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Abstract 

A new powder feedstock composed of sustainable and degradable biomass composite 
material was proposed for laser sintering technology in this research. This biomass mixture, 
abbreviated P-PLA, is made up of mechanically mixed polylactic acid (PLA) powder and pine 
powder. The proper processing parameters were determined based on the component thermal 
behavior and laser sintering testing: processing temperature 130-135°C, laser power 20-24 W, scan 
spacing 0.1-0.2 mm, scan speed 1.6-2.2 m/s and layer thickness 0.2mm. Laser-sintered P-PLA parts 
exhibited much better mechanical properties compared with  pine/polyethersulfone copolyester (P-
CoPES) wood-plastic composite, with tensile strength 34-200% higher and flexural strength 92-
246% higher than values for laser-sintered P-CoPES. Results reveal that pine powder loading can 
reduce the shrinkage and deformation of laser-sintered P-PLA parts. Shrinkage decreased from 4% 
to 0.31-2.27% in the XY plane and from 3.25% to 0.13-2.25% in the Z direction. 

Keywords: Laser Sintering, Biomass Composites, Pine-Polylactic acid, Mechanical properties, 
Microstructures, Dimensional accuracy 

1. Introduction

Laser sintering (LS), as a type of additive manufacturing (AM) technologies (also known 
as 3D Printing), is a powder-based additive-layer manufacturing process [1, 2]. Due to its 
processing flexibility and high efficiency [3], LS has gained traction in various fields including 
industrial manufacturing, aerospace, automobile, creative arts, biomedicine and so on [4, 5]. Up to 
now, polymeric matrix, metallic matrix and ceramic matrix are the common LS materials [6]. 
However, the high costs of machines, materials and maintenance pose an obstacle to a wider 
adoption of LS technology [7]. Meanwhile, there is a pressing need for the progression of LS to 
extend the diversity of materials available, especially sustainable and low-priced applications, due 
in part to a growing concern respecting energy usage and environmental issues [8]. 

Polylactic acid (PLA), deriving from renewable agricultural sources, is compostable, 
biodegradable and biocompatible. It is recognized as an environmentally-friendly thermoplastic 
[9]. Respecting its application in AM technologies, to a large extent, PLA and PLA-based 
composites are prepared as the feedstock of fused deposition modeling (FDM) [10-12]. Only a 
small proportion of PLA and its composites or modified materials are developed for other AM 
technologies. For example, Patricio et al.[13] fabricated PLA/PCL scaffolds for tissue engineering 
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with a biomanufacturing device, which showed improved biological and mechanical properties. 
Tiziano Serra[14] studied the plasticizing effect of PEG on PLA-based blends used for the 
fabrication of 3D-direct-printed scaffolds for tissue engineering applications, including the surface, 
geometrical, structural changes and modulation of the degradation rate of PLA-based 3D printed 
scaffolds. Since PLA is still not commercially available in a powder form with a size below 100 

d by instantaneous laser energy within 
an acceptable range. A limited number of studies are focused on LS of PLA. K. F. Leong [15] built 
a porous drug delivery device by laser sintering of PLLA and examined the influence of critical LS 
process parameters on the dense wall formation and the control of the parts’ porous microstructure. 
Tan et al. [16] applied LS technique to fabricate PLA scaffold specimens, which were examined 
using a Scanning Electron Microscope (SEM), but without measuring the material’s mechanical 
properties. Zhou et al.[17] successfully fabricated a porous bone TE scaffold (Figure 1 (a)) with 
PLLA/carbonated hydroxyapatite nanocomposite via LS. Jiaming Bai et al.[18] studied the effect 
of the addition of nanoclay on the thermal and flexural properties of laser-sintered PLA parts, and 
the laser-sintered PLA/nanoclay parts (Figure 1 (b)) exhibited an improvement in flexural modulus 
compared with neat PLA. 

