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Abstract 

Aesthetic dentures are highly individual products, needing to adapt to the patient’s natural 
dentition in both color and shape. In general, dentures are geometrically complex structures, 
consisting of several layers of different materials, which are applied consecutively. This is why 
efforts are being made to introduce additive manufacturing into the production process of aesthetic 
dentures which is to date largely based on manual work of skilled professionals. In order to 
successfully apply additive manufacturing accurate models of the denture to be produced are 
essential. In this paper the layer arrangements of dental crowns from real patient cases are analyzed. 
Different approaches, based on normal vectors, cylindrical coordinates, spherical coordinates and 
paraxial rays, are compared to each other. The emphasis of this comparison lies on transferring 
layering strategies from analyzed patient cases to future patient cases where the geometry might be 
slightly different but a similar optical impression is desired. The most suitable approach for this 
purpose has been identified, implemented and tested. 
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Introduction 

The potential for additive manufacturing in dentistry is immense. Dentures are of highly 
individual shape and are produced in quantities of one [7; 9; 10]. Layering strategies must be 
applied to mimic natural properties of teeth and allow for a wide variety of shades [22; 23]. The 
strengths of additive manufacturing – capabilities for complex and small geometries [5], method-
immanent use of layers [19], energy and material efficiency [25], wide range of usable materials 
and material combinations [5] – can be optimally exploited. Production time and costs can 
potentially be reduced as well as the quality of the final product improved if a shift is being made 
from manual work of dental technicians to machine-based production. 

Typical materials for dental restorations include metals, polymers and ceramics [4; 6]. 
This work focuses on dental crowns, i.e. replacement of single teeth, in the form of milled 
frameworks which are veneered with ceramic materials. Translucency is a distinctive 
differentiation criterion for veneering materials [1; 28]. The framework material is usually opaque. 
Materials of following layers allow for light trespassing and therefore offer the technician 
possibilities to create an optical impression as natural as possible. For example, lighter colors at 
the cutting edge of a tooth, white spots or translucent effects of yellowish and greyish colors can 
be realized. Apart from their translucency properties the base colors of the materials are of 
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importance [20]. Professional suppliers of dental materials offer wide varieties of color 
palettes [17]. 

Layering strategies are essential to create dentures of high aesthetic value. Thicknesses of 
layers [24] contribute to the final color impression [16]. Generally speaking, the thicker a layer is, 
the less visible are color and shape of the underlying layers. Also, the less translucent a material is, 
the less visible are color and shape of the underneath. In addition, the base colors of the materials 
of all different layers have an influence on the color that is perceived on the outer surface of the 
denture. Until now, experience and skills of dental technicians are relied upon to adjust veneering 
layers of dentures correctly [11; 18; 29]. In order to enable the use of additive manufacturing it is 
important to create a digital representation of these layers. In this way, they become reproducible 
and can be passed on to material-applying machines. That is where this work sets in. Layer 
arrangements of existing dental crowns are analyzed by different approaches. The underlying aim 
is to be able to store layer arrangements and transfer them to future patient cases where the specific 
color impression is needed again.  

Data base 

For this work single crown dentures from 30 anonymized patient cases have been 
analyzed. They are all dentures to replace front teeth. These dentures have been produced by one 
and the same dental technician in a laboratory of current standards, namely Form For Function 
GmbH, located in Darmstadt, Germany. The dental technician at work digitized the dentures after 
every applied material. They are each available as 3D scans and photos. The files stemming from 
the 3D scans are in STL format. Fig. 1 gives an example of such a digitized production step.  

Fig. 1: (a) STL model and (b) photo of a denture 

The dentures analyzed in this work are based on materials from VITA Zahnfabrik GmbH. 
Color 3M2 has been chosen as it is a common color in dental practice. Enamic is used as the 
framework material. LC flow is used for the veneering steps. Fig. 2 depicts the used materials. 

