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Abstract: The goal of this paper is to evaluate internal defects in additively manufactured (AM) 
parts using FEA simulation.  The resonant frequencies of parts are determined by the stiffness 
and mass involved in the mode shape at each resonant frequency.  Voids in AM parts will change 
the stiffness and mass therefore shift the resonant frequencies from nominal.  This paper will 
investigate the use of FEA to determine how much a void size, shape, and location will change 
the resonant frequencies.  Along with where the optimal input and response locations are in order 
to find these frequency changes. The AM part evaluated in this work includes a common tensile 
bar and hammer shaped part evaluated individually and as a set of parts that are still attached to 
the build plate. This work was funded by the Department of Energy’s Kansas City National 
Security Campus which is operated and managed by Honeywell Federal Manufacturing 
Technologies, LLC under contract number DE-NA0002839. 

 

1. Introduction 

Additive manufacturing continues to be researched as a viable method for making parts. 
Some of the potential advantages are the capability to make complicated shapes and less wasted 
energy due to scrap of material that went through an extensive process to create. But currently a 
significant negative is the relative long time to manufacture compared to other manufacturing 
processes. In addition to this manufacturing time is time to test for part voids. Voids in parts 
negatively affect a parts strength and ductility. Very accurate testing methods like x-ray and CT-
scanning are successfully being used to find voids [7]. But these methods are slow and 
inexpensive.  

 

Research in dynamic testing has been done to find inexpensive and relatively fast ways to 
test parts for voids [1]. Dynamic testing is a process where a part is dynamically excited and the 
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response is measured. The excitation is usually applied with a shaker or with a modal hammer. 
The input signal into the test part by a shaker is measured with an accelerometer on the base 
plate of the shaker. The input signal into the test part by the modal hammer is measured by a load 
cell in the tip of the hammer. The response is typically measured with an accelerometer. The 
Fourier Transform is applied to these signals to take them into the frequency domain. Much like 
the Fourier Transform is applied to sound to extract all of the different frequencies that add up to 
create the actual recorded sound, the response signal of a part or structure is taken through the 
Fourier Transform to extract all of the resonant frequencies and mode shapes.  The response 
signal is then normalized to the input signal by dividing it by the input signal and plotted against 
frequency. This is called a Frequency Response Function (FRF). The amplitude of the FRF is 
usually shown in the log scale to help capture the small resonant frequencies. The peaks of the 
curve are resonant frequencies where the response per unit input is large. The dips are anti-
resonances where the part or structure doesn’t respond to the input. The mode shapes are how the 
part or structure moves at each resonant frequency. Each resonant frequency is determined by the 
stiffness (k) and mass (m) involved in the mode shape at that frequency as shown in Equation 1. 

=  

If the stiffness or mass of a part or structure is changed by a void or change in density the 
resonant frequencies with affected mass or stiffness that participates in the mode shape at that 
frequency will change. These frequencies with a lot of mass participation or stiffness change can 
be used to find the faults. This is where Finite Element Analysis can help with the physical 
testing. Each particular build plate of parts or individual parts can be analyzed with FEA to 
determine the resonant frequencies. This can be done up to the highest frequency that can be 
found with the testing method available. The frequencies with the highest difference with a 
nominal void-free part can be quickly determined. Then FEA can be used to apply the excitation 
and measure the response at different locations to determine the optimal locations for testing. 
The testing time will be shortened significantly. This article demonstrates the use of FEA to 
assist in physical dynamic testing of different AM builds. Before the builds in this article were 
analyzed with FEA test locations were randomly decided based on what the mode shapes might 
look like. FEA was then done to assist in finding the parts with voids that weren’t found with the 
first round of testing. As seen below if FEA was done in the beginning it would have eliminated 
extra rounds of testing. 

  

2. Methods 

The Finite Element Analysis was done using HyperMesh by Altair [10] and SolidWorks 
Simulation [11]. All parts were meshed using a mixture of brick and second order tetrahedral 
elements and also with midplane shell elements. The mesh consisted of a minimum of four 
elements across a thickness  0.095 mm. The resonant frequencies and mode shapes were 
extracted using the EIGRL Card. Experimental impact data from a hammer test was recorded in 

(1) 
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the time domain and imported as a table in Hypermesh for the impact signature. An impact force 
of 1 N was induced into the part. Responses were recorded at different nodes using the Global 
Output Request. 

