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Abstract 

Wire arc additive manufacturing (WAAM) has been studied and widely applied due to its high 
forming efficiency and low production cost. In the process of WAAM, there are problems of 
cracking, deformation, large residual stress, insufficient properties, and instability caused by 
repeated rapid heating and chilling. Welding with rotation compression can control the performance 
and shape synchronously in the semi-solidified state of the weld pool. In this study, a new solution 
of hybrid WAAM and rotation compression is presented using follow-up rotating device to form 
the weld bead layer by layer. Base on the finite element analysis result of the hybrid process, the 
force energy curve of the rotation forming metal flowing process is obtained by arranging history 
monitory points and paths on the bead, and the relationship between the shape and forming load is 
revealed. The simulation model was verified by forming tests on middle carbon steel. 

Keyword Welding with rotation compression, WAAM, Deformation control, Residual stress 

Introduction 

Owing to the pattern shift that the process provides over conventional manufacturing additive 
manufacturing(AM) has got extensive attention in recent years [1]. AM has the advantages of 
resource efficiency, environmental friendliness, and the ability to form complex parts against 
traditional manufacturing. The Wire and Arc Additive Manufacturing (WAAM) is one of AM using 
electric arc as the heat source and combining wire as raw material. It has been widely studied and 
applied in the production of large and medium-sized parts over the past few decades due to its high 
energy efficiency, low cost, and deposition rate comparing with laser or electron beam deposition 
AM technology [2]. 
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However, there were many adverse effects such as cracking, deformation, large residual stress, 
insufficient properties and instability caused by the complexity of the WAAM forming process, 
which may result in the poor quality of the bead.  

 
The freeform deposition conditions, such as manufacturing path, energy power, traverse speed, 

and cooling methods, have been studied. Many solutions have been proposed to control thermal 
accumulation and to improve forming semblance of the WAAM such as planning for good fusion 
paths [3], controlling heat input [4], optimizing forming process [5] and regulating external 
environmental impact [6], et al. The shaping capability can be improved in certain degree under 
appropriate deposition conditions [7]. But the problems of deformation and coarse grain are still 
not well resolved during WAAM process if only relying on a single process. 

 
Hybrid AM Processes are defined as the AM process with compositing more than one 

manufacturing technology that is fully coupled and synergistically affect part quality, functionality, 
and process performance. The primary goal for the majority of hybrid-AM processes is improving 
part quality performance rather than improve processing [8]. 

 
As a mature traditional process technology, the milling process has many characteristics such 

as high flexibility, high precision and easy control. It is the most common composite form with 
metal additive manufacturing technology, which can effectively improve the surface geometric 
accuracy of the formed parts. However, the milling process will undoubtedly reduce the utilization 
rate of the metal material due to removing the material of the formed part again and again, which 
is not conducive to the advantages of the additive manufacturing technology. It is imperative to 
find a way to ensure the forming accuracy without spending time milling the molten layer and 
improving material utilization. 

 
The effect of the pulsed ultrasonic and the continuous ultrasonic on the short-circuiting 

transfer of GMAW was studied by Chao Chen et al [9-10]. The droplet transfer behavior, the 
welding electrical signals, and the weld appearance were exploited to characterize the feasibility 
of the pulsed ultrasonic-assisted GMAW. They fund that hybrid deposition and ultrasonic have a 
good indicative of decreasing necking and stabling process. 

 
Hybrid welding with trailing hammering (HWTH) was proposed by Fang Hongyuan to 

improving the stress distribution of welded joints [11-12]. HWTH can control the longitudinal and 
lateral shrinkage deformation of the welding to a very low level. Besides, it can hammer and 
strengthen the different parts of the welded joint through improving the stress distribution state of 
the welded joint to controlling the welding hot crack and the transverse and longitudinal 
deformation of the weld effectively according to the actual needs. 
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Hybrid deposition and micro rolling (HDMR) which was applied to improve residual stress 
and distortion, which can result in the part being out of tolerance and can impede performance [13-
14]. Hybrid-AM by rolling solves two key problems in additive manufacturing: alleviate some of 
these inaccuracies without removing material, undesired residual stress from the building process 
warps or distorts the final workpiece [8]. But this process is not suitable for parts with complex 
paths, such as sharp corners.  

