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Abstract 
 
 Laser track experiments are performed using INCONEL® nickel-based powder alloy, 
IN625, in a Powder Bed Fusion (PBF) system. Optical microscopy is used to obtain key track 
dimensions and morphology for various machine parameters, allowing direct validation of ESI 
Group’s ICME suite of tools for modelling AM. The high-fidelity powder bed model simulates 
the melt pool formation based on solution of the Navier-Stokes equations and heat transfer, 
radiative powder-laser interaction, phase change, surface tension, Marangoni forces and recoil 
pressure. Models are enhanced by measured thermophysical material properties. Validation of 
the solidified melt geometry showing that conductive mode melting and instabilities such as 
balling can be captured with existing models and pave the way for models which capture the 
onset of keyholing. Examination of the melt track microstructures can also be used to determine 
local cooling rates, granting insight into the phase evolution differences between the alloys. 
 

Introduction 
 
 Additive manufacturing (AM) is deemed a disruptive technology; a technological 
enabler for industry 4.0 [1], [2]. In particular, laser powder bed fusion (LPBF) has received 
great interest due to the production of highly functional and complex parts with 99.9%+ 
densities without the need of additional post processing [3]–[9]. Furthermore, the resulting 
mechanical properties of LPBF are superior to parts produced by conventional manufacturing 
techniques [8]–[11]. This is a result of the unique thermal cycle involving steep thermal 
gradients and rapid cooling caused by rapid melting and high cooling rates (approx.105-106 
oC.s-1), with the potential of re-melting (location dependent) [12]. It is these primary variables 
that determine the characteristics of an alloy’s final microstructure and the inherent defects that 
follow. The phenomena experienced presents an opportunity to create alloys with unique 
material properties that could not be reproduced by more conventional processing techniques 
such as casting. Such alloys that show great promise include nickel-chromium-based super 
alloy, Inconel 625 (IN625). 
  
 IN625 is extensively used across a wide range of industries due to its high-performance 
capabilities during the application of elevated temperatures and pressures. Its strength is derived 
from the stiffening effect of alloy additions, Mo and Nb, within the Ni-Cr matrix. The 
combination of elements results in superior corrosion resistance properties and high-
temperature effects such as carburization and oxidation [13]. 
 

Background 
 
 Traditionally, trial-and-error approaches are employed to optimise the LPBF process 
which results in cost, material and time wastages thereby limiting the industrial application of 
this technique. To combat this multi-physics modelling techniques are utilised in aid of process 
and part optimisation [14]–[22]. Although, due to the enormous time- and length-scales 
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involved, models are split into micro-, meso- and macroscale processes which include 
modelling of the spreading process, thermal history, residual stress and material 
melting/solidification [23]. ESI Group have produced a complete suite of tools capable of 
simulating the various physical phenomena that occur during the LPBF process to identify 
manufacturing defects and residual stresses input by this process.  
  
 The focus of these works attempt to validate the melting and solidification module 
which uses information obtained via the powder coating module. The powder coating module 
utilizes a discrete element approach to simulate powder spreading onto a substrate. This can 
then be enhanced to simulate powder coating on previously consolidated layers, but for the 
purpose of this work only a single layer is modelled. The resulting geometry can then be 
imported into the high-fidelity melting module which determines laser-powder interaction, heat 
and fluid flow in the melt pool. For validation purposes, a single line study is presented in this 
document. Several authors have conducted similar strategies to investigate single track 
formation for parameter optimisation and model validation purposes [24]–[28]. Using various 
process parameter settings, single lines on top of a substrate are processed. The resulting line 
morphologies were unique to each specified setting applied. Using ESI-AM, similar lines were 
processed and compared to the physical result for model validation. 
 

Materials and Methods 
Inconel 625 Powder 
 

For the purpose of this study nitrogen gas atomised Inconel powder, IN625 (prepared 
by Sandvik Osprey, UK) was used; the chemical composition and powder morphology is shown 
in Table 1 and Figure 1 respectively. Particle size distribution (PSD) was first analyzed by using 
laser diffraction analysis (LDA) resulting in a D10, D50 and D90 of 24.5 μm, 35.2 μm and 57.2 
μm respectively. The majority of the IN625 powder is spherical in shape with a smooth surface; 
a typical result of the gas atomisation process. At [x500] magnification some satellite formation 
can be observed, but this effect was minimal and posed no concern regarding powder rheology.   
 