(a) (b) 
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Fig. 2: (a) VITA Tooth Guide 3D-Master to determine a patient’s tooth color, (b) VITA Enamic block for milled frameworks, 

(c) VITA VM LC flow for application of upper layers [26] 
 
The most simple layering strategy consists of the framework milled out of Enamic, one 

veneering layer of dentine LC flow (to model the overall body) and one veneering layer of enamel 
LC flow (to model the cutting edge). Additionally, the tooth stump is relevant [7]. It is not part of 
the denture, but part of the remaining tooth substance in the patient’s jaw. The finalized denture 
will be fitted onto the tooth stump. The stump therefore defines the inner contour of the framework 
and is for that reason included into the 3D STL models. Fig. 3 depicts one example of a simple 
layer arrangement. Further layers can become necessary when there are more complex color effects 
to be modeled.  
 

 
Fig. 3: Example of a layer arrangement (white = tooth stump, red = framework, blue = dentine, yellow = enamel) 

 
Comparison of possible approaches 

 
Determining the thickness of a layer as shown in Fig. 3 is a complex endeavor. Each layer 

is a three-dimensional object that varies in its thickness over the entire freeform surface, with the 
variations taking place in small value ranges. In addition to measuring the layer thicknesses, the 
approach this paper aims for should also be able to transfer the layer arrangement to a future patient 
case. It is assumed that for such a potential future patient case the contours of the tooth stump and 
the outer silhouette are given. The first being determined by what is left of the original tooth and 
how the dentist grinds it down. The latter being determined by the adjacent teeth in the patient’s 

(a) (b) (c) 
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jaw. Again 3D scanning devices, e.g. intra oral scanners, could be used to digitize these two 
limiting contours.  

When discussing thicknesses, it should be pointed out how the term thickness is 
understood. Generally, thickness is conceived as a cross-sectional expansion of a body [27], 
measured in the direction of the surface normal from a lower surface to an upper surface. This 
paper complies with this definition. For all layers of translucent materials the actual thickness 
measured along the surface normal is what defines to which extent underlying structures are visible 
and contribute to the color impression. Only if this thickness is applied to a new denture in a new 
patient case it is ensured that the color impression at a certain point resembles the color impression 
of the original denture at the corresponding point. Whenever thicknesses are not measured in 
normal direction in the approaches presented in the following sections it will be pointed out in their 
description.  

I. Normal vector approach

Since the 3D models at hand are available as STL files, i.e. with triangulated surfaces, it 
is an obvious choice to use the existing normal vectors of the model’s triangles. The analyzed files 
contain between 50.000 and 75.000 triangles per layer surface. Even higher resolutions could be 
achieved in the scanning process. Thus, information about layer thicknesses at an almost unlimited 
number of locations can the obtained. Fig. 4 shows how normal thicknesses are measured in a 
dental crown model.  

Fig. 4: Schematic representation of the normal vector approach with some exemplary measuring points 

The main advantage of using the normal vector approach is that the correct thicknesses 
(i.e. thicknesses in surface normal direction) are measured and no need for error handling arises. 
Apart from that, all areas of the tooth are included into the calculation as all normals of all triangles 
are used. However, one difficulty of the approach is to determine in which direction it should be 
applied. When working with normal vectors it does make a difference whether distances are 
measured from the lower to the next-highest layer or the other way around. Fig. 5 illustrates this 
fact. 
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Fig. 5: Visualization of the directional dependency of the normal vector approach  

(green = thicknesses measured from the inside outwards, blue = thicknesses measured from the outside inwards) 
 
In both cases, when measuring from the inside to the outside and when measuring from 

the outside to the inside, extremely large values for layer thicknesses can occur. This is the case 
whenever a triangle exhibits a large slope. The upper arrow in Fig. 4 is an example of this 
phenomenon. These values are not to be considered incorrect as they do capture the distance to the 
next layer in the defined way. However, such values may cause difficulties when it comes to 
transferring the layer arrangement to another patient whose tooth’s inclination angles are not as 
severe. In even more extreme cases, the normal vector of a steep surface may not hit the next layer 
at all, but the current layer again. This effect occurs in particular when measuring from the outside 
to the inside. The respective values should be excluded because they don’t contain any information 
about the layer’s thickness. Fig. 6 illustrates both cases of normal vectors on steep surface areas.  