 
Hybrid laser-arc welding (HLAW) was used to maintain the high integrity bead and induce 

gas porosity in the Aluminum alloy manufacture process by Priti Wanjaraa and Xinjin Caob [15], 
and which has a good promotion in assisting the build process and improving build quality in the 
welding of high strength steels has been certified by O. Berdnikova, V. Pozniakov and O. Bushma 
[16]. Unlike the other hybrid processes of additive manufacture, the material deposition and 
auxiliary lasers are added simultaneously in the same position in hybrid laser-arc welding (HLAW).  

 
Hybrid deposition and laser shock peening (HDLSP) is the combination of arc additive 

manufacturing process with laser peening. Laser shock peening(LSP) is a surface treatment that 
dates back to the 1960s where shock waves from rapidly expanding plasma plastically deform a 
workpiece [8]. The effect of LSP on different materials and confirmed that LSP could induce 
compressive residual stress and increasing microhardness to improve performance have been 
investigated [17].  

 
The effect of hybrid welding and impacting rotation(HWIR) on the quality of TC4 thin plate 

welded joints has been studied by Zhang Y et al [18-19]. The results show that HWIR plays a 
significant role in improving mechanical properties of welding joint and reducing welding residual 
stress compared with the conventional welded parts due to the martensite transformation occurs in 
the weld and the near seam area of the welding and impacting rotator.  

 
Various studies have proved that welding with extruding has a significant improvement in the 

mechanical properties of the weld bead. Among them, the HWIR process has great advantages: the 
rotary ram speed and the pressing amount are easy to control, and the rotary ram can flatten the 
weld bead to improve the precision of the weld bead surface during the pressure welding trajectory 
when the auxiliary rotating equipment is not affected by the welding trajectory. Taking these 
advantages into consideration, it will be of significance and great research value to combine the 
welding rotating process with the metal additive manufacturing process to form a new composite 
additive manufacturing process.  

 
In this study, a new hybrid metal addictive manufacture process that combines the auxiliary 

rotation and WAAM was proposed to improving the surface precision of the formed parts, reducing 
the processing cycle and enhancing the mechanical properties of the formed parts. Hybrid 
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deposition and impacting rotation (HDIR) was modeled in Abaqus to study the effect of impacting 
rotation on the morphology of welding bead and the changing regularity of temperature field and 
stress field in the process of hybrid forming. 

 
Model 

 

Heat Source Model Building 

 

In general, the heat source forms used in arc additive manufacturing simulation are mainly 
divided into three types: a centralized heat source, planar distributed heat source, and volume 
distributed heat source. The volume heat-source model can reflect the actual arc heat source more 
than the other two models while the penetration of arc energy over the thickness of the workpiece 
was considered. During the arc movement in the actual forming, the shape of the instantaneous 
weld pool is not symmetrical along the Y-axis because the temperature gradient in the first half is 
steep and the temperature gradient in the second half is slow. The double-ellipsoid-volume heat-
source model is used to describe the arc thermal load result from it can accurately describe the heat 
flow distribution and weld pool shape during actual welding [20]. 

 
The double ellipsoid model formula is shown in equation (1), and the double ellipsoid model 

is shown in Figure 1.  
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Where the fractions ff   and rf   of the heat deposited in the front and rear quadrants are 

needed where 0.5, 1.5f rf f= = . And the parameters , ,a b c  can have different values in the front 

and later quadrants as expressed in [20] since they are independent, and the Q is the thermal energy 
transferred to the workpiece per unit time, U and I are the arc voltage and welding current, 
respectively, and is the arc thermal efficiency. The v  is the speed of heat source.  

Table 1 Variable of double ellipsoid heat source 
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Name fa ra  b  c

Variable(mm) 5 15 5 2.5 

The double ellipsoid heat source model used in this paper belongs to the body heat source. Its 
molten pool is not only distributed in the new layer of weld bead but also remelted in the old layer. 
The heat source model and the temperature distribution alongthe cross-section of Y-axis of the 
molten pool position are shown in Figure 1.  