The development of natural fiber-reinforced polymer composites using for additive 
manufacturing is gaining more attention [19-21]. Natural fibers, such as wood, bamboo, jute, and 
nut fiber, shows many advantages, including that it is biodegradable and inexpensive as well as it 
has relative low density but high acoustic damping [22]. A new kind of biodegradable wood-plastic 
composite used for LS is proposed in this research, which consists of pine powder and PLA 3052D, 
abbreviated P-PLA here. Pine powder acted as the filler to improve the LS formability of PLA 
powder, which was also intended to decrease the shrinkage and deformation of the material during 
LS processing. The study mainly focused on investigating the LS fabricability of P-PLA composite 
and the performance of laser-sintered P-PLA parts. Proper processing parameters for laser sintered 
neat PLA and P-PLA composites were obtained based on single-layer LS experiments and material 
thermal properties. The thermal behavior and the melt fluidity of neat PLA and P-PLA composites 
of different pine loadings were measured. The effect of pine loading on the mechanical properties, 
dimensional accuracy and microstructure were investigated and analyzed. The mechanical 
properties of laser- sintered P-PLA parts and P-CoPES (PES copolyester) parts were compared. 

2. Materials and Methods

2.1 Preparation of P-PLA 

(b) [18]

Figure 1 Laser-sintered parts of PLA-based composites 

(a) [17]
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The pine powder came from the waste of Mongolian Scotch pine and was purchased from 
Jinye Wood-fiber Factory of Xingtai Development Zone in China. Cost was $0.5/kg, and the 

powder was light yellow. The particle size of most of the pine powder was smaller than 96  
obtained by ultrasonic oscillating sieving, with an apparent density of roughly 0.22 g/mm3. The 
image in Figure 2 (a) shows the long-flake microstructure of the pine powder observed using 
scanning electron microscopy (SEM). 

PLA, Ingeo™ 3052D (Injection-molding grade PLA type) supplied in pellet form by 
NatureWorks LLC, was crushed cryogenically into powders by eSUN (Shenzhen, China). PLA 
3052D was almost poly L-lactic acid (PLLA) with D-lactide contents of 4%. Cost was $20/kg, and 
the powder was white. The density of loose PLA powder used in this work was about 0.63 g/cm3. 
However, it is difficult to obtain spherical and subglobose PLA powders by comminution due to 
its tacky nature [23]. As a result, the microstructure of the PLA particulate was irregular in size 
and shape as shown in Figure 2 (b). Some powder was pulled into long fibers, which led to inferior 
flowability during the powder spreading processing by the device’s roller.  

Before the preparation of P-PLA composites, the pine powder was dehydrated at 60°C for 
8 hours in an incubator to lower the moisture content. PLA 3052D powder was dried at 55°C for 6 
hours. To assure even thermal exposure, both the pine powder and PLA 3052D powder were stirred 
at 2 hours intervals. The dried pine powder and PLA 3052D powder were put into a high-speed 
mixer and mechanically mixed below 45°C in different mass ratios. They were initially mixed for 
15 min at a low speed of 750 RPM and then for 5 min at a high speed of 1500 RPM. Finally, 

PLA 5 wt.% 10 wt.% 15 wt.% 

25 wt.% 20 wt.% 30 wt.% Pine 

Figure 3 Samples of PLA 3052D, P-PLA composites and neat pine powder 

400 m 

(a) Pine powder 
Figure 2 Microstructures of Ingredients of P-PLA composites (× 100 times)

400 m 

(b) PLA 3052D powder

Fiber shape
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different P-PLA composites with 5-40 wt.% pine loading were prepared. The neat PLA powder, 
neat pine powder, and some P-PLA samples are shown in Figure 3.  

2.2 Laser sintering of P-PLA 
Laser sintering (LS) experiments were carried on using an AFS-360 rapid prototyping 

machine (Figure 4 (a)) fabricated by Longyuan AFS Co., Ltd. with a build chamber of 
360×360×500 mm3. The essential parameters of the machine include a CO2 laser with a wavelength 

W, and laser beam diameter equal to 0.4 mm. 

LS tests of neat PLA powder were carried out before the PLA composite experiments to 
investigate the feasibility of processing PLA 3052D. Based on thermal properties of materials and 
5-layer LS tests of P-PLA composites (in Figure 4 (b)), proper process parameters of LS for PLA
3052D and P-PLA composites were established: preheating temperature 135-140°C for 2 hours,
processing temperature 130-135°C, the laser power 20-24 W, scan speed 1.6-2.2 m/s, scan spacing
0.1-0.2 mm and layer thickness 0.2 mm.

2.3 Characterization methods 
Thermal transition temperatures for PLA 3052D powder and P-PLA composites were 

assessed using a Pyris-Diamond differential scanning calorimeter (DSC) fabricated by 
PerkinElmer Co., Ltd. For these experiments, the heating rate was set at 10 /min over the 
temperature range of 40-240°C. Meanwhile, the thermal decomposition temperature of PLA 3052D 
powder and pine powder were evaluated using a Pyris 6 TGA. For this testing, the temperature 
increased from 40°C to 600°C at a heating rate of 10 C/min. 