Table 1. Limiting and actual chemical composition of IN625 (wt.%) (prepared by Sandvik Osprey, UK) [13].

Ni Cr Mo Fe Nb Al C Si Co Mn Ti P  S 
58 

min. 
20.0-
23.0 

8.0-
10.0 

5.0 
max. 

3.15- 
.15 

0.4 
max. 

0.1 
max. 

0.5 
max. 

1.0 
max. 

0.5 
max. 

0.4 
max. 

0.015 
max. 

0.015 
max. 

62.0 21.7 8.9 3.8 3.74 0.007 0.02 0.02 <0.01 0.01 <0.01 <0.003 <0.001 

 

 
Figure 1. SEM images of IN625 powder at [x150] (left) and [x500] (right) magnification.
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Selective Laser Melting Equipment 
 
Renishaw’s AM400 [29] was used to manufacture the single line samples. The AM400 

utilises a 400 W ytterbium fibre laser with a beam diameter of 70 μm. Its modulated mode of 
operation (depicted in Figure 2) applies the heat energy on a point-to-point basis. Heat is applied 
at a singular point for a specified exposure time, ET, and then moves a specified point distance, 
PD. This process is then repeated throughout the build over multiple layers to form the final 
part. The equivalent scan speed, V, was then calculated by dividing PD by ET. Argon gas was 
used to flood the build chamber; reducing the oxygen level to <0.1% and forming a completely 
inert atmosphere. In addition to this, reduced build volume (RBV) auxiliary equipment was 
used in conjunction, enabling efficient part production and rapid material change-over. 

 
Figure 2. Application of a modulated laser: Heat is applied at a singular point for a specified exposure time, ET, and then 
moves a specified point distance, PD. A laser spot size/beam diameter, σ, of 70μm is kept constant whereas hatch spacing, 

HS, was varied.

Process Parameter Optimisation  
 

During the LPBF process, the amount and rate of energy transferred to the powder is 
governed by the process parameters applied.  Laser power, scan speed (point distance / exposure 
time), hatch distance and layer thickness are among the most critical parameters to consider. 
The volumetric energy density (V.E.D) is the amount of energy input to the system per 
millimeter cubed (see Equation (1)) and describes the relationship between these parameters. 
 

 . . = . . = .. .  (1) 

 
The optimal parameter set for the alloy was determined by method of density analysis 

based on Archimedes principle. For this study density cubes were produced using various 
parameters sets determined by an L9 orthogonal array; layer thickness remained constant at 60 
μm whereas laser power, point distance, exposure time and hatch spacing were varied as seen 
in Table 2. In addition to the resulting L9 configurations, a 10th configuration was tested as 
suggested by Renishaw. The optimised configuration was used to manufacture the substrate, 
namely the crucible (‘The Crucible Method’ as first described in [30]), of which the single lines 
were processed on. 
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Table 2. Parameter sets applied to each density cube sample to obtain the optimum parameter set for this alloy. The density 
of the resulting cubes was analysed based on Archimedes principle and compared to V.E.D to identify an optimum range.

Sample Label PD (μm) HS (μm) ET (μs) P (W) V (m/s) V.E.D (J/mm3) 

A1 70.00 70.00 45.00 300.00 1.56 45.92 

A2 70.00 80.00 60.00 350.00 1.17 62.50 

A3 70.00 90.00 75.00 400.00 0.93 79.37 

A4 80.00 70.00 60.00 400.00 1.33 71.43 

A5 80.00 80.00 75.00 300.00 1.07 58.59 

A6 80.00 90.00 45.00 350.00 1.78 36.46 

A7 90.00 70.00 75.00 350.00 1.20 69.44 

A8 90.00 80.00 45.00 400.00 2.00 41.67 

A9 90.00 90.00 60.00 300.00 1.50 37.04 

R 70.00 70.00 40.00 400.00 1.75 54.42 

 
Single Line Setup 
 

By varying both power and exposure time (and with point distance kept constant at 70 
μm), the applied line energy density (L.E.D) was manipulated as seen in Equation 2. 