  
Figure 1  Double ellipsoid heat source model and the Molten pool appearance 

 

Welding Bead Model Building 

 

In this work, several assumptions were made to build the simulation model. The processing 
material is medium carbon 45# steel. The MIG welding torch is used to conduct additive 
manufacture in the front, the rotating head is moved in the same direction as the welding torch, and 
the weld bead is rotated and compressed to control the shape and quality. The schematic view is 
shown in Figure 2.  

Substrate

Molten pool

The energy source Rotater

Distance of the energy 
source-rotater 

Rolling 
reduction

 
Figure 2 The schematic of WDIR process 

Basic assumptions of the model: 
(1) The material is isotropic; 
(2) The influence of the flow of the molten pool to the temperature field is ignored; 
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(3) Replace the influence of the substrate fixture on the temperature field of the bead with 
convection heat; 

(4) The latent heat is negligible for the phase change; 
(5) The cooling effect of the rotating head is realized by a large heat transfer coefficient that 

the value is 50. 
 
Parameters of the simulation process  

 

The hybrid arc-rotation additive manufacturing process has multiple influence parameters, 
including the energy source-rotator distance, rolling reduction, rotational speed, and friction 
coefficient. In order to explore its influence on the forming quality, the design simulation 
comparison is shown in the following Table 2. It should be noted that the Job-1 is the free deposited 
so that its parameters are zero.  

Table 2 Simulation list of rotating parameters 

Job name 
Job-

1 
Job-

2 
Job-

3 
Job-

4 
Job-

5 
Job-

6 
Job-

7 
Job-

8 
Job-

9 
Job-
10 

The energy source-rotator 
distance (mm) 

0 40 35 30 40 40 40 40 40 40 

Rotation reduction 
(mm) 

0 0.8 0.8 0.8 0.7 0.6 0.8 0.8 0.8 0.8 

Rotating Speed 
(rad/min) 

0 300 300 300 300 300 350 400 300 300 

Friction Coefficient 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.15 0.1 

 
For the spinning problem, its convergence is not guaranteed when the mesh is too fine. 

Therefore, in this study the grid node seed density adjustment is performed to guarantee the 
efficiency and accuracy of the calculation while considering the convergence. Finally the bead part 
was composed of 27600 elements, and the rotator includes 8640 elements, as shown in Figure 3. 
The C3D8R mesh was used to generate the simulation model. With considering the accuracy and 
calculative efficient of nonlinear large deformation solution, a short model has been used to replace 
the real manufacture process. The length of the bead is 100mm, and its width is 10mm. This part 
includes four formed layers that height is 2mm and one new forming layer that height is 2.6mm. 
The rotator was defined as a rigid part to guarantee the rotating forming simulation, whose 
maximum radius is 15mm, and the radius of the side of the rotating contact surface is 15mm. Since 
this paper focuses on the influence of the rotation forming process on the temperature field and the 
residual stress field, the thickness of the substrate is set to 5mm to avoid excessive influence of the 
substrate on residual stress.  
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Figure 3 Finite element model of HWID 

 

Initial Condition and Boundary Condition  
 
The initial temperature of the bead and rotator is The bottom of the weld bead was fully 

restrained in the global coordinate system. Except for Y-axis translation and Z-axis rotation, other 
degrees of freedom of rotator are constrained, and the other parameter was showed in Table 2. The 
thermal physical parameters are listed in Table 3. 

 
In the HDIR additive manufacturing process, a large portion of the heat loss of the weld bead 

is caused by contact heat transferred between the weld bead and the rotating head.The expression 
of contact heat conduction between the weld bead and the rolled piece is:  

( )( / ) gq T y T Tλ α= ∂ ∂ = −                                                   (3) 

 
The q  is the heat density, and the λ  is the thermal convection coefficient. The α is the heat 

transfer coefficient that the value is 50 W/(m2· , and the T is the temperature of the bead as the 
Tg is the temperature of the rotator. 

 
During the accumulation and cooling of the HDIR additive manufacturing, the metal material 

dissipates heat primarily through radiation and convection to the surrounding air. Convection in 
high temperature areas dominates. Conversely, low temperature areas are dominated by convection. 
In order to simplify the calculation, a composite heat transfer coefficient was used in the study to 
comprehensively consider the convection and radiation-induced thermal diffusion.  