 

For FEA the equilibrium matrix equation of motion for a linear elastic material is as shown:  

[ ] + [ ] + [ ][ ] = [ ] 

Where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, and [U] is 
the displacement. For extracting the modes damping is ignored and assume no external forces. 
The equation becomes: 

[ ] + [ ][ ] = [0] 

Assume a harmonic motion solution vector: 

[ ] = [ ]  

Substitution gives: 

{ [ ] + [ ]}[ ] = [0] 

This is an eigenvalue problem where =  is an eigenvalue (natural frequency squared ). 
The eigenvectors are the mode shapes. The equation now reduces to: 

[ ][ ] + [ ][ ] = [0] 

3. Results 

3.1 Tensile Bars 

For this study two AM builds of 48 tensile bars were provided by Missouri S&T as shown in 
Figure 1a. These builds were printed with the Selective Laser Melting Process 
(SLM).  The material properties of the bars found experimentally are Young's Modulus 180 GPa, 
density 7.85 g/cm3, and Poisson's ratio 0.24. The first build consisted of nine groups of randomly 
placed tensile bars on the build plate. One group, the nominal group, had no intentional defect 
added. The remaining eight groups had defects that consisted of powder that was intentionally 
not melted in the center of the part as shown in Figure 1b. The voids in these eight groups all 
have the same cross section as shown in Figure 1b and vary in height from 50 μm to 400 μm. 
The void leaves a 0.020” (0.50mm) solid perimeter on the outside of the bar.  

 

(2) 

(3) 

(4) 

(5) 

(6) 
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Figure 1: Tensile Bar build provided by MS&T (1a), Tensile Bar detail showing layer 
defect location (2a) 

 

The first 20 modes of a all 5 groups found with FEA are shown in Table 1. These were 
analyzed individually with a fixed constraint on the base of the bars. Column 2 also has the 
average of the groups of bars of some modes found experimentally. The resonant frequencies 
found experimentally are within 2% the FEA results. The main takeaway from the FEA results 
are that the difference in frequencies of all of the tensile bars with voids from the nominal tensile 
bars are very small. The first bending mode in the X direction is less than one hertz different (0.5 
Hz to 0.79 Hz). This is due to the stiffness in bending mainly affected by the outside fiber of the 
material and the void is in the center of the tensile bars. During experimental testing of the 
tensile bars the frequency resolution needs to be set low enough to distinguish between these 
small frequency differences. Table 1 also shows the mode with the largest frequency change is 
the ninth mode. This is the first axial mode of the tensile bar. The entire cross-sectional area 
affects the stiffness of the bar in the axial direction. The axial mode should be targeted during 
experimental testing for the best chance at finding the parts with voids. That requires a test 
method that can excite the part well above 9750 Hz. 

  

(1a) (1b) 
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Table 1: Mode list of the Tensile Bars 

If the axial mode (9th mode) is too difficult to excite and/or measure experimentally the 
bending modes in the y-axis can be used to potentially find the defective parts since they have 
the next higher difference to the nominal tensile bar as seen in Table 1. The mode shapes that 
correspond with the resonant frequencies can be seen in Figure 2.  

Figure 2: Mode shapes of the Tensile Bars 

 

Group: All 1 2 3 4 5 6 7 8 9
Defect: Avg Nominal 50 μm 100 μm 150 μm 200 μm 250 μm 300 μm 350 μm 400 μm Nom-50 Nom-400

