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Abstract

In this paper, a universal material template is developed to digitally describe the
materials with spatially distributed compositions and microstructures for multiscale design and
modeling of additive manufacturing processes. The developed template is organized in the
form of a multi-level hierarchical structure. The root node of a material template contains four
sub-nodes. They are “descriptors list”, “constituent materials”, “position information” and
“primitive information”. The format of each sub-node has been given in this paper to help users
to establish a standardized description of microstructures of materials. To validate the
effectiveness of the proposed template, the microstructures of two different types of commonly
used materials in additive manufacturing processes are reconstructed from the pre-defined
material templates. The results show the developed material template can accurately and
precisely control the microstructures of materials. Based on the developed material template,
the multiscale heterogeneous modeling method can be developed in the future.

1 Introduction

Additive Manufacturing (AM) technologies provide great design freedom on the parts
with both complex geometries and material distributions [1]. Both materials’ compositions and
microstructures can be spatially varied by carefully tuning the process parameters during the
fabrication [2]. These AM fabricated heterogeneous objects can achieve superior performance
especially in the applications where multifunctional requirements are simultaneously
expected[3].

To digitally describe the heterogeneous object in a computer, both geometry and
materials of the heterogeneous object need to be modeled. In general, the heterogeneous object
modeling process can be divided into two portions: geometric modeling and material modeling.
Among them, the geometric modeling process focuses on representing the geometry of a
designed object, while the material modeling process is developed to describe the material
distribution inside the object. According to the survey from Kou and Tan [4], the
heterogeneous object model can be generally described by a fiber bundle E3 x E¥, where
geometry space E? is the base space, the material space E* is the fiber space. k is the number
of constituent materials under the investigation. In the past, most heterogeneous modeling
methods only focus on the material compositions, where the detailed microstructures of the
material are not considered. This approach is only appropriate for those Functionally Graded
Materials (FGMs) whose microstructures don’t change spatially. When it comes to those
heterogeneous materials with spatially varied microstructures, this type of heterogeneous
modeling method is no longer effective.

To solve this problem, material descriptors were developed to quantitatively
characterize the materials with stochastically distributed microstructures. These descriptors
cannot only be used to describe material compositions but also are able to characterize the
shape of the material’s microstructure. For example, n-point correlation functions have been
widely used to quantitively describe the distances between different phases [5]. These
descriptors also have strong relations to the properties of materials. Some existing research
shows two-point and three-point correlation function are closely correlated to the elastic
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stiffness of the materials [3], while strain localization and damage evolution are sensitive to
the higher order of n-points correlation functions [4]. Besides n-point correlation functions,
Minkowski functionals[6] are another type of descriptors that have been used to characterize
the microstructure of materials. They have been successfully used to describe the particle-based
materials as well as materials generated with randomized Voronoi tessellations [7]. In addition
to that, Cumulative Distribution Functions (CDFs) [8, 9] have also been used as a type of
material descriptor to directly describe the size or shape of microstructure. Particularly, the size
or shape of stochastically distributed microstructures is characterized by a group of random
variables whose CDFs are given. Compared to those material descriptors based on n-point
correlation functions, CDFs have more clear physical meaning. They can be obtained from the
Scanning Electron Microscope (SEM) or EBSD (Electron Back Scatter Diffraction) images of
materials [10]. Moreover, they also enable the reconstruction of material microstructures.
Several algorithms [9, 10] have been developed to reconstruct the microstructures of poly-
crystal metals based on their CDFs.

Even though CDFs have some advantages compared with other material descriptors, it
should be noticed that it is still difficult to parametrically describe CDFs spatially. Moreover,
every specific type of materials has its own CDFs. Even for the same type of materials, different
designers may use different CDFs to describe its microstructure. Thus, there is a barrier to data
exchange and re-use. To solve these issues, a universal material template is developed in this
paper. The developed material template aims to provide a universal standardized description
of material microstructures. It has two unique capabilities. Firstly, the developed template can
be applied to all types of materials including the materials with stochastic microstructures such
as polycrystalline metals, short fiber-reinforced composites, and the materials with periodic or
architectured microstructures, such as lattice or cellular materials. Secondly, based on the
descriptors defined in a material template, a heterogeneous object can be accurately described.
Based on the distribution of material descriptors, the microstructure of the heterogeneous object
can be reconstructed for simulation or fabrication purposes.