( )4 4

+c con

T T
h h

T T
ε

ε

δε −
=

−
                                                     (4) 
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The ch  is the radation heat transfer coefficient and the conh   is convective heat transfer 

coefficient. The δ  is the Stefan-Boltzmann constant and the ε  is the radation coefficient of the 
bead material, both values of them are given in Table 3.  

Table 3 The list of thermal physical parameters 

Parameter  
Thermal 
radiation 
coefficient 

Thermal convection 
coefficient (W/(m2·  

Environment 
temperature 

(  

Stefan-Boltzmann 
constant 

(W/m2K4  

Value 0.85 0.2 20 5.67 × 10  

 

The fully coupled thermo-mechanical analysis in this paper use uniform, isotropic 
thermophysical material properties as a function of temperature by [21], The material elastoplastic 
model uses a follow-up hardening model based on the Mises yield criterion. 

 
For 45# steel, the phase change has a large effect on the material properties. In this study, 

phase transitions were predicted based on the CCT phase diagram of the material and the estimated 
cooling rate (t8 / 5: 10 s to 30 s) and the corresponding results were used. Material properties and 
latent heat of phase change are considered by modifying the specific heat curve[22]. On the other 
hand, in the region where the temperature is higher than the melting point, the thermal conductivity 
is artificially increased to 10 times the original value in order to simulate fluid convection heat 
transfer in the molten pool region [23]. 

Result 

 

In order to test and verify the simulation of hybrid deposited and impacting rotation (HDIR), 
the partial basic experiments that include free deposited and HDIR had been done. The melt inert-
gas welding(MIG) was applied to the hybrid impacting rotation and WAAM that experimental 
substrate is made of 20mm thick Q235 plate, and the wire was selected with 1.2 mm middle carbon 
steel wire of grade er50-6. The composition of substrate and welding wire was list by Table 4, and 
the process parameters were given by Table 5. 

Table 4 Welding wire forming experimental wire and substrate chemical composition table 

Material C Mn Si S P 

45# steel 0.35-0.5 1.40-1.85 0.8-1.15   

Q235 steel  0.35-0.80    

 
The welding speed is also the moving speed of rotator, and the gun plate distance that is the 
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space between the welding touch and substrate was fixed in the process of HDIR. Besides, the 
parameters of Table 5 is remained unchanged to show the contrast of different processes.  

Table 5 HDIR Process Parameter Table 

Welding 
speed 

 

Wire feed 
speed 

 

Wire 
diameter 

 

Voltage 
 

Current 
 

Gun plate 
distance 

 

Current 
mode 

400 7.5 1.2 30.4 195 12 pulse 

 
The basic equipments of this experiment are XKA5040A machine tool, LORCH welding 

machine, welding torch, mixed protection gas cylinder (10% CO2, 90% Ar), rotating device, etc. 
The physical diagram of XKA5040A milling machine that was the installation platform of the 
welding touch and rotator, and LORCH welding machine is shown in Figure 4(b). The rotating 
device belongs to the equipment independently developed by our team.  

 
(a)                             (b) 

Figure 4 Deflection of welding equipment (a), Deflection of XKA5040A machine tool  
(b), Deflection of LORCH welding machines 

 
Figure 5 shows that the bead formed by free deposited, and Figure 6 represents that the bead 

formed by the HDIR process with different reduction. All of them are 100mm in length regardless 
of the solder tail. Combined with the simulation results, the real bead profile tallies with simulated 
weld bead results shown in Figure 11(b).  
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Figure 5 The bead formed by free deposited 

(a) 

(b) 
Figure 6 The bead formed by HDIR process with different reduction(a), R=0.8mm(b), 

R=0.8mm 
 
The observations were made by cutting the bead along the y-axis, Figure 7 shows that the top 

of the bead produced by the rotating process is offset to one side compared with the free deposited 
bead. The rotating forming bead y-axis section is made by cutting the bead of Figure 6(b).  