 

 
Fig. 6: Examples of extreme values for the normal vector approach  

(orange = extreme thickness that can still be used, red = no thickness information) 

The task of transferring layer arrangements measured along normal vectors is problematic 
as a whole. The triangles of the meshes of the target denture (of the new patient) will differ greatly 
from those of the analyzed denture (from another patient). Both tooth stump mesh and outer contour 
mesh are highly individual. It cannot be assumed that similarity in position and orientation of 
normal vectors exists. Thus, a complex mapping of the measured thicknesses onto the new surfaces 
would need to be developed. 
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II. Cylindrical coordinates approach 
 

 Working with an approach based on cylindrical coordinates can be imagined as if an 
enveloping cylinder was placed around the denture to be analyzed. With the help of the coordinates 
z (height), ρ (radius) and φ (angle) the denture can be measured in slices. Slices increase by a 
defined increment Δz. A number of angles φ1 to φn has to be defined at whose positions the 
thicknesses of the layer arrangement are measured. The resolution of this approach can be 
improved by increasing the number of slices and angle positions. Fig. 7 illustrates the approach.   

 

         
Fig. 7: Schematic representation of the cylindrical coordinates approach with some exemplary measuring points;  

(a) side view, (b) top view 
 
This approach is not direction dependent as the normal vector approach is. Whether 

thicknesses are measured from the coordinate system center outwards or from the cylinder surface 
inwards makes no difference. Another advantage is that implementation becomes easier compared 
to the normal vector approach. No loops are needed to go through all triangular facets and gather 
the respective normal vectors. For this approach only the bounding cylinder has to be determined 
based on the dimensions of the denture. Thickness measurements are then based on this cylinder 
and its segmentation. 

 
A downside of the cylinder approach is that the bounding cylinder is not always easy to 

find. It has to be reflected upon which position the point of origin shall take. It could either be 
determined purely based on the outer contour of the denture or it could be chosen to coincide with 
a dentistry relevant point such as positions of cusps or fissures or the tooth’s center of mass. Further, 
it could be argued that the orientation of the cylinder should follow the orientation of the tooth 
stump or that of the insertion direction of the finished denture. However, even if factors are chosen 
that are prominent on the tooth or significant for the dentist, the difficulty of transferring it to the 
next patient still arises. As all tooth geometries are very individual, the transfer process might not 
yield satisfying results for the new patient.  

 
Assuming that a reference system for the cylinder has been found, there is still a necessity 

for a scaling step from the existing denture to the new patient case. This concerns the cylindrical 
slices. If the second tooth is larger than the first one, they need to be upscaled. Fig. 8 gives an 
example of such an upscaling process. Otherwise, if the second tooth is smaller, the slices need to 
be downscaled. The angles φ1 to φn are retained as they are. 
 

(a) (b) 
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Fig. 8: Transfer of a layer arrangement onto a new tooth for the cylindrical coordinates approach 

 
What is more, when working with cylindrical coordinates there will be areas of the tooth 

that are poorly covered. Especially in the upper region, when a cylindrical slice does not contain 
all layers anymore, measurements of thicknesses become infeasible. The reference of the next-
lower layer is then missing. The phenomenon is illustrated in Fig. 9. 

 

         
Fig. 9: Missing thickness information in the upper section of the bounding cylinder; (a) side view, (b) top view 

 
Apart from some missing thickness values in the upper tooth regions, it should be stated 

that the thickness values in general vary from those obtained in the normal vector approach. The 
values here are not measured along surface normals and are therefore not as accurate when it comes 
to capturing what determines the color impression. Fig. 10 shows how these two types of measured 
thicknesses can differ from each other.  

 

 
Fig. 10: Deviations between normal thicknesses (green) and horizontal thicknesses (red) 

(a) (b) 
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The differences become particularly large in areas with steep gradients. However, it can 
be argued that the error that is committed by not using normal directions for measuring can be 
minimized by increasing the resolution. 
 