 L. . = = .
 (2) 

Thirty single lines (22.5mm in length) were produced with various L.E.Ds applied to 
promote a range of melt pool geometries for validation against results produced by the melting 
model later described. Three power settings were applied; 300 W, 350 W and 400 W. For each 
power setting 10 exposure times were applied ranging between 23.33 μs and 233.33 μs (or 3.00 
m/s to 0.30 m/s). The resulting L.E.Ds varied from 100 J/m to 1333.33 J/m. This is seen in 
Figure 3. A single power set (10 lines of varying exposure) was processed on top of a ‘crucible’ 
– a substrate manufactured by LPBF using the optimum settings for this powder. The Crucible 
Method’s, crucible consists of a 3D tapered rectangular structure as detailed in Figure 4. 
 

 
Figure 3. L.E.Ds applied to lines studied. A combination of 3 power setting and 10 exposure times (effective scan speeds)

were applied resulting in a total of 30 parameter sets (i.e. 30 single lines).
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Figure 4. Isometric view (left) and detailed engineering drawing (right, dimensions in mm) of substrate produced by LPBF, 

namely, the Crucible Method.

 
Metallographic Preparation and Optical Analysis 
 

Top-down images were taken using optical microscopy (Zeiss Smartzoom 5) to assess 
overall line morphology. Following this, each crucible was machined in half to expose the 
central cross section of each line. They were then mounted by compression mounting and 
polished according to Buehler’s recommendation of Ni-based super alloys [31]. For 
microstructural characterisation, the crucibles were then electro-etched using 2% H2SO4 and 
H2O under a voltage of 5 V for 5 to 15s. Using optical microscopy (Zeiss Observer), the melt 
pool of each line was characterised in terms of melt pool width (w), depth (d) and height (h) as 
depicted in Figure 5. The melt pool width was defined by the distance of the weld along the 
level of the substrate. The melt pool depth was defined by the vertical distance from substrate 
to the bottom of the weld. The melt pool height was defined by the distance from the substrate 
to the top of the weld. Three sets of measurements were taken by re-grounding, polishing and 
etching to obtain the average measurement of width, depth and height of each line processed. 
 

   
Figure 5. Techniques used to characterise 3 types of melt pool formation; deep-weld (left), medium-weld (right) and a 

‘balled’-weld. This type of weld formation is relative to the parameter set applied as described later in this study.

 
Spreading Model 
  
 The powder spreading model is used to analyse powder flowability which is dependent 
on the system geometry, material density and particle size distribution (PSD) applied. The 
resulting spread is then imported into the melting model to serve as a numerically produced 
powder bed. In this case, the spreading geometry (depicted in Figure 6) consisted of a layer 
thickness (LT) of 60 μm, spreader thickness (ST) of 100 μm, spreader length (LSpreader) of 4 
mm, table length (LTable) of 4 mm and table width (w) of 1 mm. 
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Figure 6. Spreading model setup and parameter definitions.

  
 PSD was analyzed by using laser diffraction analysis (LDA) resulting in a D10, D50 
and D90 of 24.5μm, 35.2μm and 57.2μm respectively. The particles generated in the spreading 
model were based on 14 data points encompassing the range of particles measured w.r.t mass 
fraction. A solid density of 8400kg/m3 was also applied. 
 
Melting Model 
 
 Using the melting model, single lines were processed using a variety of settings which 
would result in a range of line L.E.Ds comparative to those applied in the physical 
experimentation. Initially 6 melting model cases (Table 3, models 1-6) were developed with 
L.E.Ds ranging from 107.14 J/mm to 1400.0 J/mm. IN625 and Argon gas were selected as the 
powder and gas materials respectively (material data supplied by ESI Group). Due to the lack 
of time and computational resources available, a low-quality mesh was applied to models 1-6 
with only a total 34,560 cells which encompassed the gas, powder and substrate domains. Due 
to the resulting cell size applied, the mesh generated failed to capture an accurate geometry of 
the powder bed. Following that, a 7th model was simulated using a much higher quality mesh 
(1,684,800 cells) for comparison (Table 3, model 7). The meshes generated are shown in Figure 
7. An arbitrary location was selected on the resulting powder bed to apply the melting domain 
with a length, height and depth of 900, 460 and 400 μm respectively. A time-step of 1E-7s was 
applied to each case.  
Table 3. Severn models were simulated with different parameter sets applied to apply various L.E.Ds in a single line model.

