtained nylon modulus, total composite strength of the 
specimens, and the estimated volume fraction of fiber present. Malenka et al. [6] implemented a
geometric approach to estimating volume fraction by calculating the volume fraction of the 
constituent parts of the composite print. Elastic properties of the composite prints were then 
predicted using a volume averaging stiffness method. More recently, Lozada et al. [1] modified 
Malenka et al.’s approach, and used the ROM to predict elastic modulus of composite prints made 
up of nylon matrix and continuous fiber. For simplicity, they assumed isotropy, reducing the
compliance matrix to a single value [1]. Their approach achieved good prediction results for low 
values of carbon fiber volume fraction, but had large deviations at larger fiber volume fractions. 

The work in this paper builds on the afore mentioned prior work by attempting to develop a 
ROM model to predict the tensile properties of continuous carbon reinforced prints. Different from 
prior work, the paper examines the dependence of the ROM model not just to volume fraction, but 
how the distribution of fiber may influence properties. Secondly, this work attempts to use this 
model along with Finite Element Analysis (FEA) to examine its validity when predicting behavior 
of more complex geometries, in this case of a hexagonal honeycomb, though findings in this latter 
regard only serve to demonstrate the limitations of the ROM modeling approach.   

This paper is divided into four main sections: the first lays out all the methods used to design 
and fabricate the specimens, the second then discusses the results of the tensile testing conducted 
on them. Following this, the ROM model is developed, and finally it is applied to the specific case 
of honeycomb compression, to assess its overall performance. The paper ends with a discussion 
summarizing key learnings, and identifying future directions.

Design and Fabrication 

Specimen Design

The designed geometry for the specimens used in this study was created according to ASTM 
D638-14 using a Type I geometry [12]. The geometry used in this study, with critical dimensions, 
are shown in Fig. 1. The specimen geometry was exported as a stereolithography file (STL) and 
loaded into the Eiger 3D printer slicing software package. The Eiger slicing software package is 
required to not only slice, but also control the placement of the fiber reinforcement amidst other 
key parameters. This software was the only slicing software that could be used with the 
accompanying Mark two printer. The length of the specimen in figure 1 differs from the standard 
type 1 ASTM D638-14 specimen (196.1mm vs 165mm). This was due to a an increase in the grip 
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section of the specimen to provide for better gripping within the jaws, in keeping with a 
recommendation that the grip length approach at least 2/3rds of the length of the jaws used to grip 
the specimen. As we shall show later, these designs failed in the transition from the gauge to the 
grip section, and therefore may not be ideal candidates for testing. 

Figure 1. Specimen design geometry used in this study 

Fiber Fill Approaches 

All specimens produced for this study were fixed as concentric for fiber fill type, and as 
solid fill for fill pattern. This parameter alongside the layer height were the only parameters that 
were kept constant for the design process. The dominant feature in composite print design using 
the Eiger platform, is the fiber fill type. Concentric design has the feature of the fiber layers being 
oriented along the direction of loading, in a repeated fashion, with equal intervals between fiber 
placement. Figure 2 depicts an Eiger generated internal view of the of a concentric infill pattern 
of fiber for a print specimen. This concentricity feature can be controlled by selecting the number 
of concentric rings desired for any design.  

In addition to defining a concentric fill as shown in Figure 2, it is possible to limit fiber to 
only certain layers, as shown in Figure 3, where regions in blue correspond to layers with fiber fill, 
the rest corresponding to layers without fiber. Table 1 list the design details for each individual 
print sample labelled from 1C-7C. Key terms such as the number of floor and roof layers, are also 
representative of the top and bottom layers that are by default the matrix of the composite. 
Likewise, the number of walls is also a parameter that simply defines the number of layers for the 
matrix along the inner perimeter of the specimen. Layer arrangement in this context simply refers 
to how the total layers were assigned to be either layers consisting of just onyx, or layers designated 
to be consisting of mostly fiber, with of course a small narrow infill onyx region as can be seen in 
figure 2. Hence from the layer arrangement column in Table 1, numbers with the symbol (“)
attached to them, for instance 4”, represents fiber layers (in this instance, 4 successive layers with 
fiber) and the numbers without the symbol (“) attached to them, for instance 1, represents the 
number of successive matrix layers without fiber (in this instance one matrix layer). Hence for 
example, specimen 1C with a layer arrangement 1-8”-8-8”-1, would imply after the exclusion of 
the mandatory roof and floor layers represented by the 1’s at the beginning and the end of the 
series, means 8 fiber layers followed by 8 layers made up of just onyx, then followed by another 
8 fiber layers. All specimens were fabricated on the MarkForged Mark Two 3D printer using 
MarkForged supplied CCF and OnyxTM, as fiber and matrix, respectively.
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Figure 2. Concentric fill pattern, as generated by the Eiger software