 (a) (b) 
Figure 4 AFS-360 rapid prototyping machine and LS tests of P-PLA composites 

(a) Tensile samples (b) Flexural samples 

Figure 5 Testing samples of mechanical properties 
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A microcomputer controlled universal testing machine was used for measuring mechanical 
properties. Dumbbell shaped tensile specimens (Figure 5 (a)) with a typical dimension of 150 
mm×10 mm×4 mm were fabricated for tensile testing. The crosshead speed was 5 mm/min 
according to ISO 527-1. Thin specimens of 80 mm×10 mm×4 mm (Figure 5 (b)) were tested to 
obtain flexural strength of laser-sintered parts according to the 3-point bending method of ISO 178: 
2001. The support span was 52 mm, crosshead speed was 2 mm/min, and midspan deflection was 
15 mm. 

Microstructures of neat powders and cross-sections of laser-sintered parts were observed 
by SEM to observe particle features, the binding mechanism, fracture surface and so on. All the 
specimens were sputtered with a thin layer of gold to eliminate electrical charging prior to SEM 
observation.  

SRZ-400E melt flow rate testing equipment was used to investigate the flowability of PLA 
3052D and P-PLA composites over the temperature range 150-165°C with a load of 2.16 kg 
according to ISO1133-2005. The diameter and length of the device flow channel were 
2.095mm±0.005mm and 8.00mm±0.025mm, respectively. Testing materials in the charging barrel 
were preheated for 10 minutes before the test began.  

The density of laser sintered parts was calculated using a mensuration technique based on 
equation (1). During the density test, different laser sintered part weight was measured using an 
automatic analytical balance [EBJ-200], and dimensions were measured using a vernier caliper. 

ρ =
⋅ ⋅
W

l d h
                                                                                          (1) 

(  is density of the part (g/cm3), W is weight of the part (g), l is length of the part (cm), d is width of the part (cm), h is the thickness of the part (cm)). 

 
3. Results and discussion 

Figure 6 (a) depicts thermal phase transition of PLA 3052D, 20 wt.% P-PLA and 30 wt.% 
P-PLA. Glass transition temperature (Tg) of PLA 3052D is observed at 65°C, and its crystallization 
temperature (Tcc) is 109 . According to relevant theory [24-26], both the less-
crystal and more- the crystallization temperature 
is 100-120 . The bimodal endothermic melting peak is attributed to the melting of the structure 
[27]. The lower-temperature peak of 150  -

-to- -recrystallization process. 
Meanwhile, the higher-  

-to-  [28]. The melting temperature (Tm) of PLA 3052D 
at 150-154°C is lower than that of neat PLLA or PDLA (Tm is 170-180°C) [29] and stereo-complex 
crystallite PDLA (Tm is 220-230°C) [30]. As a result, PLA 3052D is prone to easy processing 
without high heating temperature. As can be seen from DSC curves of 20 wt.% P-PLA and 30 wt.% 
P-PLA, pine powder loading has almost no effect on the Tcc and Tm of P-PLA composites, and only 
when pine powder loading accounts for 30 wt.% does the Tg of P-PLA composite decline to 61°C. 
Accordingly, for both PLA 3052D and P-PLA, the same sintering window [123°C - 140°C] for LS 
processing is determined by the beginning of recrystallization and the beginning of the melting 
temperature. Combined with the results of LS tests of PLA 3052D, a proper preheating temperature 
was set at 135-140°C, and the processing temperature was 130-135°C. 
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The TG curves of PLA 3052D and pine powder are represented in Figure 6 (b). It indicates 
that the thermal decomposition temperature (Td) of PLA 3052D is approximately 300 There is 

Thermal decomposition of pine le lower than that of 
PLA 3052D. That is, pine powder loading may decrease the thermal stability of P-PLA composites. 
However, higher temperature above 600  is needed to burn off the pine powder. 