Rotating 
Forming

10mm 10mm  
Figure 7 Schematic diagram of the cross-section shape of the experimental forming bead 

 
The rotating head follows the welding torch to rotate the compression bead. Since the 

temperature near the side of the molten pool is high, the bead profile is directional and biased to 
one side which is shown in Figure 8.  

Rotating 
Forming

Figure 8 Schematic diagram of the shape change of the bead of rotating forming 
 
In addition to controlling the surface morphology of the weld bead, rotation forming can also 
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change the residual stress distribution, reduce the harmful tensile stress, and enhance the 
microstructure. As seen in Figure 9, the Mises stress value of the weld bead surface is reduced from 
6.5MPa to 5.6MPa.  

 
Figure 9 Stress nephogram of y-axis section

(a), Stress nephogram with free deposited (b), Stress nephogram with HDIR 
 
Consider the results of Figure 7 and Figure 8, the accuracy and reliability have been tested 

and verified by the comparison of the experimental bead cross-section and the simulation y-axis 
section profile in Figure 9.  

Figure 10 Temperature nephogram of weld bead at step 70  
(a), Temperature nephogram with free deposited (b), Temperature nephogram with HDIR 

 
Figure 10 shows the effect of rotator on temperature nephogram of welding bead. The rotator 

can shape the weld bead shape in the high-temperature zone after the molten pool. At the same 
time, the temperature in the area after the molten pool is higher than that of free deposition due to 
frictional heat generation and shaping heat generation.  

Figure 11 Stress nephogram of weld bead at last step 
(a), Stress nephogram with free deposited (b), Stree nephogram with HDIR 
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One node in the center of the bead upper surface was defined to monitor and analysis the bead 

temperature, and displacement was shown as Figure 12. Three paths were set up to analysis the 
stress distribution of the bead. The path x is along the weld bead overlap direction, the path y is 
along the weld bead fusion direction, and the path z is along the interlaminar depth direction, and 
their schematic views are as follows:  

 
Figure 12 Diagram of three paths and the monitoring node 

 
The path y starts from the beginning to the end of the weld bead in the direction of fusion. 

The path z starts at the monitoring node of the weld bead and ends at the interface between the 
weld bead and the substrate. 

 
To analyze the influence of HDIR process on the temperature field, displacement field, and 

stress field of the weld bead compared with free deposition, the temperature-time curve and 
displacement-time curve of the monitoring points of free melting and rotation forming are 
compared and analyzed as shown in Figure 13. Besides, the HDIR in the comparison group is set 
using the parameters in job-2 which has been shown in Table 2.  

 
(a)                                   (b) 

Figure 13 Effect of HWIR on Temperature; (a), Temperature curves of free deposited and 
HDIR (b), Displacement curves of free deposited and HDIR 
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As can be seen from Figure 13, the rotator head has an obvious effect on the weld bead 
temperature due to frictional heat generation and deformation, but it does not exceed the melting 
point. Similarly, the HDIR forming will produce a curve peak of U3 displacement due to the 
pressing of the rotator in the direction of the weld, and then rapidly decrease to the amount of 
reduction. 

 
The purple boundary line is set to indicate a weld bead having a basic width of 10 mm and a 

basic length of 100mm so that the influence of the stress of the rotation forming in the effective 
forming region can be more clearly expressed. Figure 14 depicts the effect of HDIR forming 
process on principal stress. Three principal stress all be cut down evidently, and the average value 
of s33 stress even reduced from tensile stress to compressive stress. 

 
(a)                                   (b) 

 
(c)                                   (d) 

Figure 14 Comparison of stress between free deposited with HDIR (a), the stress s11 in path 
x (b), the stress s22 in path y (c), the stress s33 in path z (d), the comparison of the average value 

of stress. 
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The temperature of the rotating forming region is a significant factor for forming accuracy 
and quality. Moreover, the important variable that controls the temperature of the rotating zone is 
the energy source-rotator distance. Three level values of energy source-rotator distance were fitted 
to explore the effect of energy source-rotator distance on manufacture shape and quality.  

