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Abstract 

 
Fused deposition modeling (FDM) is one of the most popular additive manufacturing (AM) 

processes that works based on the layer-by-layer buildup of a 3D modeled part from polymers or 
fiber-reinforced polymer materials. In recent years, extensive research has been done to 
characterize the mechanical properties of FDM produced parts using classical laminate theory 
(CLT). However, considering the limitation of micromechanics approach to simple unit cells, there 
is a need to explore different techniques to alleviate those limitations. Taking into account the 
periodicity and multiscale nature of FDM infill patterns, one such technique is the asymptotic 
homogenization method used in this study to find mechanical properties. Moreover, the input of 
homogenized properties in CLT is discussed.  Finally, both homogenization and CLT results are 
compared with experimental results.  
 

1. Introduction 
 

As 3D Printing becomes more popular in the industry, characterization of mechanical 
properties of 3D printed parts becomes a point of interest to many engineers. However, elastic 
constants are very hard to determine due to a number of reasons. First of all, FDM manufactured 
parts are anisotropic due to different building direction of layers. Furthermore, process parameters, 
such as layer thickness, air gap, etc., affect mechanical properties since there are voids inside the 
part. At last, surface and internal defects have a negative effect on the strength of the 3D printed 
parts. An example of surface defects is staircase error which happens when 3D printer 
approximates external curves. An example of internal defects is internal voids inside the part 
because of the toolpath specifications [1]. 

A review paper by Cuan-Urquizo et al. presents an overview of different experimental, 
computational and analytical methods used so far [2]. Domingo-Espin et al. assumed that printed 
parts are assumed to be orthotropic instead of anisotropic [3]. Even though this is a fair 
approximation in the elastic region and low deformations, it requires lots of testing to be performed 
and does not yield any information about the mechanics of the parts. Li et al. treated each layer as 
a lamina consisting of beads and fibers and voids as a matrix [4]. Although there were instances 
where theoretical and experimental results did not match (due to assumptions in analytical 
calculations), overall, the work was successful in predicting elastic constants theoretically. 
Somireddy et al., performed finite element analysis (FEA) on the mesostructure level to determine 
strain energy and then laminate elastic properties [5]. Rodriguez et al. derived and applied 
micromechanics approach for constitutive modeling of FDM made parts [6]. Derived equations 
yield simple approximations for mechanical constants and can be used by engineers for rough 
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calculations. Croccolo et al. utilized an analytical model to predict the mechanical properties with 
zero air gap between the beads [7]. The inclined beads were assumed to behave as an inclined truss 
member. Based on his results, there was an approximately 4% difference in predicted stiffness and 
strength values with respect to experimental results. The model used in his study is excellent in 
predicting the stiffness of the samples but is also restricted to 100% density. Huang and 
Singamneni et al. investigated the effective stiffness and strength properties of unidirectional test 
specimens printed with different raster angles [8]. In-plane stress and perfectly bonded layers are 
assumed in the analytical model. In a different study, they considered the bead cross-sections to 
be square with elliptical fillets. As a result of the findings, the coalescence between layers is found 
to be sensitive. Cuan-Urquizo et al. studied the effective properties of the printed part with the 
presence of voids in the printed structures [9]. The unit cell consisted of cellular material and was 
treated as lattice structure. Lattice was considered to be loaded along one of the main axes with 
beads parallel to the loading direction. Mechanical properties were derived based on the rule of 
mixtures. The relative error between effective properties and finite element predictions was less 
than 10%. 

One of the most common infill patterns is line or rectilinear infill. Line infill can be customized 
to print each layer in a different direction. This project investigates the application of multiscale 
modeling as a constitutive modeling tool for parts made with the line infill. Asymptotic 
homogenization (AH) is one of the multiscale modeling techniques that is used for the parts with 
periodic microstructures. The main objective of the work is to investigate homogenization 
approach as a tool for predicting mechanical properties of FDM-printed parts and investigate post-
processing possibility of microscale displacements, strains, and stresses. Experimental results are 
used for validation of theoretical results. However, tensile experiments can only be performed for 
balanced symmetric laminates due to tensions-shear, tension-bending, and tension-torsion 
coupling. Therefore, the two cases discussed here are all-zero layup and 0/90 layup. Moreover, 
ideal and actual representative volume elements (RVEs) are used in the study to assess the 
influence of the microstructure on the mechanical behavior. Moreover, results from CLT are used 
to predict 0/90 layup properties from all-zero degree layup. Finally, homogenization and CLT 
results are compared to experimental results. 