III. Spherical coordinates approach 
 

The approach based on spherical coordinates is similar to the one based on cylindrical 
coordinates. Except that an enveloping sphere is chosen here. The sphere and positions within the 
sphere can be described by r (radius), θ (polar angle) and Φ (azimuthal angle). The radius is defined 
by the size of the tooth. The more rays, each described by the respective pair of θi and Φi , are used, 
the higher the resolution. Fig. 11 shows some rays cast through a denture in a bounding sphere. 
 

 
Fig. 11: Schematic representation of the speherical coordinates approach with some exemplary measuring points 

 
The benefit when compared to the cylindrical approach is that it does not leave regions of 

the tooth uncovered. Again it is independent of the direction of application. Whether thicknesses 
are measured from the sphere’s surface inwards or from the center point outwards is irrelevant. 
Implementation is as convenient as described for the cylindrical approach. The effort to create 
loops over all normal vectors can be avoided here as well, since only the sphere and its division are 
needed as a basis.    

 
However, the problem of finding an adequate reference system for transferring layer 

arrangements from one patient to another remains. It is as critical to find a suitable center point for 
the sphere as it is for the cylinder. Again the center of mass of the stump or the final denture might 
suggest themselves, yet they vary greatly from person to person. The only advantage gained is that 
the sphere only needs a center point, not the additional longitudinal direction the cylinder needs.  

 
When working with spherical coordinates no scaling is needed for a new patient case. 

Only the radius of the sphere will be different, but all pairs of θi and Φi stay exactly the same. Only 
these rays are needed to determine the layers for the new patient along them. 

 
Similar to the cylindrical approach, it has to be taken into account that the thicknesses 

measured are not normal distances. Fig. 12 shows how the two types of thickness values may differ 
from each other. In this case, they show these deviations independent of surface inclinations.  
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Fig. 12: Deviations between normal thicknesses (green) and spherical thicknesses (red) 

 
IV. Paraxial ray approach 

 
The enveloping body for the paraxial ray approach is a cuboid. This bounding box has its 

dimensions defined according to the axes of a Cartesian coordinate system, typically denoted by x 
(length), y (width), z (height). The fact that Cartesian coordinates are the ones most commonly used 
and that today’s CAD systems offer built-in functions to create bounding boxes for a body makes 
this approach especially convenient to apply. 
 

Paraxial rays in this context mean straight lines that go through the bounding box. They 
are placed through the cuboid in all three coordinate directions, with defined intervals Δx, Δy and 
Δz. By reducing the intervals, the resolution of the approach can be scaled up. If there is an interest 
in one particular direction, e.g. because the tooth exhibits peculiarities on the cutting edge, the 
interval for this direction can be reduced in a targeted way. For each ray the thicknesses of the 
layers are measured in the direction of the ray. Fig. 13 shows an example of a bounding box and 
the casted paraxial rays.   

 

       
Fig. 13: Schematic representation of the paraxial ray approach with some exemplary measuring points; 

(a) side view, (b) front view 
 
The major advantage of this approach is that no reference system has to be chosen if the 

layer arrangement is to be transferred. Only the outer contour of the existing tooth and the outer 
contour of the new tooth need to be known as they are what defines the bounding boxes. These 
contours are known by definition of the use case discussed in this paper. However, scaling becomes 
necessary to determine the layers for the new patient case as it cannot be assumed that the bounding 
boxes will be of identical size. This is carried out by adjusting the intervals. The number of rays 

(a) 

(b) 
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per direction stays the same so that no information is lost nor artificially generated. Fig. 14 
illustrates the scaling process for the case that the new tooth is bigger than the original one.   

 

 
Fig. 14: Transfer of a layer arrangement onto a new tooth for the paraxial ray approach 

 
Again it is an approach that is independent of the direction in which it is carried out. It 

does not matter whether thicknesses are measured in or against the respective coordinate direction. 
It should only be considered that in two directions there will be two sets of thicknesses (front – 
back and left – right) while in one coordinate direction there will be only one set of thicknesses 
(upwards to the cutting edge). This is due to the fact that the denture is open in the lower area where 
it is to be placed on the tooth stump in the patient’s jaw. It can be assumed that the entire tooth is 
well covered by taking into account all three coordinate directions. Implementation is even more 
feasible than described for the spherical and cylindrical approach. 