LMS FEA FEA FEA FEA FEA FEA FEA FEA FEA
1st mode 205 203.22 202.72 202.67 202.62 202.58 202.54 202.5 202.46 202.43 0.5 0.79 1st bending  x-axis
2nd mode 430 432 428.24 427.98 427.74 427.47 427.25 427.02 426.81 426.62 3.76 5.38 1st bending  y-axis
3rd mode 1302 1291.5 1289.7 1289.7 1289.8 1289.8 1289.9 1290 1290.1 1290.2 1.8 1.3 2nd bending x-axis
4th mode 2475 2522.2 2518.5 2518.6 2518.7 2518.8 2519 2519.2 2519.4 2519.6 3.7 2.6 2nd bending y-axis
5th mode 3565 3530 3521.5 3521.1 3520.9 3520.6 3520.6 3520.4 3520.3 3520.3 8.5 9.7 3rd bending x-axis
6th mode 4065 4073.1 4063.8 4062.6 4061.3 4060.1 4059 4058.1 4057.1 4056 9.3 17.1 1st twisting
7th mode 6920.8 6870.4 6868.4 6866.9 6864.9 6863.6 6862.2 6860.9 6860.2 50.4 60.6 3rd bending y-axis
8th mode 7050 6972 6969.1 6968.8 6968.5 6968.1 6967.9 6967.5 6967.1 6966.8 2.9 5.2 4th bending x-axis
9th mode 9754.8 9594.5 9585.2 9576.2 9567.5 9559.8 9552.1 9544.9 9538.4 160.3 216.4 1st Axial

10th mode 11397 11365 11364 11363 11363 11363 11363 11363 11364 32 33 5th bending x-axis
11th mode 13465 13467 13467 13469 13470 13471 13473 13474 13476 -2 -11 2nd twisting
12th mode 14177 14153 14151 14149 14146 14144 14142 14140 14138 24 39 4th bending y-axis
13th mode 16548 16522 16520 16518 16515 16514 16512 16510 16509 26 39 6th bending x-axis
14th mode 21771 21670 21667 21665 21662 21661 21659 21658 21658 101 113 5th bending y-axis
15th mode 22653 22603 22596 22587 22581 22575 22570 22566 22559 50 94 3rd twisting
16th mode 22833 22797 22794 22791 22788 22787 22784 22782 22779 36 54 7th bending x-axis
17th mode 29800 29671 29664 29659 29651 29645 29639 29634 29629 129 171 6th bending y-axis
18th mode 30051 29975 29973 29973 29972 29973 29974 29975 29977 76 74 8th bending x-axis
19th mode 30088 30084 30090 30097 30103 30110 30116 30123 30129 4 -41 2nd Axial
20th mode 30965 30923 30921 30915 30915 30913 30912 30910 30910 42 55 4th twisting
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Without FEA results or prior testing experience it might be chosen to excite the tensile bar in 
the z-direction. This would make it difficult to capture the x-direction modes which FEA has 
found to be better. Figure 3 shows the FRF’s with the input in the z-direction and responses in 
the z-direction and x-direction. If the response is only measured in the z-direction the x-direction 
modes are obviously missed. As expected the response in the x-direction is many orders of 
magnitude lower than the z-direction. Especially the center response as the torsional movement 
is not recorded. Of course, if the x-direction modes are desired it would be best to excite in the x-
direction. 

 

 

Figure 3: FRF’s of Nominal Tensile Bar Fixed at Base 

 

Experimentally testing the tensile bars on the build plate comes with other difficulties. The 
first axial mode of the tensile bars at 9755 Hz was found to be the best mode for testing for 
voids. This is the mode of the tensile bar analyzed individually and not attached to a build plate. 
When added to a build plate with other tensile bars the mass of the build plate is involved in the 
modes. This causes the tensile bars axial modes to shift to other frequencies and not all tensile 
bars are involved at each frequency as can be seen in Figure 4.  The base plate also has 
complicated modes around the same frequency that will also be moving the bars in the axial 
direction. These were analyzed with fixed translational constraints at the center of the mounting 
holes. In order to excite the bars without the base plate the base plate would have to be 
suppressed or dampened. 
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Figure 4: Modes at 9,395 Hz (4a), 9,451 Hz (4b), 9,558 Hz (4c), and 9,947 Hz (4d) 

 

3.2 Hammer Shaped Test Parts 

The next chosen part for testing was a hammer shaped profile shown in Figure 5. This shape 
was chosen to give a number of good measurable modes in the frequency range up to 8,000 Hz 
for testing purposes. The parts were printed on 3D Systems ProJet MJP 3600 owned by 
Michigan Tech University with VisiJet M3-X ABS like material. Each build was printed with 4 
tensile bars. Physical testing showed the parts to have a Modulus of Elasticity of approximately 
2,000 MPa which is slightly under the 2,168 MPa published by 3D Systems. The published 
density of 1.04 g/cm3 was used.  