 
2. Materials and Methods 

 
2.1.Asymptotic Homogenization Theory 

 
Palencia [10], and Guedes and Kikuchi [11] developed asymptotic homogenization, a 

mathematical theory that homogenizes heterogeneous parts based on the asymptotic expansion of 
displacement field (u) over macro and microscale domains. The mathematical formulation is as 
follows: 

( ) ( , ) = ( ) + ( ) + ( ) +    (1) 
where  is the microscale coordinate vector defined on RVE domain and  is the macroscale 
coordinate vector defined over continuum body. RVE is a self-repeating element that is selected 
from the microstructure of the macroscale part. Plugging expanded displacement field in linear 
strain   and stress tensors ,  the following equations are obtained: 

( , ) = ( ) + ( ) + ( ) +     (2) 

( , ) = ( ) + ( ) + ( ) +     (3) 
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Using the equations given above in a static elasticity equation, terms with the same  order are 
grouped and equated to zero. The further derivation is omitted here for the sake of brevity. For a 
detailed discussion of asymptotic homogenization theory, the reader is referred to [10–13]. As a 
result of the derivation, we obtain a partial differential equation (PDE) given in equation (4) 
representing microscale equilibrium over Y (RVE domain) with periodic boundary conditions and 
additional constraint equation to enforce zero mean of displacement influence function and 
guarantee uniqueness of the solution. 
 

[ ( ( , ) + )], = 0      (4)

( ) = ( + )

   = 0

where  is stiffness tensor of pure material,  is displacement influence function,  is 
fourth-order identity tensor. Homogenized stiffness tensor, , can be calculated using equation 
(5). 

 
= ( + ( , )) /| |   (5)

The extracted homogenized constants are used in a macroscale finite element model that is 
solved for the macroscale displacement field ( ) on the tensile specimen geometry. One side of 
the specimen is fixed and the other one is loaded with traction vector corresponding to maximum 
force sustained during the tensile test. Finally, AH makes it possible to calculate deformations, 
strains, and stresses at the microscale in the post-processing stage. The mesh is imported to an in-
house built MATLAB code that solves both micro and macro-scale equations and exports results 
in Paraview visualization software. Overall, the algorithm followed in this paper is illustrated in 

 
Figure 1. The workflow of the homogenization procedure 

Model RVE domain in SolidWorks 

Mesh RVE domain in ANSYS 

Solve microscale equilibrium equation and 
extract homogenized properties in MATLAB 

Solve for microscale fields in MATLAB 

Extract microscale fields to Paraview 

Model continuum domain in SolidWorks

Mesh continuum domain in Ansys

Solve linear elasticity equation in MATLAB 

Extract macroscale fields to Paraview
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Fig. 1. Both RVE and continuum scale geometries are modeled in SolidWorks and then imported 
to ANSYS for meshing.  
 

2.2. CLT 
 

Next, predicted mechanical properties from the all-zero case are used in CLT to predict 
properties of the whole laminate in 0/90 case. In general, CLT is widely used for modeling 
mechanical behavior of laminated composite plates. CLT is centered around “ABD matrix” that 
relates strains and curvatures to forces and moments as illustrated in equation (6). 

{ } = { }     (6) 
 

 where  is force vector,  is moment vector,  is strain vector,   is curvature vector, =
( ) ( ) , = ( ) ( ) , and = ( ) ( ). 

For symmetric laminates, B matrix is equal to zero matrix and for balanced laminates there is no 
tension-shear coupling in A matrix (A16= A26=0). Since 0/90 layup is both balanced and symmetric 
both of these properties hold. Therefore, smeared mechanical properties of the laminate can be 
calculated by inverting A matrix and then extracting Young modulus and Poisson’s ratio from 
compliance matrix divided by the thickness of the laminate. 

2.3.Experimental Setup 
 

 In this study, specimens were printed with the polylactic acid (PLA) using Ultimaker 2+ 
Extended with printing settings given in Table 1. Settings that are not mentioned here are given by 
default in slicing software (in this case Cura). Shells, top and bottom layers have been omitted to 
exclude their effect on homogenization results. 
 

Table 1. Printing Settings 
Printing parameter Setting 

Material PLA 
Nozzle diameter (mm) 0.4 

Infill pattern Line 
Infill density (%) 100 

Nozzle temperature (0C) 215 
Bed temperature (0C) 50 

Printing speed (mm/s) 50 
Layer height (mm) 0.2  

Number of shells/top/bottom layers 0 
Cooling fan (%) 100 
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To validate theoretical results obtained from homogenization and to get a better insight into 
the mechanical behavior of the grid pattern, tensile tests were performed. Testing was conducted 
in accordance with ASTM D638 “Standard Test Method for Tensile Properties of Plastics”. Strain 
rate during the test was 5 mm/min. Testing was done using Instron 5582 UTM. 