 
A challenge that remains is to account for the fact that distances are not measured along 

surface normal direction. Similar to the cylindrical approach (see Fig. 10), paraxial thicknesses 
may differ from normal thicknesses. Differences are especially significant when slopes are steep. 
The issue can partially be resolved by keeping the resolution high. 
 

V. Conclusion 
 

Based on the discussion of the approaches in the above sections, a decision is being made 
to pursue the paraxial ray approach further. The advantage which particularly drives this decision 
is that this approach offers independence from a reference system. This is of great importance for 
the use case this paper deals with, namely the transfer of a layer arrangement from one patient to 
another. 

 
Furthermore, implementation of the paraxial approach provides a solid foundation for 

further development. It can be experimented with different resolutions and different patient cases 
for the transfer process. If it can be proven that results of sufficient quality are produced by this 
approach, the elaborate development of a reference system can justifiably be disregarded. If the 
opposite scenario occurs, the implementation of this approach can nevertheless act as a benchmark 
against which it can be measured how much other approaches improve accuracy. 
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Implementation 
 

For programming purposes the CAD (Computer Aided Design)/CAM (Computer Aided 
Manufacturing) software Pictures by PC 3.8 [21] has been used. It comes with its own object-
oriented programming language, which is based on BASIC (Beginner’s All-purpose Symbolic 
Instruction Code) [2]. Thus, one and the same environment can be used to load, align and modify 
dental models as well as to apply self-written algorithms to them. 

 
When implementing any of the approaches mentioned in sections I to IV the questions of 

how to detect intersection points arises. Since all models are in STL format, i.e. are assembled of 
a multitude of triangles, and all approaches apply some kind of lines cast through the model, it is 
important to know when a line hits a triangle. The distance from an intersection point of a line and 
a triangle to the next intersection of the same line and a triangle of the next-higher layer is what 
defines the thickness in the respective approach. 

 
A ray-triangle-intersection (RTI) algorithm that is well established is the one proposed by 

Möller and Trumbore [15]. It stems from the field of computer graphics where it is commonly 
implemented for ray tracing computations [14]. In this work it is chosen because of its 
computational efficiency. The reason for this characteristic is that it does not require a pre-
calculation of the plane in which the triangle containing the intersection point lies.  

 
The algorithm is based on barycentric coordinates [8]. This means that a transformation 

from the overall global coordinate system to a system based on the vertices of the triangle is made. 
In barycentric coordinates a point T that lies within a triangle defined by vertices V0, V1 and V2 
can be described as follows [15]:  

 
 T(u,v) = (1 – u – v)V0 + uV1 + vV2 (1) 

 
with u and v being the coordinates which must satisfy the conditions u ≥ 0, v ≥ 0 and 

u + v ≤ 1. 
 
A parametric definition of a line, i.e. of the ray in this scenario, is the following [15]:  
 

 R(t) = P + tD (2) 
 

with R being an arbitrary point on the line, P being the starting point which has been 
chosen to define the line, D being its direction vector and t the distance traveled from the starting 
point in the direction of D to end up in R. 

 
If now a triplet (t, u, v) is found that satisfies both equations it is the intersection point 

between ray and triangle. For further implementation matters the reader is referred to [14]. 
 
To ease the interaction with the user, a graphical user interface (GUI) is desired for the 

application presented in this paper. The user shall have the opportunity to enter values for the 
number of rays in x, y and z direction. The interval values Δx, Δy and Δz are then calculated by 
dividing the size of the bounding box by the number of rays + 1. Fig. 15 shows how this GUI is 
realized in the Pictures by PC software.  
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Fig. 15: Graphical user interface for the implemented layer transfer algorithm 

 
To give an overview of the entire implementation for the analysis of the layer arrangement 

of a denture and for the transfer of this arrangement onto a new tooth with only the outer contour 
and the contour of the tooth stump known, a flowchart is given in Fig. 16.  
 

