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Abstract 

In this paper the nonlinear model predictive control (NMPC) of UV-induced curing of composite material 

for manufacturing of thick parts is proposed. The process involves layer-by-layer curing of thin composite 

laminates to form thick part. The model for NMPC switches when a new layer is added to the existing layer. The 

layer addition times are determined externally. The offline optimal control is used to determine the optimal time 

and temperature profile which will give uniform cure distribution of a thick composite material. Once the 

temperature trajectory and optimal time sequences are found, the NMPC is implemented for online control. The 

objective is to determine theoretical optimal behavior (assuming the process measurement is available) which 

will be used for online switching NMPC for tracking the reference temperature. 
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Introduction 

 

Lightweight materials have a great potential for improving vehicle performance, it can improve the passenger 

vehicle fuel efficiency six to eight percent for each ten percent reduction in weight [1]. Fiber reinforced polymer 

composites are one of the most promising weight reduction technologies available today [1]. The manufacturing 

process of these composites are mainly thermal based curing process. However, recently radiation based curing 

process have shown a great potential for thick composites manufacturing. As discussed in the previous sections 

UV has limited penetration, this challenge has limited the application of UV to thin polymer films in 

applications such as printing inks and adhesives, printing plates, microcircuits and production of thin composite 

parts [2].  

To overcome the cure depth limitation, a layer-by-layer deposition was recently introduced and have been 

implemented for production of thick composite parts manufacturing using UV as radiation source and acrylate 

matrix [3] and epoxy matrix [4-6]. This was then extended for a concurrent curing and layering approach where 

distinct process optimization opportunities were identified by examining the interplay between the underlying 

curing kinetics and UV attenuation [3-6].  

All the recent proposed approaches focused on the offline optimal time control for determining the optimal 

input and/or layering time with the objective of uniform final cure distribution across the finished product. 

However, these approaches assume a uniform UV intensity in optimizing the layering time and hence the 

optimal layering times are optimal for the given input only. In this paper, we propose a model predictive control 

strategy for online control of UV-induced curing process. 

Model predictive control (MPC) also referred to as receding or moving horizon control has been widely used 

in industry as an effective approach to deal with large multi-variable constrained control problems. It is a well-

established control strategy in the chemical process industry which are typically characterized by a longer 

sampling periods. In recent years, however, the improvement in the processor speed and the development of new 

algorithms has extended the application of MPC to other applications such as automotive [7, 8, 9], aerospace [10, 

11, 12] where typical sampling is in the order of milliseconds [13, 14, 15, 16]. The main advantage of MPC 

controller as compared to traditional proportional, integral and derivative (PID) is that it allows taking constraints 



on states, inputs and outputs of the system. Moreover, multivariable feedback control can be designed with similar 

procedural complexity as of single variable ones [13]. 

There are few papers where MPC has been applied for distributed parameter systems such as curing process 

of thick composites [17-19]. In these works, distribute parameter systems with high order dimension models are 

considered. However, the dimension of states is constant i.e. there is no change in dimension throughout the 

process. In our study we discuss on the distributed parameter NMPC which is highly nonlinear UV-induced curing 

of composites with UV intensity as a control input and process temperature and degree of cure considered as state. 

The rest of the paper is organized as follows: Section II discusses the UV curing process model, Section III 

explain how the offline optimal time control is done. Section IV discusses the nonlinear model predictive control. 

The results and conclusions are included in Section VI. 

Curing process model  

Considering the 1D curing set up shown in Fig. 1 below, a single layer of material is exposed to a uniform 

UV source at the top. 

 

Figure 1. Schematic of UV-induced curing process  

The curing process involves heat generation from polymerization (exothermic reaction), convection heat transfers 

at the top surface and conduction within the layer. These also need to be captured along with boundary conditions. 

The convective boundary condition (BC1) at the top and insulation boundary condition (BC2) at the bottom. The 

UV gets attenuated as it passes through the material and the intensity across the depth is given by Beer-Lamberts 

law [20- 22]. 