The rest portion of this paper is organized as followed. In Section 2, the detailed
structure of the developed material template will be introduced. Then, two examples will be
presented in Section 3 to illustrate how the developed material template can be used to
reconstruct the microstructure of the described materials. A short summary and future research
directions will be concluded at the end of this paper.

2. Universal Material Template

The universal material template developed in this paper aims to provide a standardized
procedural description of the mesoscale or microscale structures of materials. It is organized in
a hierarchical manner and represented by a tree structure. The first level of this template is
illustrated in Figure 1. Four sub-nodes are attached under the root node of the material template.
These four sub-nodes will be introduced respectively in the following contents of this section.

material template: template name

descriptors_list |

constituent_materials |

position_information |

INNNI

primitive_information |

Figure 1 Material template: Level 1
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2.1 Descriptors list

The first sub-node defined under the root node of a material template is
“descriptors_list”. Under this sub-node, the descriptors which are used to control the shape and
size of material microstructures are defined. The Backus—Naur form (BNF) of this sub-node is
defined as:
<descriptors_list>::=<descriptor node>{,<descriptor node>}
<descriptor node>::= <descriptor name> , <descriptor _type><descriptor range>
<descriptor name>::= <string>
<descriptor_type>::= “double”| “int”

The descriptors defined under this sub-node can be divided into two groups. The first
group of descriptors is used to directly control the size and shape of material microstructures.
For example, as shown in Figure 2, the cell size [, and the strut dimension d are two descriptors
defined under this sub-node of Body-Centered Cubic (BCC) lattice materials. By changing
these two descriptors, designers can obtain a series of BCC lattice with different
microstructures.

The second group of descriptors defined under this sub-node is used to control the
probability distribution of the size and shape of material microstructures. This group of
descriptors is mainly used for the materials consisting of stochastically distributed
microstructures. The size and shape of these materials’ microstructures are directly controlled
by a series of random variables. The probability distributions of these random variables are
controlled by these descriptors. For example, Figure 3 shows a “descriptors list” node of a short
fiber-reinforced material. In this node, nine different descriptors are defined. Among these nine
descriptors, only v¢ is used to directly characterize the volume fraction of reinforced fibers. The
other eight descriptors are used to control the Probability Density Function (PDF) of random
variables. These eight descriptors can be further divided into four groups. Among them,
descriptor (pg,04) is a group of descriptors used to describe the distribution of the fiber
diameter. (Hg, 0g) and (g, 0g) are two groups of descriptors used to describe two random

variables 0 and ¢. These two random variables are used to define the fiber orientation. The
detailed discussion of these two random variables will be illustrated in sub-Section 2.2.4. The
last group of descriptors (W, ;) is used to characterize the length distribution of fibers. Based
on these eight descriptors, the fiber’s orientation, length, and diameter can be fully described.

descriptors_list

descriptor_node 1
descriptor_name:l,

———O type:double

descriptor_ node 2
descriptor_name: d

———O type:double

Figure 2 A “descriptors_list” node for BCC lattice
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— descriptors_list
descriptor_node 1

———Odescriptor_name: Ha
——O type:double
® descriptor_node 2
———Odescriptor_name: gy
——O type:double
® descriptor_node 3
———-ODescriptor_name: Ug
———O type:double
® descriptor_node 4
———~Odescriptor_name: dg
——O type:double
® descriptor_node 5
———0Odescriptor_name: K¢
————O type:double
® descriptor_node 6

(a) short fiber reinforced composite Odescriptor_name: 05
——O type:double
@ descriptor_node 7

————Odescriptor_name: [

——O type:double
® descriptor_node 8

———Odescriptor_name:a;-
———O type:double
® descriptor_node 9
———-~O0descriptor_name:v¢
——O type:double

(b) “descriptors_list” node of short fiber
reinforced composite

Figure 3 A “descriptors_list” of a short fiber reinforced material

2.2 Constituent materials

The second sub-node defined under the root node of a material template is the
“constituent materials” node. Under this sub-node, all the constituents contained in the
material’s microstructure need to be described. The BNF definition of the
“constituent _materials” node is provided as:
<constituent_materials>::=<material>{,<material >}
<material>::=<material name>,<type>,[volume_fraction][,<template name>,<values>]
<material name >::= <string>
<type>::=inclusion/matrix
<volume_fraction>::=<double>|<descriptor>
<template name>::=<string>
<values>::= <double>|<int>|<descriptor>{,<double>|<int>|<descriptor>}