(4c) (4d) 

(4a) (4b) 
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Figure 5: Test Part 

Test parts were analyzed with five different configurations shown in Figure 6; no void 
(nominal), void 1, void 2, void 3, and void 4. The voids were spherical in shape with a diameter 
of Ø0.25” and placed in locations where theoretically different frequencies/mode shapes would 
be needed to find the differences with the nominal part. 

 

Figure 6: Test Parts with voids 

 

The first 27 modes of all test parts found using FEA are shown in Table 2. These were 
analyzed individually with a fixed constraint on the base of the bars. All parts were meshed using 
second order tetrahedral elements. The mesh consisted of a minimum of four elements across a 
thickness of  5.4 mm. Modes with high percent difference and/or the largest difference in 
frequency with the nominal part are highlighted in yellow. These are the frequencies that have 
the highest chance of being able to distinguish the parts with voids from the nominal parts.  
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Table 2: Resonant Frequencies of the Test Parts 

For void 1 the highest percent difference from nominal is the first resonant frequency at ~109 
Hz. The mode shape for this frequency is the first order bending mostly about the z-axis as 
shown in Figure 7a. The second mode is a bending mostly around the x-axis with a frequency of 
~115 Hz as shown in Figure 7b. These two close modes can be difficult to differentiate 
depending on how the part is excited and where the response is measured.  

 

Figure 7: Test Part mode 1 (7a), mode 2 (7b) 

(7b) (7a) 

 1289

No Void Void 1 Void2 Void3 Void4 
No. (Hz) (Hz) t::,_f (Hz) % Diff (Hz) M(Hz) % Diff (Hz) t::,_f (Hz) % Diff (Hz) t::,_f (Hz) % Diff 

1 108.86 107.98 0.88 0.81% 108.95 0.09 0.09% 108.97 0.11 0.10% 108.95 0.09 0.08% 
2 114.77 114.20 0.57 0.49% 114.84 0.07 0.06% 114.91 0.14 0.12% 114.90 0.13 0.12% 
3 182.47 182.00 0.47 0.26% 182.56 0.09 0.05% 182.45 0.03 0.01% 182.52 0.04 0.02% 
4 433.49 431 .92 1.57 0.36% 433.14 0.35 0.08% 433.04 0.45 0.10% 433.19 0.30 0.07% 
5 802.14 801.44 0.70 0.09% 801 .02 1.11 0.14% 801 .11 1.03 0.13% 802.34 0.20 0.03% 
6 1062.27 1058.00 4.27 0.40% 1060.31 1.96 0.18% 1062.05 0.21 0.02% 1062.72 0.45 0.04% 
7 1192 01 1191.69 0.32 0.03% 1187.39 4.62 0.39% 1188.40 3.61 0.30% 1191 .93 0.08 0.01% 
8 1667.27 1663.62 3.65 0.22% 1666.86 0.41 0.02% 1666.63 0.64 0.04% 1665.94 1.34 0.08% 
9 1918.97 1913.12 5.85 0.31% 1917.30 1.67 0.09% 1918.39 0.58 0.03% 1918.13 0.83 0.04% 
10 2298.92 2292.77 6.15 0.27% 2295.82 3.10 0.13% 2291 .12 7.80 0.34% 2295.22 3.70 0.16% 
11 2463.96 2462.22 1.73 0.07% 2465.17 1.22 0.05% 2459.04 4.91 0.20% 2461.92 204 0.08% 
12 2999.05 2995.33 3.72 0.12% 2989.04 10.02 0.33% 2998.86 0.19 0.01% 2998.02 1.04 0.03% 
13 3310.95 3305.52 5.43 0.16% 3307.05 3.90 0.12% 3299.50 11.44 0.35% 3308.98 1.96 0.06% 
14 3366.47 3357.66 8.81 0.26% 3363.61 2.86 0.09% 3364.72 1.76 0.05% 3364.79 1.68 0.05% 
15 3856.87 3854.72 2.15 0.06% 3852.94 3.93 0.10% 3846.12 10.75 0.28% 3849.66 7.21 0.19% 
16 4128.66 4120.91 7.74 0.19% 4123.49 5.16 0.13% 4128.54 0.12 0.00% 4128.35 0.31 0.01% 
17 4404.22 439405 10.17 0.23% 4401 .23 2.99 0.07% 4391 .82 12.40 0.28% 4390.65 13.57 0.31% 
18 4415.56 4413.66 1.90 0.04% 4413.73 1.83 0.04% 4416.11 0.55 0.01% 4408.07 7.49 0.17% 
19 5052.60 5052.75 0.15 0.00% 5044.74 7.86 0.16% 5050.40 2.20 0.04% 5042.27 10.33 0.20% 
20 5425.06 5420.86 4.20 0.08% 5414.37 10.69 0.20% 5424.84 0.22 0.00% 5419.45 5.61 0.10% 
21 5949.62 5942.24 7.37 0.12% 5946.55 3.07 0.05% 5938.72 10.89 0.18% 5934.04 15.57 0.26% 
22 6133.40 6130.50 2.90 0.05% 6126.87 6.52 0.11% 6120.72 12.68 0.21% 6128.73 4.66 0.08% 
23 6736.88 6724.45 12.43 0.18% 6734.80 2.08 0.03% 6733.77 3.11 0.05% 6730.76 6.12 0.09% 
24 6879.85 6870.44 9.41 0.14% 6875.58 4.28 0.06% 6878.55 1.31 0.02% 6879.22 0.64 0.01% 
25 7112.65 7105.71 6.94 0.10% 7110.53 2.12 0.03% 7104.44 8.20 0.12% 7107.69 4.96 0.07% 
26 7527.52 7511 .24 16.28 0.22% 7523.32 4.21 0.06% 7516.13 11 .39 0.15% 7528.49 0.97 0.01% 
27 7967.87 7964.70 3.17 0.04% 7964.42 3.45 0.04% 7946.99 20.88 0.26% 7944.74 23.13 0.29% 