Models 1 to 6 were deemed of low quality due to the application of a course mesh, but an addition 7th model was created with 
the application if a high quality mesh. Throughout this study the point distance and time-step remained constant.

Model L.E.D (J/m) P (W) ET (μs) PD (μm) V (m/s) No. Cells

1 107.14 300 25

70

2.80

34560

2 600.00 400 105 0.67

3 700.00 350 140 0.50

4 792.86 300 185 0.38

5 1000.0 350 200 0.35

6 1400.0 400 245 0.29

7 228.57 400 40 1.75 1684800

  

LT 

w 
LTable LSpreader 

ST 
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Figure 7. Mesh applied to models 1-6 (left) and 7 (right). Due to the large cell size applied to models 1-6, the resulting mesh 
generated failed to capture the powder bed geometry. By refining the mesh, the geometric curvature was captured resulting 

in a high-quality powder bed.

Results and Discussion 
 
Optimised Process Parameters 
 

In order to obtain the optimum process conditions for alloy IN625, a density study was 
conducted using various parameter sets produced by implementation of an L9 orthogonal array. 
In addition to the 9 generated sets, a 10th was added as recommended by the machine 
developers, Renishaw. Results are shown in Figure 8 below. The results of this study revealed 
a typical correlation between V.E.D applied and the resulting part density. As expected, 
maximum porosity was observed during an application of the lowest energy density. The 
density increases to 99%+ with sample A1, with the exception of sample A9 which was deemed 
an error reading. Although the parameter set for A1 were efficient in this case, it was decided 
that Renishaw’s suggested setting should be used. The optimum parameter sets used to 
manufacture the crucible (the substrate) are shown in Table 4. 

Table 4. Optimum parameter set found by means of density measurement analysis based on Archemedes principle. The 
optimum value is highlighted in red.

Optimum Settings 
(Renishaw Setup) 

PD (μm) HS (μm) ET (μs) P (W) V (m/s) V.E.D (J/mm3) 

70.00 70.00 40.00 400.00 1.75 54.42 

 

 
Figure 8. Resulting densities of parameter sets tested. Majority of V.E.Ds applied resulted in 99%+ dense parts. Optimum 

result, R, highlighted in red.
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Single Line - Line Morphologies 
 

Figure 9 gives an overview of each line processed on top of the crucible with a specific 
parameter set applied. From the top line to the bottom, L.E.D is decreased. During the 
application of a high L.E.D, lines appear to be thick and stable (e.g. 400W, 0.30 to 0.90 m/s). 
As the energy density is decreased instabilities result in track irregularities which causes balling 
(e.g. 400, 1.50 to 2.10 m/s). A further decrease resulted in little or no adherence due to 
insufficient power and/or exposure time to melt the powder (e.g. 300W, 2.40 to 3.00 m/s). 
   
 In LPBF process parameters that result in stable and continuous tracks are desirable. 
Track irregularities can cause various defects such as porosity and may lead to part failure, it is 
therefore essential to provide enough energy to adequately melt the powder. Conversely, it is 
also evident that the spatter produced during processing is a function of energy density applied, 
this may also affect the building process and final part. This furthers the importance of 
parameter optimisation. 
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Figure 9. Top-down micrograph showing single line tracks as a function of scan speed (m/s) and power (W). Both layer 
thickness and spot size remained constant at 60 and 70 μm respectively.

Single Line - Cross Section Morphology 
 

Track morphologies are shown in Figure 10 and the measured widths, depths and 
heights are shown in Figure 11, Figure 12 and Figure 13 respectively. Three repeat cross-
sectional measurements were taken for each track and the standard deviation is shown. 
Typically, application of a high line energy density resulted in stable and continuous tracks as 
seen in the top-down study (found in Figure 9).  Both melt pool width and depth show similar 
trends and no key-hole welds were identified due to the lack of L.E.D applied. For each power 
setting, the largest widths and depths are seen during application of the lowest scan speed (i.e. 
highest energy density). Line instabilities and discontinuity become apparent as we see larger 
variations between each measurement taken in some parameter sets (e.g. 300W, 2.10 m/s). As 
L.E.D was decreased, widths and depths values reduced until a point at which no fusion took 
place (e.g. 300W, 2.10 to 3.00 m/s). 
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Figure 10. Micrograph show single line cross-sections as a function of power (W) and scan speed (m/s). 