 
 (a)               (b)                (c)                 (d) 

Figure 15 Comparison of cross-section contours of weld bead after rotating under simulation 
results with different energy source-rotator distance. (a),free deposited (b),d=40mm (c),d=35mm 

(d),d=30mm 

 

In this paper, the outline of the Y-axis cross-section of the weld bead after energy source-
rotator distance forming is extracted by Matlab as shown in Figure 15 to compare the effect of the 
energy source-rotator distance in HDIR forming process on the control of the weld bead. Figure 15 
shows that the higher the temperature of the forming area, the better the shaping effect, and the less 
the deviation of the bead to one side. The fundamental reason is that the deformation ability of 
metals increases with temperature.  

(a)                                   (b) 
Figure 16 Effect of the energy source-distance (a), Temperature curves of different energy 

source-rotator distance (b), Displacement curves of different energy source-rotator distance. 
 
Figure 16(a) shows that the closer the forward roll distance is before the rotating head contacts 

the molten pool, the more obvious the increase of the temperature field after welding. However, 
when the rotating head touches the molten pool, the closer the energy source-distance is, the smaller 
the increase of the temperature field after welding. Furthermore, the peak temperature of the molten 
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pool increases obviously. Figure 16(b) shows that the peak value of U3 curve of job-4 displacement 
is obviously larger than that of job-2 and job-3, because of its rotating area contacts the molten 
pool, which makes it easy to deform, while the post-weld displacement has no obvious difference 
because of its elastic rebound.  

 
(a)                                   (b) 

 
(c)                                   (d) 

Figure 17 The effect of energy source-rotator distance on stress. (a), the stress s11 in path x 
(b), the stress s22 in path y (c), the stress s33 in path z (d), the comparison of the average value of 

stress 
 
The results can be summed from Figure 17 that the front roll pitch that is too close in terms 

of improving the residual stress is less than ideal instead. It is because the yield strength is different 
due to the difference in temperature. In the case where the amount of reduction is the same, the 
lower the compression force required for the temperature of the forming region, the more the stress 
reduction effect is. 

 
The effect of reduction 

 

The reduction refers to the z-axis displacement of the compression bead of the rotating head 
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as shown in Figure 2, which has a direct impact on weld bead deformation. Figure 18 and Figure 
19(b) shows the effect of reduction that the amount of deformation is positively related to the 
amount of reduction. The deformation of the weld bead is prominently displayed on one side due 
to the different temperature of the front and rear contact areas of the rotating head.  

 
   (a)              (b)            (c) 

Figure 18 Comparison of cross-section contours of weld bead after rotating under simulation 
results with different reduction;(a), R=0.8mm (b), R=0.7mm (c), R=0.6mm. 

Figure 19 shows that the greater the amount of reduction, the greater the heat of shaping 
deformation; the resulting higher temperature peaks. However, compared with the arc heat input, 
the influence of the deformation heat caused by the reduction amount is small, so the temperature 
amplitude of the cooling stage tends to be uniform. Both the peak value of the deformation field 
and the final Z-direction displacement increase with the increase of the reduction amount.  

(a)                                   (b) 
Figure 19 Effect of Rotation Reduction(a), Temperature curves of different reduction(b), 

Displacement curves of different reduction. 
 
Figure 20 shows that the reduction has an obvious role in the improvement of the residual 

stress field. The three principal stresses are all significantly reduced, and the magnitude of the 
decrease is positively correlated with the amount of reduction which was shown clearly in Figure 
20 (d). Furthermore, the z-axis principal stress is even transformed from harmful tensile stress into 
beneficial compressive stress when the amount of reduction increases to R = 0.8 mm.  
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(a)                                   (b) 

 
(c)                                   (d) 

Figure 20 The effect of reduction on stress (a), the stress s11 in path x (b), the stress s22 in 
path y (c), the stress s33 in path z (d), the comparison of the average value of stress. 

 

The effect of rotational speed 

 

The rotational speed has a great influence on the shape of the weld bead. The increase of the 
rotational speed will lead to an increase of the weld bead offset. The embodiment in the outline is 
shown in Figure 21.  

