








 

 

Experimental and Modelling Results 

 Strain maps for the 0-0 cube at 90°C are shown in Figure 4.  The strain map on the left 
depicts strain in the x-direction. No significant patterns or artifacts can be seen in the x-strain 
map. However, when viewing the strain map on the right, the y-strain map, the red banding in 
the strain map denotes a localized band of high strain that correlates directly to the location of 
bead-to-bead interfaces. The increased y-strain at the interfaces agrees with literature on 
LAEDAM, which states the outer surface of a bead has high alignment in the x-direction (22). 
High alignment in the x-direction means less fibers restricting strain in the y-direction. The 
average CTE in 0-0 cube was calculated to be 14.4 �—m/m°C in the x-direction and 57.7 �—m/m°C 
in the y-direction. 

Figure 3 Model used for each bead (made of concentric ellipses) 
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 In Figure 5 strain maps for the 0-90 cube at 90°C are shown. Strain in the x-direction of 
the 0-90 cube, like the x-strain in the 0-0 cube, shows no distinct patterns or artifacts, but has a 
larger range of strain values. Similarly, bead interfaces can also be seen in the y-strain map of the 
0-90 cube, this can be attributed to the beads of the face being imaged. Variation in the y-strain is 
also greater, likely due to contact with the beads in the adjacent layer restricting movement 
where contact is occurring. The CTE for the 0-90 cube is 23.7 μm/m°C in the x-direction and 
23.8 μm/m°C in the y-direction. 

 TMA samples in the same position in the width (1,5 & 2,6) of the bead were treated as 
the same data point for CTE in the x- and y-direction for a total of seven data points across the 
bead. A graph of the seven data points, including standard error bars, is displayed in Figure 6. 
The decreased x-direction CTE near the outside of the bead and increased y-direction CTE 

Figure 4 Strain maps of the 0-0 cube at 90 °C (a) x-direction, (b) y-direction 

Figure 5 Strain maps of the 0-0 cube at 90 °C (a) x-direction, (b) y-direction 
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agrees with increased fiber alignment in the print direction near the exterior of the bead. The 
center of the bead exhibits much more comparable x- and y-CTEs. Neither x- nor y-CTEs were 
symmetric about the center of the bead, which is important in future modelling work. 

 
Figure 6 Graphs of x and y CTEs as a function of position within the bead with standard error bars 

 For the concentric ellipses, each shell’s CTE values were calculated by averaging the samples 
that are the same distance from the center of the bead (i.e. -2.5 and 2.5). X- and y-strain maps for the 0-
0 and 0-90 FEA models look very similar to the DIC measure strain maps, which shows promise for this 
modeling technique. 0-0 y-strain map can be seen in Figure 7. The calculated x-CTE value for the FEA 
model of the 0-0 cube is very similar to the DIC measured x-CTE. However, the y-CTE value in the 0-0 and 
the x- and y-CTE values are not very similar, most likely due inter-bead porosity not being accounted for 
in the FEA model. The DIC and FEA CTE values presented in Table 1.  

  

[um/m] 

Figure 7 Comparison of FEA and DIC strain maps 
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Table 1 FEA calculated and DIC measured CTE values  
 

0-0 Cube 0-90 Cube  
X-CTE 

(μm/m°C) 
Y-CTE 

(μm/m°C) 
X-CTE 

(μm/m°C) 
Y-CTE 

(μm/m°C) 
DIC 14.4 57.7 23.7 23.8 
FEA 15.7 74.1 45.0 45.0 

 

Conclusion 

 The ability to predict the thermal expansion of a LAEDAM printed part is essential to 
utilizing the process to create parts where the range of temperatures will be experienced, and 
geometrical tolerances are of concern. This work has laid a foundation for the use of concentric 
ellipses to model the variation of properties throughout a printed bead and using these beads as 
the building blocks for the part exactly as in the actual printing process. It is also apparent from 
the data presented that CTE can change by up to 100% depending on the sample location within 
the bead and fiber orientation may not be symmetric in a LAEDAM bead. Although the CTE 
results of the FEA and the DIC are not extremely similar, likely due to the fact that porosity in 
the measured cubes was not accounted for in the FEA model. Taking into account the porosity 
factor in the FEA model will be the goal of future work to create a more accurate model. 

Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and 
Renewable Energy, Industrial Technologies Program, under contract DE-AC05-00OR22725 

with UT-Battelle, LLC. Material provided by Techmer PM, a materials design and manufacture 
company headquartered in Clinton, TN. Printed on a Cincinnati BAAM printer. 
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