Figure 7 depicts the morphology of laser-sintered PLA 3052D parts under the varying 
processing temperatures and different laser powers (scanning space 0.2mm, scanning speed 2.0 
m/s). With relative low heat input, it is thought that most parts of PLA 3052D remained in solid-
state sintering with less partial melting, and PLA particles consolidated together near their original 
location. Hence, the corresponding laser-sintered parts look white, and shrinkage and deformation 
of the parts is not apparent. As both processing temperature and laser power increase, less-ordered 

s in the PLA will transform into o . 
Macroscopically, most part of PLA 3052D particles tend to be melted and recrystallized during LS 
processing, causing noticeable shrinkage of the whole laser-sintered part and curling at the part’s 
boundary. At the same time, these laser-sintered PLA 3052D parts show improved mechanical 
properties along with a more semi-transparent appearance.   

(a) DSC curves   (b) TG curves
Figure 6 Thermal behaviors of P-PLA composite and its ingredients

, 16W 

12 , 18W 

, 18W 

, 20W 

, 22W 

, 23W 

Figure 7 Morphology of Laser-sintered neat PLA parts 
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Table 1 records the melt flow index (MFI) of neat PLA 3052D and P-PLA in different mass 
ratios at 150-165 . Generally, melt fluidity of PLA 3052D, 10 wt.% P-PLA, 20 wt.% P-PLA, 30 
wt.% P-PLA improves with the increase of the heating temperature. For P-PLA composites, the 
MFI decreases with increasing pine powder loading from 10-40 wt.%. It is thought that the 
materials’ melt shear viscosity and component compatibility account for the observed dependence 
of MFI on temperature and amount of pine powders. Lots of studies [31-34] prove that the melt 
viscosity of polymer-based composites, within certain conditions, decreases with increasing 
temperature, leading to better melt flowability as well as higher melt flow index. Besides, the non-
molten pine powders increase the melt viscosity of P-PLA, causing a lower MFI with the increasing 
amount of pine powders[35-38]. 

Table 1 Melt flow index of PLA 3052D and P-PLA composites 
Powder materials Melt flow index (The average value, g/ 10 min@2.16Kg) 

150.0°C 152.5°C 155°C 157.5°C 160.0°C 162.5°C 165.0°C 
Neat PLA 3052D 0.21 0.26 7.50 13.63 17.26 23.52 24.96 
10 wt.% P-PLA 0.17 0.23 8.70 12.47 16.01 21.88 22.34 
20 wt.% P-PLA 0 0.21 8.60 11.25 13.37 20.19 17.46 
30 wt.% P-PLA 0 0 1.21 3.86 7.59 10.13 9.42 
40 wt.% P-PLA 0 0 0 0 0 0.22 n/a 

Noteworthily, the highest MFI of P-PLA composites with 20-40wt.% of pine powders is at 
-PLA has almost no melt 

fluidity. The results are probably due to the poor compatibility between non-polar material (PLA 
3052D) and polar material (pine powder), as well as the enlarged difference of melt flowability 
between PLA and pine powder at high temperature.The density, tensile strength and flexural 
strength of laser-sintered parts are listed in Table 2. They decrease with the increase of pine powder 
loading. When pine powder accounts for 30-40 wt.%, laser-sintered P-PLA parts show poor 
mechanical properties and break easily. P-CoPES composite, a kind of wood-plastic composite, is 
also studied by our research team as the feedstock of LS. The comparison of mechanical properties 
between P-PLA and P-CoPES is shown in Figure 8. Both tensile strength and flexural strength of 
laser-sintered PLA 3052D parts are about 3.5 times those of laser-sintered CoPES parts. As the 
matrix of the composite, the performance of either PLA 3052D or CoPES plays a vital role on the 
mechanical properties of the corresponding wood-plastic composite when pine loading varies 
between 5-20 wt.%. Laser-sintered P-PLA parts have much better mechanical properties than laser-
sintered P-CoPES parts. However, when pine loading is above 30 wt.%, mechanical strength of 
laser-sintered parts of P-PLA and P-CoPES drops dramatically compared with that of neat 
polymers. These parts are no longer suitable for service in structural applications.   