The temperature within the fiber-reinforced composites can be calculated using the law of conservation of energy 

together with a model for cure kinetics. By neglecting the energy transfer by convention, the energy conservation 

equation can be described as: 
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where 𝜌 and 𝜌𝑟 are density of the composites and resin respectively, 𝑐𝑝 is the specific heat capacity of composites, 

∆𝐻𝑟  is the enthalpy of polymerization of the resin, 𝑘𝑦 is the thermal conductivity in the direction perpendicular 

to the plane of the composite 𝑇(𝑦, 𝑡) is the temperature at time t and depth 𝑦, 𝛼(𝑦, 𝑡) is the degree of cure of the 

resin at depth 𝑦 and time 𝑡. 
Equation (1) is coupled with the exothermic reaction (cure) rate equation of the unsaturated polyester resin which 

is given in Eq. (2). 
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where, 𝜑 is pre-exponential rate constant 𝑆 is photo-initiator concentration, 𝜆𝑐 UV attenuation constant, 𝐸 is 

activation energy, 𝑅 is gas constant. [3]. 

The convection and insulation boundary conditions (BC1 and BC2) are given in Eq. (3) and Eq. (4) respectively. 



−𝑘𝑧
𝜕𝑇(𝑦, 𝑡)

𝜕𝑦
+ 𝜗𝐼0 = ℎ(𝑇(𝑦, 𝑡) − 𝑇∞) [3] 

𝜕𝑇(𝑦𝑚𝑎𝑥, 𝑡)

𝜕𝑦
= 0 [4] 

 

where, 𝑦𝑚𝑎𝑥 is the thickness of the fiber-reinforced resin. 

 

The cure process model is then summarized as follows [23]: 
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where  and c  are the density and specific heat capacity of the epoxy, respectively; 
yk is the thermal conductivity 

of the epoxy across the depth; ( , )T t y is the temperature at time t  and depth y . H is enthalpy of polymerization;

( , )t y is degree of cure at time t  and depth y  ; l  is the thickness (depth) of the sample; A is pre-exponential 

constant; E is the activation energy ; R is universal gas constant; absT  the absolute temperature in Kelvin; 0I  is 

the initial UV intensity;   is UV attenuation constant. 

Offline optimal control  

In this section we pose an optimal control problem for the model described in Eqn. (5)-(8) to find the optimal 

layering time which will be used as a reference for NMPC. 

We start by setting up a general cost function is the sum of integral cost, switching cost and terminal cost: 

 

Figure 2: Schematic of layer-by-layer curing process  

The temperature profiles for each layer is shown in Fig.3 and the final degree of cure is shown in Fig.4 and 

one can see that using the optimal curing times resulted in a minimal final cure deviation (<1 %). These results 

are used for online simulation which will be discussed in the following section. 



 
Figure 3: Temperature profile of three layers  

 

 

 

 

 

 

 

 

 

 

Figure 4: Final cure level of three layers  

Nonlinear model predictive control  

Model predictive control refers to a class of control algorithm in which a dynamic process model is used to 

predict and optimize process performance. The idea is to solve, at each sample time, an open-loop 

optimization in order to find the value of the manipulated variable is reiterated at the next sample time with 

the update of the process measurement. Today, MPC has become a control strategy widely used in industry. 

Indeed, MPC is well suited for high performance control since constraints can be explicitly incorporated 

into the formulation of the control problem [24]. In this section the Nonlinear MPC for tracking is of 

temperature profile is proposed.  

Thermal based curing of composites have to follow a specific temperature profile (called cure cycle) to 

achieve a required quality of final product. Hence, researchers have been using temperature as a reference to 

control the curing process [25, 27,28]. In radiation based curing such as UV the initiation comes mainly 

from the photo-imitators which absorbs light. However, the propagation strongly dependent on temperature. 

As discussed in the previous section the optimal switching times, chosen with the objective of minimizing 

final cure deviation, resulted in near uniform final temperature. Therefore, for the NMPC the offline 



temperature profile which is found from offline optimal control with the objective of uniform cure 

distribution is used. The control problem considered here is the tracking of a reference temperature (Tref ) 

and minimizing the control effort. The NMPC technique solves the optimal control problems repeatedly 

from the current measured state by online computation. After giving the initial control input u(t) and states 

x(t); the current control input at time t is found by determining the optimal control solution online over the 

interval [t, t+T p] with the objective of minimizing the temperature difference from a given reference and 

control input. As depicted in Fig. 5 the system involves mode change. The mode change times are as 

discussed earlier determined from offline optimal control with the objective of minimizing final degree of 

cure deviation across layers. In SNMPC the horizon may range from one mode to the next higher mode. In 

that case, the number of states increase and hence the cost function before and after the switching instant 

within that horizon is different. The ideal cost function should switch at the switching time. However, it may 

pose computational challenge. To reduce the computational burden, it is customary to use a reasonably 

reduced order for MPC. For this paper we used the same reduced order model (lower number of nodes) for 

NMPC simulation. (see Fig. 6). 