Two cases of laminate layup were assessed all-zero and zero-ninety. Since this study 
attempts to predict mechanical properties in different directions, specimens were printed with 
following layups all-zero (0), all-ninety (90), all-zero vertical (0V), zero-ninety (0-90), ninety-zero 
(90-0) and zero-ninety vertical (0-90V). Specimen name coding is explained in Figure 2 with 
testing and printing directions are shown using arrows. 

 

  
Figure 2. Specimen Coding Explained: a) All-zero b) 0/90 layup 

Table 2. Experimental results 

Testing 
Direction/ Layup 

Young Modulus (Pa) Yield Strength (Pa) 
Mean Deviation Mean Deviation 

0/ 3.067E+09 3.27E+07 5.059E+07 9.75E+05 
90/ 2.353E+09 7.63E+07 2.103E+07 5.95E+05 
V 2.064E+09 1.51E+08 1.882E+07 3.18E+06 

0/90 2.835E+09 5.56E+07 3.773E+07 8.40E+05 
90/0 2.791E+09 1.38E+08 3.611E+07 8.44E+05 

0/90/V 2.653E+09 2.45E+08 2.608E+07 5.73E+06 

0 

0V 

90 

a) 

0/90 

0/90V 

90/0 

b) 
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3. Results & discussion 

3.1. Experimental Results 

Experimental results are summarized in Table 2. Results are classified according to specimen 
code. Young modulus, maximum force and tensile strength of the tested samples are reported. 
Overall, material behavior was brittle with almost no yielding/plastic deformation upon fracture. 
0-degree layup is stronger and stiffer in 0-degree than in 90-degree as expected. The vertical 
direction is weaker than both 0 and 90 directions. The same pattern is observed in the tensile 
strength of 0/90 degree layup.  
 

 
3.2.Homogenization & CLT 

The first step in the homogenization procedure is RVE selection from microstructural images 
given in Fig. 3a, b. RVE showed in Fig. 3a will be used for homogenization prediction of the 0-
degree layup. Furthermore, RVE presented in Fig. 3b will be used to predict properties of the 0/90 
layup straight from asymptotic homogenization and then results from homogenization prediction 
of all-zero layup will be used in CLT to predict smeared laminate properties. 
 Furthermore, two cases for the RVEs will be considered: ideal and actual (taken from 
microstructure). Ideal RVE is the one presented in the slicer software. Beads were approximated 
as ellipses with bead width and layer height given in slicer software, and ellipse minor axis was 
assumed to be equal to 0.4 mm (nozzle diameter). Actual RVE was reconstructed from optical 
microscope images using ImageJ image processing software. All four RVE cases are shown in 
Fig. 4. 

 

 

Figure 3. Microstructural Images a) All-zero b) 0/90 layup 

RVE 

a) 

RVE 

b) 

 1378

·················: 

1 .. L 



Homogenization was performed on ideal and actual RVEs, presented in Fig. 4a and c, to extract 
properties for 0 and 90-degree layups. It should be noted that the homogenized stiffness matrix is 
anisotropic for both ideal and actual RVE cases. However, orthotropic terms are 103 order higher 
than the rest of the terms for ideal RVE. Therefore, it is safe to assume that the material constitutive 
model is orthotropic. In the case of actual RVE, the stiffness matrix is given in equation (7) below. 
As the matrix shows (6,1: 3)  terms are close to the orthotropic terms. Therefore, material 
behavior resembles that of monoclinic material. The study will still proceed with the derivation of 
orthotropic constants simplifying material behavior.  
 

=

2.902 10
1.181 10 3.242 10  
1.469 10 1.592 10 4.201 10
1.943 10 1.432 10 3.069 10 9.734 10
3.478 10 7.585 10 1.764 10 2.581 10 9.137 10
1.374 10 8.852 10 8.127 10 1.357 10 2.250 10 7.901 10

  (7) 

Homogenization results are compared to experimental ones in Table 3. As Table 3 suggests
ideal RVE Young modulus prediction has low relative errors in 0 and 90 directions and high 
relative error in a vertically printed sample. Results based on actual RVE have lower errors in 0 
and 0V cases with a slight increase in 90 case. However, error in vertically printed specimens is 
still high even for actual RVE. A possible reason for this might be imperfect bonding between the 
layers. As results show actual RVE has much lower errors both for homogenization approaches. 