 

 

Figure 3. Interpretation of naming convention: blue regions correspond to layers with fiber (and marked 
with “), transparent regions correspond to layers with only Onyx (and no fiber)

Table 1. Summary of print specimens with naming conventions and volume fractions specified

Sample 
Number

Layers 
arrangement

Number 
of roof 

and floor 
layers

Number 
of walls

Number 
of total 
fiber 

layers

Number 
of just 
Onyx 
layers

Number of 
concentric rings

1C 1-24”-1 1 1 24 0 1

2C 1-8”-8-8”-1 1 1 16 8 2

3C 1-3”-6-6’’-6-
3’’-1

1 1 12 12 Alternated 
between 3 and 6 
for carbon fiber 

layers
4C 2-2”-2-2”-2-2”-

2-2”-2-2’’-2-2”-
2

2 1 12 10 6

5C 4-18”-4 4 2 18 0 5

6C 1-8”-8-8”-1 1 1 16 8 6

7C 1-24”-1 1 1 24 0 6
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Mechanical Testing

The specimens tested on an Instron 5985 tensile testing frame with 250kN load capacity 
(and a load cell of the same capacity). A non-contact video extensometer was used to measure 
strain in the gauge section. Specimens were loaded at a rate of 5mm/min till failure. As shown in 
Figure 4a, the specimens failed in the transition region from gauge to grip – as a result only 
modulus values are reported in this work since the strength cannot be confirmed to be reliably 
representative of the material behavior. Malenka et al. [4] suggest that the failure location for 
composite prints coincides with the fiber placement start point of the print. As shown in Figure 4b, 
specimens in this work may have failed at the transition on the account of a change in the layout 
of fiber and onyx when managing that transition, coincident with several fiber placement starting 
points in close proximity around that region. 

         (a)                                      (b)
Figure 4. Failure of print specimens, showing failure in the transition between gauge and grip section – as

a result, only elastic modulus values are reported in this work and strength data has been excluded. 

Figure 5 shows the results obtained from the tensile tests conducted on the composite print specimens. 
It can be observed that stress values increased from specimen 1C-7C, in line with expectations. The stress-
strain information obtained from the tests were then analyzed in MATLAB© to find Young’s modulus 
values via a regression fit approach to find a fit with an  R2 > 99% . The Young’s modulus values obtained 
are summarized in Table 2. The same methodology was applied to obtain the Young’s modulus of a pure 
onyx ASTM D638-14 type 1 specimen, and a value of 2.493 GPa was obtained. This value is clearly 
distinctly larger than the value of 1.4 GPa reported by Mark forged material sheet as the Young’s modulus 
for a pure onyx specimen. This difference is potentially due to differences in process parameter settings. 
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Figure 4. Stress vs Strain for samples 1C-7C

Table 2. Summary of specimens maximum stress values and Young’s modulus values

Sample 
No.

Carbon Fiber Volume 
Fraction (Cf)

Young’s Modulus
(GPa)

1C 0.1298 9.51
2C 0.1731 13.16
3C 0.2921 22.81
4C 0.3894 30
5C 0.4868 37.9
6C 0.5192 39.91
7C 0.7788 58.4

 

Figure 5. Increasing young’s modulus with increasing volume fraction of specimens
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Rule of Mixtures Model Development

The Rule of Mixtures (ROM) method is a simple approach to developing models for properties 
of composite materials. In this work, an ROM approach was employed, relying primarily on the 
extraction of a volume fraction for the fiber and the matrix. For ease of calculation and replicability 
of results, a MATLAB© application was developed to allow for the calculation of the fiber volume 
fraction. Figure 6 shows the interface of the developed application, and the result obtained when 
ran for the case of specimen 3C. 