 

Figure 5. NMPC layout for layer-by-layer curing process 

 

NMPC problem formulation with switching cost 

The NMPC techniques solves the optimal control problems repeatedly from the current measured state 

by online computation. After giving the initial control input u (t) and states x (t); the current control 

input at time t  is found by determining the optimal control solution online over the interval [t, t+Np] 

with the objective of minimizing the temperature difference from a given reference and control input. 

The objective function is given by Eq. (9): 



 

Figure 6. Reduced model for MPC 
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where 𝑓 is as given in in Eqns (5-9), Np is the prediction horizon (number of predictions), Mp ≤ Np 

is the control horizon , in this study the control horizon taken to be the prediction horizon (i.e Mp = Np), T 

is the temperature from SNMPC and r = Tref is reference temperature from the open loop offline optimal 

control , Q is the weighting matrix for predicted errors (Q ≥ 0) and R is the weighting matrix for control 

moves (R ≥ 0). Nz is the number of nodes in the given mode which is defined as described in Fig. 6. Herein, 

ln is the number of layers in mode N. For NMPC model the number of nodes considered are three therefore, 

the total number of nodes in mode n is: Nz = 3ln. 

NMPC algorithm for switching system 

The algorithm used for simulation of the SNMPC is as follows: 
 

1. Calculate the switching instants (from offline open loop optimal control as described in the previous 
section) 

2. At the k-th sampling instant, the values of the manipulated variables, u, at the next M sampling instants, 
{u(k), u(k+1), …, u(k+NP -1)} are calculated.  

3. The set of NP control inputs is calculated to minimize the deviations from the reference temperature over 
the next NP sampling instants while satisfying the constraints. 

4. When the sampling instant is equal to the switching time (new layer addition) the cost function switches 
from tracking temperature of the existing layers to tracking existing layers and the new layer (the size of 
the states being tracked increased). From this time to next switching instant the dimension of the states 
used in the objective function and constraints will be constant.  

5. Then the first “control move”, u(k), is implemented. 
6. At the next sampling instant, k+1, the P-step control policy is re-calculated for the next P sampling 

instants, k+1 to k+NP, and implement the first control move, u(k+1).  
7. Steps 2 and 6 are repeated for subsequent sampling instants. 

 

Results and discussion 

 

To demonstrate the effectiveness of the proposed SNMPC approach, three layer fiber-reinforced 

composite is considered. A prediction horizon of 100s and 10 steps is taken. Following the algorithms 

given above. Figures 7 to 9 show the reference temperature tracking and the corresponding control effort 

of bottom layer, middle layer and top layer respectively. 



 

Figure 7 Layer 1 temperature tracking and control input 

 

Figure 8 Layer 2 temperature tracking and control input 

 

Figure 9 Layer 3 temperature tracking and control input 



Figure 10 depicts the bottom layer reference temperature and the results of SNMPC for all layers. As 

can be seen in the figure, there is a very good agreement of the reference temperature and the SNMPC 

temperatures. To avoid confusion, the temperatures from SNMPC of all layers are compared with the 

bottom reference temperature. The deviation seen close to the end is mainly from the spatial difference 

of the layers and same deviation is observed on the offline result shown in Fig. 3. 

 

 

 

Figure 10 Comparison of three layers SNMPC temperatures with bottom layer reference temperature. 

Conclusion 

 

In this paper, online control method with NMPC is proposed for layer-by-layer curing of fiber reinforced 

composite. A nonlinear model predictive control (NMPC) scheme is outlined for UV-induced acrylate-

based curing of a switching nonlinear model predictive control (SNMPC) for layer-by-layer curing 

process. The key characteristic is that the processes model switches when a new layer is added to the 

existing layer. Open loop optimal control is used to determine the optimal layering time and temperature 

profile which give a nearly uniform cure distribution of a thick composite material. Once the 

temperature trajectory and optimal time sequences are found, the SNMPC is implemented for online 

control. The objective is to determine theoretical optimal behavior which are then used for online 

SNMPC for tracking the reference temperature distribution. To demonstrate the effectiveness of the 

proposed approach a three-layer fiber-reinforced resin with two cases are considered and results show a 

very good agreement between the reference temperature distribution and SNMPC.  
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