 
  (a)             (b)              (c) 

Figure 21 Comparison of cross-section contours of weld bead after rotating under simulation 
results with different rotational speed(a), =300r/min (b), =350r/min (c), =400r/min 
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The rotation speed has little effect on the peak value of the monitoring point temperature curve, 

but the overall amplitude is positively correlated with the rotating speed. Moreover, the increase in 
rotating speed promotes the deformation of the weld bead and leads to a larger final displacement 
of the z-direction.  

(a)                                   (b) 
Figure 22 Effect of Rotating Speed(a), Temperature curves of different rotational speed(b), 

Displacement U3 curves of rotational speed. 
 
The effect of the rotational speed on the residual stress is mainly reflected in the improvement 

of the x-axis residual stress of the weld bead. And the increase of the rotating speed will make the 
x-direction principal stress larger that is compressive stress under the rotating process but has less 
influence on the z-axis principal stress of the y-axis principal stress.  
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    (c)                                 (d) 

Figure 23 The effect of the rotational speed on stress (a), the stress s11 in path x (b), the 
stress s22 in path y (c), the stress s33 in path z (d), the com

parison of the average value of stress 

 T
he effect of friction coefficient  

 The coefficient of friction of the rotatning contact surface has an essential influence on the 
deform

ation of the w
eld bead. The lateral deform

ation of the w
eld bead is positively correlated 

w
ith the increase in friction because of the frictional action.  

 The shape of the w
eld bead is better as the friction becom

es sm
aller as Figure 24 show

s. 
B

ecause the frictional force in the opposite direction before and after the rotator can bring m
ore 

uniform
 w

eld bead deform
ation w

hen the other param
eters such as the tem

perature and the 
reduction of the rotating zone are fixed.  

 

(a)           (b)           (c) 
Figure 24 C

om
parison of cross-section contours of w

eld bead after rotating under sim
ulation 

results w
ith different friction coefficients. (a),

=0.2 (b),
=0.15 (c),

=0.1 
 It can be seen from

 Figure 25 that an increase in the friction coefficient leads to an increase in 
the peak value of the m

onitoring point tem
perature curve and a decrease in the z-axis deform

ation 
of the final bead due to an increase in frictional heat generation.  
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(c)                                 (d) 

Figure 26 The effect of the friction coefficient on stress s11 in Path x. (a), the stress s11 in 
path x (b), the stress s22 in path y (c), the stress s33 in path z (d), the comparison of the average 

value of stress 
 

In summary, it is summarized from the simulation results that the rotating process can smooth 
the bead surface and improve the residual stress field by rotating and compression the new layer of 
the weld bead. 

 
Conclusion 

 
With combining the rotating process of welding with the WAAM process this paper proposes 

a new composite metal additive manufacturing technology based on the technical concept of 
welding and arc welding additive manufacturing. A finite element model was built to investigate 
the effects of HDIR process parameters, including the energy source-rotator distance, rotating 
reduction, rotating speed, and coefficient of friction by using Abaqus and Matlab. Combined with 
the experiment, the simulation results were investigated, and the effect of HDIR principle 
parameters on temperature and residual stress were discussed in the simulation. The main 
conclusion was shown as follows: 

 
(1) A new type of hybrid metal additive manufacturing technology was proposed, which can 

eliminate residual stress in the weld bead and improve weld bead profile. And the 
feasibility of the technology was verified by basic experiments and finite element 
simulation. 

(2) The simulation results show that the HDIR process can improve bead profile and reduce 
harmful residual stress. Moreover, the reduction and the distance of source-rotator play a 
significant part in optimizing residual stress field. The rotating speed has an important 
effect on perfecting x-axis residual stress s11 and the friction coefficient has a positive 
correlation effect on reducing residual stress s22 and s33. 
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(3) The basic experiment of HDIR process was done to investigate the feasibility of this new 
HDIR process technology. Besides, the actual bead profile can certificate the correctness 
of the finite element model. 

 
The model is relatively simple and contains certain limiting assumptions. Furthermore, the 

experiment is extraordinary basic and scattered; however, the model is very simple and crude when 
combined with experiments which can be further studied to analyze the microstructure to verify 
whether the rotating process can refine the grains. In the further, the related work, including further 
systematic experiments and simulations, can be further studied to develop this new hybrid metal 
additive manufacturing technology. 
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