 

 

 
Figure 11. Melt pool width as a function of power (W) and scan speed (m/s). 

 

 
Figure 12. Melt pool depth as a function of power (W) and scan speed (m/s). 
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Figure 13. Melt pool height as a function of power (W) and scan speed (m/s).

 
Spreading Model 
 

The results of the spreading model are depicted in Figure 14 below. The generation of 
particles (as seen in Figure 14 (A)) is governed by the experimental PSD data applied. Particles 
generated ranged from 14.5 μm to 65.7 μm in diameter as seen the temperature legend (see 
Figure 14 (E)). Once generated, the particles fall and are numerically spread across the baseplate 
lowered a distance equal to one-layer thickness (i.e. 60 μm); in this instance the substrate used 
was a flat surface. Once the rigid spreader has surpassed the length of the table and all particles 
meet equilibrium, this forms the final powder bed geometry as seen in Figure 14 (F). 

 

    

 
 

Figure 14. Particles are first generated (A) and then fall onto the spreading platform (B). After a pre-set time, the spread 
moves lineraly across the spreader and onto the build platform (C). The spread continues across the platform to completely 

disperse the powder (D). Once the powder has reached equilibiurm, this solid geometry was input into the melting model (E).
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Melting Model 
 

ESI-AM’s melting module produces a 3D-transient result that may be analysed at any 
time-step simulated. Seven cases were simulated with various parameter sets and model settings 
applied. Models 1 to 6 were deemed low-quality due to the course mesh applied to the geometry. 
Figure 15 shows some results from model 2; application of 400 W and 0.67 m/s, equating to a 
L.E.D of approx. 600 J/m. Within each 900 μm domain (for all models) the modulated laser 
was applied 9 times with a point distance of 70 μm to achieve a line length of 630 μm. 

When analyzing the results of models 1 to 6, it was realised that a miscalculation in
Gaussian Beam radius resulted in the application of a spot size equal to almost half of that used 
in physical experimentation. Due to this, the resulting melt pools displayed a large amount of 
key-hole melting (as seen in Figure 15). In addition to this, the uncompensated point distance 
of 70 μm resulted in a huge amount of variation in melt pool depth as insufficient melting 
caused large gaps between welds (as seen in Figure 15 (B)). Throughout the laser application 
process a maximum temperature of 3466 K was reached in the centre of the melt pool as seen 
in Figure 15 (C). Following such high temperatures and with the application of recoil pressure 
and evaporation models, spatter formation was observed as material was ejected from the melt 
pool in various directions as identified in Figure 15 (D). In addition, the reduced spot sized
applied and consequent key-hole mode of melting further increased the rate of spatter formation 
from the melt pool.

Due to the mistaken spot size applied in models 1-6, the resulting melt pool widths were 
much smaller for each parameter set applied which saw further deviation as the L.E.D was 
increased (as seen in 

Figure 17 (D)). In the physical experimentation, a maximum depth in excess of 300 μm 
was reached which surpassed the 200 μm substrate domain applied to the model. The excessive 
key hole melting led to depths beyond this maximum which could not be assessed thereby 
reducing the average depth. Heights measured in each model were a lot lower than that of 
physical experimentation. Again, without the right spot size and mesh quality applied, it is hard 
to judge as to why this may be. Although, this should be investigated further as the mesh quality 
may prove adequate in melt pool analysis with the correct spot size applied.

Unfortunately, only a single high-quality model (model 7) was simulated due to time 
and computational constraints. Model 7 was simulated using the optimum parameters found for 
this alloy (as seen in Table 4). As well as the highly refined mesh, the application of a 70 μm 
spot size was applied by recalculating the Gaussian beam radius. By doing so, the melt pool 
width doubled to a value close to the experimental result. In addition, the variation of powder 
depth along the single line reduced dramatically to a similar variation to that found in physical 
experimentation. In this case the maximum temperature went beyond that which was estimated
(3500 K) resulting in the lack of colour seen in the last weld of Figure 16 (C). Once again, both 
recoil pressure and evaporation model was applied resulting in the ejection of small particulates 
forming spatter Figure 16 (D). Both widths and depths measure in model 7 correlated well with 
the physical experimentation, but once again the height still seemed to be considerably smaller.
Further studies must be conducted using a similar model setup (but various L.E.Ds applied) to 
further validate this model.  