Table 2 Mechanical properties of laser-sintered P-PLA parts in different mass ratios 
Laser-sintered parts 

content of pine powder wt.%  
0 10 20 30 40 

Density of parts (g/cm3) 1.11 0.82 0.78 0.56 0.47 
Tensile strength (MPa) 23.02 11.76 5.73 1.92 0.78 
Flexural strength (MPa) 48.03 22.05 11.90 2.88 1.00 
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The decrease in mechanical properties of laser-sintered P-PLA parts with the increase of 
pine powder loading can be explained by their microstructural morphology. As can be seen in 
Figure 9 (a), laser-sintered PLA 3052D parts are relatively dense, PLA particles are almost fully 
melted, and some closed pores exist but are  Some round pits can be seen in laser-
sintered parts of PLA 3052D and 10 wt.% P-PLA, which may be due to vapor formation in PLA 
generated during LS processing, when the mixture is not fully dried or when it absorbs moisture 
from the environment. For laser-sintered parts of P-PLA (Figure 9 (b)-(d)), more pores and 
unclosed channels appear with the increasing amount of pine fibers especially when pine powder 
accounts for 20-30 wt.%. As a consequence, the laser-sintered P-PLA parts are porous. 

(a) Tensile strength  (b) Flexural strength 

Figure 8 A comparation of mechanical properties of laser-sintered parts between P-PLA and P-CoPES 

100 m  

 (a) PLA 3052D 

Pores 

100 m 

 (b) 10 wt.% P-PLA 

channel 

100 m 

 (c) 20 wt.% P-PLA 

100 m 

 (d) 30 wt.% P-PLA 
Figure 9 Microstructures of fracture surfaces of laser-sintered neat PLA parts and P-PLA parts (×100 times) 
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The situation of mechanical performance and morphology of laser-sintered P-PLA parts 
can be correlated with the trend observed in the MFI values as a function amount of pine powders. 
The viscosity of the melt increases with increasing amount of pine thus the MFI decreases. This 
would also mean that the coalescence and sintering kinetics of the polymers would be retarded with 
such that the pores and channels are not filled. 

On the other hand, as the motion of melt PLA particles is limited due to the resistance from 
pine fibers, the shrinkage and residual stress generated from solidification of melt PLA will also 
be reduced along with more pine powder supporting the part structure. Visibly, the deformation of 
laser-sintered P-PLA parts decreases.  

Table 3 lists the dimensional relative error value in the X-Y plane and the Z directions of 
laser-sintered P-PLA parts with differing amounts of pine powder loadings, compared to the 
computer solid model. The calculation of relative error value was based on the formula: 

 =   

 
× 100% . For the results, ‘+’ means dimensional 

expansion, ‘–’ means dimensional shrinkage. Results in Table 3 show that pine powder helps to 
reduce the shrinkage of the laser-sintered parts. It shows that 30 wt.% P-PLA has the lowest relative 
error value in the X-Y plane and 40 wt.% P-PLA has the lowest relative error value in the Z 
direction.  

Table 3  The dimensional relative errors of laser-sintered PLA 3052D and P-PLA parts 

4. Conclusions

Pine-PLA 3052D (P-PLA) parts in different mass ratios were successfully manufactured 
using laser sintering (LS) technology. P-PLA composite is a type of fully-degradable, nontoxic, 
environmentally friendly wood-plastic composite which meets the needs of sustainable 
development. A proper range of processing parameters for laser sintering P-PLA composite were 
obtained according to the thermal characteristics of the mixture and LS tests. The effects of pine 
powder loading on the forming properties of laser-sintered P-PLA parts were investigated, and the 
results show that the pine powder loading improves layer surface flatness during the process of 
transferring P-PLA composite from the device feed cylinder to the work bed. Meanwhile, the 
deformation of laser-sintered parts caused by the shrinkage and curling of PLA 3052D declined 
with increasing additions of pine powder. However, the melt flowability of P-PLA composite and 
mechanical strength of laser-sintered parts were weakened as the pine loading increased. There is 
a need to look for a balance between dimensional accuracy and mechanical properties for P-PLA 
composites according to specific applications. 

At the same time, it is essential to improve the morphology and size of P-PLA particles as 
well as the compatibility of the two ingredients. A series of theoretical combined practical studies 
should be carried out to optimize the performance of laser-sintered P-PLA parts such as the 
mechanical properties, the surface quality and dimensional accuracy. The project of laser sintering 

Laser-sintered parts 
content of pine powder wt.%  

0 10 20 30 40 

Relative error value 
(%) 

The X-Y plane -4.0 -2.27 -0.85 -0.31 -2.15
The Z direction -3.25 +0.63 +2.25 +2.25 +0.13
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of P-PLA is still facing opportunities and challenges before PLA-based WPC is widely used as a 
commercial feedstock for LS. 
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