z X 



If the impact and response locations were initially chosen before FEA as shown in Figure 8a, 
with the resulting FRF shown in 7b. It is easy to realize that the x-direction response will be 
more at the first mode and the z-direction response will be more at the second mode. The 0.88 
Hz shift at mode 1 and the 0.57 Hz shift at mode 2 for void 1 can be seen. The interesting thing 
to notice is that the void 1 part shows more x-direction response at mode 2 than the other bars. 
This is because the void in void 1 part is at a location that it changes the direction of mode 2 
enough to have more response in the x-direction than the other bars. Not only is there a shift in 
frequency, there is also a change in the mode shape translation direction caused by the void.  

                

Figure 8: Test Part 1st 2 Modes 

As can be seen in Table 2 other modes for detecting void 1 other than mode 1 are modes 17 
and 26. These are at ~4404 Hz and ~7528 Hz respectively. The mode shapes for these modes can 
be seen in Figure 9.  

        

 

Figure 9: Mode 17 - 4404Hz (9a), Mode 26 - 7528 Hz (9b) 

 

(8a) (8b) 

(9a) (9b) 
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If the excitation and response locations were chosen to be as shown in Figure 10a the 
response for mode 17 would be as shown in Figure 10b. As shown in Figure 10b the response 
amplitude is very low. This is due to the test part being excited in a direction there is basically no 
response for mode 17. It can be seen though that void 3 and void 4 parts do have some response. 
This is again due to the fact that the void in void 3 and void 4 parts are in a location that effects 
the mode shape direction at the impact and response locations. 

    

 

Figure 10: Excitation and Response Locations (10a), FRF’s (10b) 

 

FEA results show better locations for the excitation and response and can be seen in 
Figure 11. All parts have a measurable response and frequency shifts from the nominal. Void 1 
part has the most shift with void 3 and void 4 parts having more than void 2. Void 2 has almost 
no mass participation in this mode shape. Mode 18 is only 15 Hz higher than Mode 17 but 
doesn’t show up in the FRF. This is because the impact at location 7 and response at location 1 
don’t have a significant amount of participate in this mode shape. The locations of the excitation 
and response can be strategically placed to excite only the modes desired and have other modes 
not excited.  