 1210



 
 

  

 
 

 

 
Figure 15. 3D transient results from model 2 (400 W, 105 μs): (A) top-down view of laser processing across powder bed, (B) 
side-view of melted cells, (C) temperature ditribution along melted track, (D) melted cells highlighting particle ejection due 

to material evaporation and (E) coloured legend indicating temperature range.  

 
 
 

 

 

 

  
 

Figure 16. 3D transient results from model 7 (400 W, 40 μs): (A) top-down view of laser processing across powder bed, (B) 
side-view of melted cells, (C) temperature ditribution along melted track, (D) melted cells highlighting particle ejection due 

to material evaporation and (E) coloured legend indicating temperature range. 
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Figure 17. Melt pool width as a fuction of L.E.D for models 1 to 7 and experimental results. Due to the application of an 

inncorrect spot size (approx. half the actual value) to models 1-6, large deviation is seen between the models and 
experimental data. Model 7 (highlighted) included the correct spot size and concequently produced a realistic value. 

 
Figure 18. Melt pool width as a fuction of L.E.D for models 1 to 7 and experimental results. The maximum achievable melt 
pool depth was limited by the boundary applied in the melting model (200 μm). The combination of this and incorrect spot 

size led to a huge variation in depth in models 1 to 6. Model 7 (highlighted) included the correct spot size and concequently 
produced a similar value and variation to that found by physical experimentation. 

  
Figure 19. Melt pool height as a fuction of L.E.D for models 1 to 7 and experimental results. 
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Conclusion 
 
 IN625 was used to conduct a single line study in order to validate model results 
produced using ESI-AM’s spreading and melting modules. Process parameters were first 
optimised for the alloy by method of density measurement based on Archimedes principle. 
Using the optimised results, a solid rectangular geometry, known as ‘the crucible’, was 
manufactured to serve as a substrate in which the single lines were processed on. Three power 
settings were applied; 300 W, 350 W and 400 W. For each power setting 10 exposure times 
were applied ranging between 23.33 μs and 233.33 μs (or 3.00 m/s to 0.30 m/s). This resulted 
on the application of 30 L.E.Ds varying from 100 J/m to 1333.33 J/m. 
  
 Firstly, the line morphologies were studied to assess line quality. During the application 
of a high L.E.D, lines appear to be thick and stable. As the energy density is decreased 
instabilities result in track irregularities which caused balling. A further decrease resulted in 
little or no adherence due to insufficient power and/or exposure time to melt the powder. 
  
 Secondly, melt pool morphologies were analysed along each line in 3 separate positions 
to obtain average width, depth and height measurements. Typically, application of a high L.E.D 
resulted in stable and continuous tracks as seen in the top-down study.  Both melt pool width 
and depth show similar trends and no key-hole welds were identified due to the lack of L.E.D 
applied. For each power setting, the largest widths and depths are seen during application of the 
lowest scan speed (i.e. highest energy density). Line instabilities and discontinuity become 
apparent as we see larger variations between each measurement taken in some parameter sets. 
As L.E.D was further decreased, widths and depths values reduced until a point at which no 
fusion took place.  
  
 Using the spreading module, a powder bed was numerically generated using details 
relating to material properties, spreading geometry and particle size distribution. Once the 
spreading process had complete and powder bed had reached equilibrium, this final geometry 
was imported into the melting module. Using the melting module, seven cases were simulated 
with various parameter sets and model settings applied. Models 1 to 6 were deemed low-quality 
due to the course mesh applied to the geometry and model 7 was deemed high-quality due to 
the refined mesh applied. Due to time and computation limitations, only one high quality model 
was simulated. In addition to the low quality of models 1-6, a miscalculation in Gaussian beam 
radius resulted in the application of a spot size half that applied in physical experimentation. 
Due to this, the results did not correlate well to that of the physical experimentation. Conversely, 
the single high-quality model simulated (model 7) showed promising results, although further 
simulations covering a range of L.E.Ds must be completed to fully validate the model. 
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