


The decrease in mechanical properties of laser-sintered P-PLA parts with the increase of 
pine powder loading can be explained by their microstructural morphology. As can be seen in 
Figure 9 (a), laser-sintered PLA 3052D parts are relatively dense, PLA particles are almost fully 
melted, and some closed pores exist but are �O�H�V�V���W�K�D�Q�����������P�� Some round pits can be seen in laser-
sintered parts of PLA 3052D and 10 wt.% P-PLA, which may be due to vapor formation in PLA 
generated during LS processing, when the mixture is not fully dried or when it absorbs moisture 
from the environment. For laser-sintered parts of P-PLA (Figure 9 (b)-(d)), more pores and 
unclosed channels appear with the increasing amount of pine fibers especially when pine powder 
accounts for 20-30 wt.%. As a consequence, the laser-sintered P-PLA parts are porous. 

(a) Tensile strength  (b) Flexural strength 

Figure 8 A comparation of mechanical properties of laser-sintered parts between P-PLA and P-CoPES 

100 ��m  

 (a) PLA 3052D 

Pores 
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 (b) 10 wt.% P-PLA 

channel 
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 (c) 20 wt.% P-PLA 

100 ��m 

 (d) 30 wt.% P-PLA 
Figure 9 Microstructures of fracture surfaces of laser-sintered neat PLA parts and P-PLA parts (×100 times) 
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The situation of mechanical performance and morphology of laser-sintered P-PLA parts 
can be correlated with the trend observed in the MFI values as a function amount of pine powders. 
The viscosity of the melt increases with increasing amount of pine thus the MFI decreases. This 
would also mean that the coalescence and sintering kinetics of the polymers would be retarded with 
such that the pores and channels are not filled. 

On the other hand, as the motion of melt PLA particles is limited due to the resistance from 
pine fibers, the shrinkage and residual stress generated from solidification of melt PLA will also 
be reduced along with more pine powder supporting the part structure. Visibly, the deformation of 
laser-sintered P-PLA parts decreases.  

Table 3 lists the dimensional relative error value in the X-Y plane and the Z directions of 
laser-sintered P-PLA parts with differing amounts of pine powder loadings, compared to the 
computer solid model. The calculation of relative error value was based on the formula: 

 =   

 
× 100% . For the results, ‘+’ means dimensional 

expansion, ‘–’ means dimensional shrinkage. Results in Table 3 show that pine powder helps to 
reduce the shrinkage of the laser-sintered parts. It shows that 30 wt.% P-PLA has the lowest relative 
error value in the X-Y plane and 40 wt.% P-PLA has the lowest relative error value in the Z 
direction.  

Table 3  The dimensional relative errors of laser-sintered PLA 3052D and P-PLA parts 

4. Conclusions

Pine-PLA 3052D (P-PLA) parts in different mass ratios were successfully manufactured 
using laser sintering (LS) technology. P-PLA composite is a type of fully-degradable, nontoxic, 
environmentally friendly wood-plastic composite which meets the needs of sustainable 
development. A proper range of processing parameters for laser sintering P-PLA composite were 
obtained according to the thermal characteristics of the mixture and LS tests. The effects of pine 
powder loading on the forming properties of laser-sintered P-PLA parts were investigated, and the 
results show that the pine powder loading improves layer surface flatness during the process of 
transferring P-PLA composite from the device feed cylinder to the work bed. Meanwhile, the 
deformation of laser-sintered parts caused by the shrinkage and curling of PLA 3052D declined 
with increasing additions of pine powder. However, the melt flowability of P-PLA composite and 
mechanical strength of laser-sintered parts were weakened as the pine loading increased. There is 
a need to look for a balance between dimensional accuracy and mechanical properties for P-PLA 
composites according to specific applications. 

At the same time, it is essential to improve the morphology and size of P-PLA particles as 
well as the compatibility of the two ingredients. A series of theoretical combined practical studies 
should be carried out to optimize the performance of laser-sintered P-PLA parts such as the 
mechanical properties, the surface quality and dimensional accuracy. The project of laser sintering 

Laser-sintered parts 
content of pine powder wt.%  

0 10 20 30 40 

Relative error value 
(%) 

The X-Y plane -4.0 -2.27 -0.85 -0.31 -2.15
The Z direction -3.25 +0.63 +2.25 +2.25 +0.13
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of P-PLA is still facing opportunities and challenges before PLA-based WPC is widely used as a 
commercial feedstock for LS. 
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