                                 
Fig. 16: Flowchart of the implemented layer analysis and transfer algorithm; 

(a) entire process, (b) analysis subroutine, (c) transfer subroutine 

The fact that the first rhombus in Fig. 16 (a) checks the number of mesh bodies originates 
from the considered use case (transfer of a layer arrangement from one patient to another). It is 
assumed that all dentures have at least 3 layers (see Fig. 4 for example). 3 layers equal 4 mesh 
bodies, namely the tooth stump contour, the framework outer contour, the dentine outer contour 

(a) (b) (c) 
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and the enamel outer contour. For the new denture it is assumed that only 2 of these meshes are 
known (see Fig. 8, right part, for example). Those two are the tooth stump contour as it is captured 
by an impression or 3D scan created at the dentist and the outer contour which is determined by 
the adjacent teeth and captured by the dental technician via CAD software. The boundaries of the 
inner layers of the new denture are calculated by the algorithm.  

 
Results 

 
Thicknesses of the different layers a denture consists of could successfully be measured 

by the paraxial ray approach and the respective implementation. Within the available patient cases 
as described under Data Base thicknesses of the core layer (first layer on the tooth stump, created 
out of VITA’s Enamic material) vary around a mean of 1.9 mm in their maximum values. Maxima 
of the dentine layer (middle layer, created out of VITA’s 3M2 LC flow dentine) vary around a 
mean of 0.2 mm. For the enamel layer (outermost layer, created out of VITA’s 3M2 LC flow 
enamel) maximum thicknesses fall around a mean of 0.5 mm. These results are plausible when 
considering that the core layer is the most massive one, responsible for the structural integrity of 
the denture [13], and that the enamel layer is the one used for creating the cutting edge and therefore 
contributes to large values in height direction. Other layers for more complex color effects are not 
listed here, but can nevertheless be measured by the same described means. 

 
Fig. 17 gives an example of a layer transferred to a new denture. Green dots stand for the 

intersection points between rays and triangles which were recorded for the original denture and 
then applied onto the new one shown here. Another point cloud would appear on top of the green 
one to make the simple three-layer strategy complete.  
 

 
Fig. 17: Result of a layer transferred onto a new denture 

 
Summary and Outlook 

 
The approaches to analyze layer arrangements of dentures that have been compared in this 

paper include a normal vector approach, a cylindrical coordinate approach, a spherical coordinate 
approach and a paraxial ray approach. Advantages and shortcomings of each of these approaches 
have been pointed out. The direction of thickness measurements and the choice of a reference 
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system for the transfer to new patient cases have turned out to be a particular focus. Even though 
measurements along normal vectors are desirable as they are in line with the general definition of 
thickness, a decision has been made for the approach based on paraxial rays for transferability and 
implementation reasons. Implementation steps using the software environment Pictures by PC 3.8 
have been explained. Finally, exemplary results of layers measured in dentures stemming from the 
data base at hand have been presented.  

 
The work presented in this paper is of initial, fundamental character. Further steps must 

be taken in order to make the chosen and implemented approach fully operational for additive 
manufacturing of dental prostheses. These steps involve the creation of surfaces through given 
points. So far, as can be seen in Fig. 17, the layer arrangement when transferred to a new tooth is 
present in form of point clouds. Delaunay triangulation [3] or Marching Cubes [12] could be used 
to create surfaces out of these points and thus define the exact dentine and enamel layers for the 
new patient. 

 
Assuming that materials and machines are sufficiently adapted to be utilized for additive 

manufacturing in dentistry, the implementation described here could be used to produce prototypes 
of dentures. With the availability of real physical prototypes it can be checked whether the optical 
impression, especially in terms of colors, is achieved as expected. For example, the so-produced 
prototypes could be compared to others from manual production, could be exposed to different 
light conditions or inserted into a patient’s jaw to assess the optical interaction with the natural 
teeth around. If the aesthetic aspirations are not met, it is recommended to compare the proposed 
approach to the normal vector one. The normal vector approach, even though more elaborate with 
regard of implementation and transfer, ensures the exact measurement of thicknesses. If necessary, 
modifications must be made to the existing approach, e.g. adjustments of the resolution, or it may 
even become necessary to switch to the normal vector approach and find a suitable reference 
system for transferring it onto new teeth.  
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