Under the “constituent materials” node, “material” sub-nodes are defined to represent
its material constituents. Each “material” node is described by a string representing its name.
In general, material constituents described under the “constituent materials” node can be
classified into two groups: matrix and inclusion. In each material template, the number of
matrix material constituents should be always smaller or equal to one, while there is no
limitation on the number of inclusion material constituents. Only the shapes of inclusion
materials are described under the “primitive information” sub-node of a material template. For
those regions without inclusion materials, it assumed to be filled with the matrix material if the
matrix material exists, otherwise, these regions will keep as voids. The example of the
“constituent_materials” node of BCC lattice is given in Figure 4. In this type of material, there
is no matrix constituent, only the inclusion material is described.
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In addition to material type, the volume fraction of the material constituent is also
necessary for some types of materials. For example, the volume fraction of the reinforced fibers
needs to be defined for the short fiber-reinforced composite shown in Figure 3 (a). Its value
can be controlled by the descriptor defined in the “descriptors_list” node. The example of
“constituent materials” node of the short fiber reinforced materials is provided in Figure 5. In
this example, the volume fraction of fibers is described by the descriptor v¢ defined in the
“descriptors_list” node shown in Figure 3 (b)

l—_ constituent_materials

~® material_node-1
————Omaterial name: digital fiber composite
———Otype:inclusion
————O material_template: short fiber reinforced composite
———O template_values:0.2,0.2,0.05,0,0.2,0,0.3,1,0.2
Figure 4 The “constituent materials” node of BCC lattice

It should be noted that the constituent material defined in the template can be described
further by the material template and the value of its associated descriptors defined on the lower
scale. For example, in Figure 4, we have a BCC lattice template whose lattice struts are made
of the short fiber-reinforced composite. Thus, the template name and its corresponding
descriptors’ values are attached under the “material” node of BCC lattice.

Constituent_materials

material_node-1
————Omaterial_name: Vero-black
———Otype:inclusion
———Ovolume_fraction: v¢

® material_node-2
———Omaterial_name: Tango-clear
——O type:matrix

Figure 5 The “constituent materials” node of short fiber-reinforced composite

2.3 Position Information

To describe the relative positions of the primitives of material microstructures, the
“position information” node is defined. The BNF description of the position information node
is expressed as:
<position_information>::=<type>,[translational vectors],<points>
<type> = periodic | stochastic
<translational vectors>::=<vector name>(<vector>,<vector> [,vector])
<vector>::=<coordinate>
<coordinate>::=(<double>,<double>,<double>)|<coordinate expression>
<coordinate expression>::=<double>*<vector name>{+|-<double>*<vector name>}
<points>::=<point>{,<point>}
<point>::=<point_name>,<coordinate>,[position parameters]

Several terms in this description are complicated and are explained using the lattice
materials and short fiber-reinforced composite as examples below. In Figure 6, an example is
provided to illustrate how to define the position information of BCC lattice materials. Since
this type of material consists of periodic microstructures, the periodic translational vectors need
to be defined under this node. Particularly for this example, three translational vectors are
defined. The coordinates of these vectors are provided. Besides translational vectors, nine
points are also defined under the “points” sub-node. These nine points can be used to describe
the position of primitives inside the microstructure of a material. The coordinates of these nine
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points are described by the coordinate expressions which are defined based on the translational
vectors.