Figure 6. User interface of a MATLAB developed application for computation of volume fractions 
needed for the ROM model

Several parameters influence the calculation of the volume fraction for a specimen 
fabricated using the Eiger software discussed previously. All these parameters are provided in 
Table 3, with the equations that relate these parameters listed in Equations 1-9.  

While the Eiger software provides values of total CCF and Onyx volume, this work is 
concerned specifically with the volume fraction in the gauge section. To do so, separate prints 
were fabricated and paused and removed from the printer for measurement, one such paused print 
is shown in Figure 7. A Keyence VR-3200 structured white light scanning microscope was used 
to measure the widths of the Onyx and the CCF, as shown in Figure 8. The layer thickness was 
0.125mm (fixed setting), and the combination of the measurements and the known later thickness 
was used in the MATLAB application to estimate the volume fractions associated with each 
specimen, as discussed previously.  
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13 

57 

3.2 

0.125 
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DESIGN VARIABLES 

#of walls 

# of concentric ring type 1 
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# of roof layers 

# of floor layers 

# of layers with ring type 1 

# of layers with ring type 2 

# of layers that are not wall or floor but still onyx 

SOLVE 

Onyx Volume Fraction 0 .72 36 % Estimation Error 

3 

6 

6 

6 

12 
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Table 3. Summary of measured parameters and relevant equation variables

Parameter Interpretation Value (mm)
W Width of “reduced” section 13
T Thickness of “reduced” section 3.2
H Height of “reduced’ section 57

Thickness of single layer 0.125
Width of wall 0.45
Number of walls Varies for each specimen
Number of roof and floor layers Varies for each specimen
Width of fiber 0.9
Number of fiber layers with type 1 concentric rings Varies for each specimen
Number of concentric fiber rings type 1 Varies for each specimen
Number of fiber layers with type 2 concentric rings Varies for each specimen
Number of concentric fiber rings type 2 Varies for each specimen           Number of layers in onyx only region (region that is 
not wall, or roof and floor, and not fiber region)

Varies for each specimen

=                         (1)= 2 ( 2 ) (2)= 2 (3)= 2 + 2 (4)= 2 (5)= ( 2 ) (6)= + + (7)  = (8)  = (9)

 

Figure 7. Cross section of a paused print showing the fiber region and onyx region
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Figure 8. Cross section of a paused print showing relevant widths, as measured on a microscope

Given these specimens with varying volume fractions, and measured elastic moduli, the next 
step is to develop an ROM model with these values. Prior to so doing, the values and predictions 
were compared to supplier provided material data. Using Markforged’s published material data 
with Tensile Modulus for Onyx and Carbon fiber being 1.4Gpa and 60Gpa respectively [7], and 
the estimated volume fraction values, Young’s modulus values predictions were made and 
compared with experimentally obtained. Figure 9 shows good agreement at low fiber volume 
fractions but significant deviations at higher fiber volume fractions.

Figure 9. Young’s modulus vs volume fraction using Mark forged published data when tensile properties 
of Onyx and Carbon fiber are used

Two different approaches were taken to develop the ROM model. The first was to extract Onyx 
modulus experimentally using the value obtained from the tensile test on the pure Onyx specimen 
(with no CCF). The CCF modulus was then obtained by using the experimental Onyx value and 
for each print specimen (1C-7C), individually solving for the CCF modulus. The values of the 
Carbon fiber moduli where then averaged and used to predict effective modulus that were 
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compared against already obtained experimental modulus. Using this approach, Figure 10 shows
improved agreement between the model predictions and experimental results.

Figure 10. Young’s Modulus vs Volume fraction of carbon when tensile values of Onyx and Carbon 
obtained experimentally ae used

Alternatively, the model may also be estimated using a linear fit of the experimentally obtained 
modulus values and solving the equation obtained from the fit (X=0, X=1) to obtain the moduli 
for CCF and Onyx as 75.9021 GPa and 0.3551 GPa respectively. This model, as is trivially 
expected from such an approach, shows good agreement generally throughout the range of fiber 
volume fraction values.