 
(10a) (10b) 
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Figure 11: FRF’s with Excitation at Location 7 

 

The best modes for finding Void 2 were found to be mode 7 and mode 12 as shown in 
Figure 12. The original excitation and response locations happen to work well for exciting and 
measuring mode 7.  

              

 

Figure 12: Mode 7 at 1192 Hz (12a), mode 12 at 2999 Hz (12b), excitation and response 
locations (12c) 

 

Figure 13 shows the FRF with the impact and responses shown in Figure 12. Not only does 
void 2 part have a significant shift from the nominal but so does void 3. Void 3 which is in the 
larger claw on the part has significant mass involved in this mode shape.  Mode 12 is a rotational 
mode of the hammer head. It makes sense that there is mass involved at the location of the void 
in the void 2 part but it would be harder to measure and excite this mode shape. Both would have 
to be at the top edge of the hammer head. A laser vibrometer would be able to pick up the 

(12a) (12b) (12c) 
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translational motion of the rotation but the glue on accelerometers used covers almost half of the 
face height and would not record as much translational motion. 

 

 

Figure 13: FRF impact on side response at Location 6  

 

Modes 13 at ~3311 Hz and mode 27 at ~7968 Hz are the best for finding the void 3 part. The 
mode shapes are shown in Figure 14. Mode 13 is a rotation mode on the leg with the void in void 
3 so the better choice is Mode 27.  FEA shows the original excitation locations are not the best 
choice for exciting this mode shape.  

               

 

Figure 14: Mode 13 at ~3311 Hz (14a), mode 27 at ~7968 Hz (14b) 

 

Modes 21 at ~5950 Hz and mode 27 at ~7968 Hz are the best for finding void 4. The mode 
shapes are shown in Figure 15. Mode 21 is a rotation mode on the leg with the void in void 4 so 
the better mode to use is Mode 27.  FEA shows the original excitation locations are not the best 
choice for exciting this mode shape.  

(14a) (14b) 

 1293

Point 6 Response Void 2 Mode 7 - FEA 

Void 2 - 1187 Hz 
Void 3 -1 188 Hz 

~ All other parts 
,.,;:::::;::::_:;:::iiloo_ ,/ - 1192 Hz 

UXlE-02 ~----------------------~ 
1150 11 55 11 60 1165 1170 11 75 1180 1185 11110 1Hl!i 1200 1205 1210 1215 1220 

Frequency (Hz) 

- No Void Z-Dir 

- Void 1Z-Di· 

- Void 2Z-Di" 

- Void 3Z-Di" 

- Void 4Z-Di" 



               

Figure 15: Mode 21 at 5950 Hz (15a), Mode 27 at 7968 Hz (15b)

A better excitation and response location for mode 27 and the FRF’s are shown in Figure 16. 
The frequency shifts for void 3 and void 4 parts can be seen with this mode. Void 2 has the most 
response per input at this mode shape. The reason for this can be seen in the mode shape. The 
location of the void in Void 2 has the most mass involved in this mode shape. Mode 3 has the 
least.  

 

Figure 16: FRF and excitation/response locations for Mode 27 at 7968 Hz 

4. Discussion and Future Work 

4.1 Discussion of Results 

This paper showed that Finite Element Analysis is a good tool for assisting in physical 
dynamic testing of parts to find voids. The location of the input determines if a mode shape is 
excited or not. If the mode shape can be measured or not is determined by the location of the 
response. Even the most experienced dynamic systems person might not excite or measure the 
modes they are looking for the first time. Significant time in retesting can be eliminated if the 
part can first be analyzed with FEA to determine the mode shapes and then used to determine the 
locations of the excitation and response.  

(15a) (15b) 
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FEA can also determine the magnitude of the response of each void and if there is a mode 
shift caused by a void. As seen in the results above a voids location can change the mode shape 
of the part and the response amplitude per unit input. 

 

4.2 Future Work 

Future testing can look into how much the amplitude of the part changes with a void and how 
much the mode shape changes. If the change in mode shape is significant enough to be measured 
by a full field measuring system like Digital Image Correlation it might be used along with a 
frequency shift to find voids in parts.  

 

Future testing can also look into how to limit the mode shapes of the build plate so the parts 
can remain on the build plate for testing. This would save significant time in testing. This could 
consist of moving the base plate modes away from the parts modes of interest. 
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