Position_information
Type: Periodic

Periodic translational vectors

V3 —Iio V1(1,.0,0), V2(0,..,0), V3(0,0,1.)
i ® Points

—0 a=0*V1+0*V2+0*V3
0 b=1*V1+0*V2+0*V3
0 c¢=1*V1+1*V2+0*V3
F—0 d=0*VI1+1*V2+0*V3
—0 e=0*V1+0*V2+1*V3
0 =1*V1+0*V2+1*V3
0 g=1*VI1+1*V2+1*V3
F—0 h=0*VI1+1*V2+1*V3
——0 i=0.5*V1+0.5*¥V2+0.5¥V3

(a) Periodic translational vector of BCC lattice and its unit cell  (b) Position information of BCC lattice

Figure 6 “Position information” node of BCC lattice structures

Besides the materials with periodic microstructures, those materials with stochastic
microstructures can also be described by the developed material template. An example of the
“position information” node of a short fiber reinforced material is given in Figure 7. Under this
node, there are two sub-nodes: “type” and “points”. Since the fiber is randomly distributed
inside the matrix material, the points defined under this node are stochastically distributed.
Thus, the attribute of “type” sub-node is set as “stochastic”. As to the sub-node of “points”,
there are two points defined under this sub-node. These two points refer to as the start and end
point of a fiber. Among these two points, the start point a is called an independent node. Its
position is described by three independent random variables: x, y, and z. To characterize the
value of these three random variables, the PDFs of these three random variables are attached
to the sub-node called “position parameters”. For this example, these three random variables
all follow the uniform distribution. Another point defined under the “points” node is the end of
a fiber. Unlike the start point a, the end point b is a dependant point. Its position is controlled
by the independent node which is the start point of the fiber in this example, as well as a set of
related random variables. The relationship between the end point and the start point of the fiber
is graphically described in Figure 7 (a). In this figure, 6, ¢ and r are three random variables
whose PDFs are given under the “position parameters” sub-node. In these PDFs, six material
descriptors are used to control the PDFs of these random variables. Thus, these six material
descriptors can be used to further control the microstructures of materials.
b

(a) The position and orientation of a fiber
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Position information
———= Type:stochastic

® Points

© Point 1

———= point name: a
™ coordinate: (x,y,z)
# position parameters

Independent random variable a-1
—= variable name: x

L= PDF: f(x)= er € [Xmin Xmax]

0,X & [Xmin, Xmax]

Independent random variable a-2

—= variable name:y

—— - ,X€ in
—a PDF:  f(¥) = {Ymax — Ymin Dmin Ymax]
0ye [yminvymax]

Independent random variable a-3
—= variable name: z

= PDF: /()= {ﬁ € i ]
Point 2 0.2 & Zmin, Zmas]
point name: b

coordinate: a+(rsinfcos¢, rsinfsing, rcosd)

8 position parameters
- Independent random variable b-1
—=a Variable name: 6

_(8-pp)*
e 203

L__=PDF: £(6) =
*[2no}

jH

- Independent random variable b-2

—= Variable name: ¢ (6-)’
205,

e

= PDF: f(¢p) =
2no’

N
j,_‘
Y

Independent random variable b-3

—= Variable name: r

_(B-py)®
e 207

L PDF: f() = -
2no?

(b) “position information” node

Figure 7 “position information” node of short fiber-reinforced composite

2.4 Primitive Information

The last sub-node under the root node of a material template is called “primitive
information”. This node records the information related to the shape of primitives included in
the microstructure of the defined material.

In order to describe a variety of shapes of material’s primitives, a hybrid modeling
method is used which integrates the Constructive Solid Geometry (CSG) modeling method
with an implicit modeling method. Particularly, the shape of a material primitive can be
described procedurally by decomposing a complex primitive shape into a combination of
simple geometry elements. Geometric operations, such as Boolean operations, are defined
between these simple geometry elements to describe their relations and the final geometry of
the material primitive. As to those simple geometric elements, implicit functions can be
constructed to parametrically control their shapes. By changing the parameters defined in the
implicit functions of geometric elements, designers can precisely and parametrically control
the shape of the material’s microstructure. The proposed method enables great freedom to
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parametrically describe a wide range of material microstructures. To formalize the description
of the “primitive information” node, its BNF formulation is given:

<primitive information>::= <primitive>| {,<primitive>}

<primitive> ::=<primitive_name>,<material information>,<sub_primitive>
<sub_primitive>::= <element>|(<sub_primitive> <operation> <sub_primitive> {<operation>
<sub_primitive>})

<element> ::= <implicit_function>,<function parameters>
<function_parameters>::=<function parameter>{,<function parameter>}
<function_parameter>::=<deterministic_parameter>|<random_parameter>

To further explain the “primitive information” node defined in the material template,
two examples are also provided here. In Figure 8, the “primitive information” node of the BCC
lattice is given. In this case, the material is made of periodically distributed BCC unit cells.
Thus, the unit cell of the BCC lattice material is defined as the only primitive under this node.
The unit cell of BCC lattice can be further divided into 20 cylindrical struts. The shape of each
strut is controlled by the corresponding implicit function. In the implicit function, deterministic
parameter d is defined to control the shape of a strut. The value of this parameter is directly
from the descriptor d defined in the descriptors list.