Figure 11. Linear fit of ROM model against experimental data
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Applicability to Honeycomb Compression

To examine the validity of the ROM model developed in this work, honeycombs were 
fabricated on the same printer (MarkForged Mark Two) per the design shown in Figure 12a. The 
smallest thickness that could consistently fit two CCF paths within two walls of Onyx, as shown 
in Figure 12b was 3.72mm. A paused print with the CCF and Onyx visible is shown in Figure 12c.

(a) (b) (c)

Figure 12. (a) CAD file of honeycomb with 3.72mm thick walls – this thickness was the minimum 
possible to (b) fit 2 inner walls of CCF within 2 walls of Onyx, (c) paused print showing the different 

paths of CCF and Onyx

 

These honeycombs were then subject to compression with an INSTRON 8801 (50kN load 
cell capacity). Initial data suggested a significant strain rate dependence (see Figure 13a) for both 
the effective modulus (Figure 14b) and for the peak load (Figure 13c). For this work, we are only 
concerned with the effective modulus, and as can be seen in Figure 13b, this value saturates 
below 10-3 s-1.

The question of interest emerging from the prior work therefore was this: can the ROM model, 
when implemented in Finite Element Analysis (FEA) predict the response of the honeycomb under 
compression? To address this, material properties were required for the FEA model. With the prior 
ROM models, the only additional information needed is the volume fraction specific to the 
honeycomb beams. Once again, a paused print was measured with the Keyence microscope, as 
shown in Figure 14, and an average of measurements in 5 different regions was used to estimate a 
CCF volume fraction of 0.4773. Using the two ROM methods previously discussed, the elastic 
modulus was estimated as 36.41 and 34.71 GPa for the linear fit, and averaging methods, 
respectively. 

The finite element model, developed in ANSYS, is shown in Figure 15b, and was setup with 
a mesh size such that 3 solid elements spanned the thickness of the beam – this was found to be 
sufficient from a refinement standpoint, in that subsequent refinement did not change reaction 
force results by more than 3%. The FEA model had frictional contacts between honeycomb and 
platen with a frictional coefficient of 0.15.
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(a)

 (b)       (c)

Figure 13. (a) Compression of honeycombs at effective strain rates spanning seven orders of magnitude, 
(b) effective elastic modulus, and (b) peak load (first maximum), as a function of effective strain rate

Figure 14. Measurements of Onyx and CCF widths for computation of volume fraction 
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(a) (b)

Figure 15. (a) Experimental setup for honeycomb compression on an INSTRON 8801, and (b) FEA 
model simulating the same

Comparisons between the experimental result from the test conducted at 10-6 s-1, and the FEA 
model for both ROM approaches is shown in Figure 16. As can be seen the discrepancy is vast, 
with the experimental result vastly less stiff than that predicted in the model. This may be attributed 
to several reasons: the ROM model is derived from a pure tension study, with the fibers loaded 
only in the axial direction – in a honeycomb, in particular one as thick as this, the stress state is a 
combination of bending, axial and shear loading. A second contributing factor is the behavior at 
the nodes, which are idealized as having homogeneous properties, but in reality are the site of 
significant porosity, as seen in Figure 14. These results, while far from desired, are nonetheless 
presented here in the hope that they suggest future directions to the community concerned with 
modeling 3D printed composites. 

Figure 16. Comparison between FEA and experimental result showing a wide discrepancy
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Discussion

This work adds to prior published work with regard to the development of ROM models for 
Continuous fiber composite 3D printing. The following three points are highlighted for discussion,
and consideration in future work:

The use of ASTM D638 specimen designs for composite 3D printing, as has been done by 
us in this work, and others in the literature, needs to be reexamined, with designs that are 
not sensitive to fiber start points and voids, developed.
The large discrepancy between experimental and FEA modeling for the honeycomb 
compression indicates the need for a more thorough characterization effort beyond just 
tensile testing conducted here. Additionally, a more effective approach may be to 
characterize a member that matches the beam geometry and process parameters exactly 
[18] or extracts material properties using inverse homogenization approaches from testing 
honeycomb [19].
Void regions are quite common in material extrusion based processes, and the composite 
3D printing process used in this work is no exception. A more accurate model would 
therefore account for these voids.
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