Another example is the short fiber-reinforced composite. Its “primitive information”
node is shown in Figure 9. It only contains a single primitive — short fiber. Unlike the BCC
lattice material discussed above, the short fibers of this material are stochastically distributed
inside its matrix material. Thus, to describe the shape of short fibers, a single independent
random parameter is defined in its implicit function. Particularly, parameter d represents the
diameter of a fiber. The value of this random variable is controlled by the defined PDF under
the node “independent random parameter 1”. In its PDF, (g4, u4) are two descriptors defined
in the descriptors list. These two parameters can control the distribution of fiber diameter.

3. Examples

Based on the developed material template, the RVEs of two different types of materials
discussed in the previous section have been reconstructed. In the following contents of this
section, the relationship between material descriptors defined in the material template and its
corresponding microstructures will be carefully discussed.

3.1 Short fiber-reinforced composite materials

Based on the material template described in Section 2, the RVEs (5 mm X 5 mm X
5 mm) of short fiber reinforced composite have been reconstructed and shown in Figure 10.
For the visualization purpose, only fibers are displayed in Figure 10, while matrix material is
kept as transparent. To further illustrate how the values of material descriptors defined in the
material template affect its microstructures, two material descriptors 0 g and vy are varied case
by case, while other material descriptors are set as constants. The values of constant material
descriptors are summarized in Table 1.
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Figure 8 “Primitive Information” node for BCC lattice
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Figure 9 “Primitive Information” node for the fiber-reinforced composite

Table 1 The values of material descriptors for the RVEs of the short fiber reinforced material
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Figure 10 The RVEs of fiber-reinforced composite with different materials descriptor values

Figure 10 shows a clear trend that material descriptor vy can accurately control the
volume fraction of fibers. More fibers are included in the RVE when vf increases. gy is the
descriptor that can be used to control the distribution of fiber’s orientation angles. A decrease
of oy will make the fibers well aligned along a single direction.

3.2 BCC lattice material

In the second example, the RVEs of BCC lattice materials are reconstructed based on
the developed material template and its associated material descriptors. In this example, both
descriptor d and descriptor [, are changed. The reconstructed RVEs of BCC lattice materials
are shown in Figure 11. In this figure, each RVE contains 5 x 5 x 5 lattice unit cells. As it is
shown in Figure 11, by changing the descriptor d , we can obtain the lattice with different strut
diameters. By changing the descriptor [, RVE with different cells size can be generated. By
controlling these two descriptors simultaneously, we can obtain lattice with different relative
densities. It indicates that the material descriptors defined in the material template developed
in this paper can also be converted to the conventional material descriptors used for lattice
materials such as relative density or porosity.

NN

R

[.=10 mm

e
7

V¢
NG

NN
2
A

Y

l.=20 mm

100
Relative density 0.020 Relative density 0.168

Figure 11 The RVEs of a BCC lattice material with different material descriptors
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4. Summary and Future Research

In this paper, we developed a universal material template that can be used to
quantitatively characterize the microstructure of different materials. In general, the developed
template is organized in a hierarchical structure. The root node of the template contains four
sub-nodes: “descriptors list”, “constituent materials”, “position information” and “primitive
information”. The format of each sub-node has been given in this paper to help users to
establish a standardized description of microstructures of materials. Two examples have been
provided in this paper to help readers to understand the overall structure of the developed
template. Also, these two examples prove that the developed method can be used to effectively
describe the materials with both periodic microstructures and stochastic microstructures.
Future work includes developing multiscale heterogeneous modeling method based on the
developed material template in this paper. The developed method can describe both the
material’s compositions and microstructures on multiple design scales. It can further enlarge
the design freedom enabled by additive manufacturing and helps designers to improve the
performance of the designed part by controlling the design parameters defined on multiple
design scales.
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