  
Figure 4. a) Ideal RVE b) Full Ideal RVE c) Actual RVE d) Full Actual RVE 

a) b) 

c) d) 
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 The same procedure was performed for the 0/90 layup case. However, this time two different 
methodologies were used as shown. First one is homogenization which refers to RVE given in Fig 
4b and d, this RVEs allow prediction of 0/90 degree layup straight from homogenization. 
Moreover, homogenization results from all-zero layup were used in CLT and then laminate 
smeared properties were calculated. Results of the calculations are compared with experimental 
results in Table 4. The homogenized stiffness matrix for ideal RVE followed a similar trend as 
before and for actual RVE case is shown in equation (8) below. It is evident that there are even 
more coupling terms that have magnitude comparable to orthotropic terms. 

 

=

3.330 10
9.668 10 2.252 10  
1.282 10 9.643 10 3.321 10
2.674 10 2.603 10 5.397 10 7.575 10
1.297 10 6.957 10 1.327 10 9.697 10 9.297 10
5.254 10 2.553 10 2.586 10 4.097 10 9.720 10 7.588 10

    (8) 

 
 As in the previous case, the highest errors are observed for vertically printed samples as shown 
in Table 4. For 0/90 and 90/0 cases relative errors are low. Young modulus in 0/90 case is slightly 
higher than 90/0 case because there is one more 0-degree layer (90-degree in 90/0 case). Relative 
errors are under 8% for homogenization in 0/90 and 90/0 directions. Actual RVE improves error 
in 90/0 degree considerably but increases error in the vertical direction. In CLT case, Actual RVE 
performs great in all three cases while Ideal RVE has relatively large error in the vertical direction. 
As results suggest, actual RVE coupled with CLT has relative errors lower than 8 % while other 
configurations underperform in vertical direction. 

Table 3. Young moduli comparison: Experimental vs Homogenization 

Specimen 
Code 

Experimental 
Young 

Modulus (Pa) 

Homogenization 

Ideal RVE Error Actual RVE Error 

0 3.067E+09 3.349E+09 9.222 3.102E+09 1.159 

90 2.353E+09 2.210E+09 -6.066 2.197E+09 -6.629 

0V 2.064E+09 3.287E+09 59.241 2.453E+09 18.819 

Table 4. Young moduli comparison: Experimental vs Homogenization 

Specimen 
Code 

Experimental 
Young 

Modulus 
(Pa) 

Homogenization CLT 

Ideal 
RVE Error Actual 

RVE Error Ideal 
RVE Error Actual 

RVE Error 

0/90 2.835E+09 2.976E+09 4.978 2.625E+09 -7.396 2.84E+09 0.347 2.702E+09 4.674 

90/0 2.791E+09 2.976E+09 6.628 2.625E+09 -5.956 2.80E+09 0.277 2.666E+09 4.479 

0/90V 2.653E+09 3.182E+09 19.942 1.764E+09 -33.531 3.29E+09 23.894 2.454E+09 7.512 
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3.3 Microscale normalized stress fields 
 

Finally, microscale stress fields are shown on actual RVE for all-zero case (but can be 
calculated for all cases). Microscale normalized stresses are shown on the RVE domain for two 
loading cases as shown in Figure 5. Yellow arrows illustrate loading direction. Although stress 
values increase unboundedly at sharp corners (due to singularity), both far-field and near-field 
stress values can be visualized under different loading conditions. Therefore, engineers can 
potentially predict where material is going to fail on the microscale. It should be noted that stress 
values were post-processed by averaging over the Gaussian quadrature points. Stress values 
presented are derived according to normal stress theory since PLA is a brittle material. 

 

     
Figure 5. Microscale stress fields for loading in a) Z in direction of beads b) Y perpendicular 

to beads 
 

4. Conclusion 
 

Overall, the study assesses the prediction of mechanical properties of FDM made parts through 
the application of asymptotic homogenization and classical laminate theory for all-zero and 0/90 
layups. Homogenization was performed for both 0 and 0/90 cases using ideal and actual RVEs. 
Ideal RVE was modeled as seen in slicer software and actual RVE was remodeled from 
microstructural images. Moreover, homogenization results from 0 layup case were used in CLT to 
predict properties for 0/90 layup case. The experimental setup was used to validate theoretical 
results. In all-zero layup, homogenization prediction using actual RVE had the least errors in 0 and 
0V directions with a slight increase in 90 direction. As for 0/90 layup, homogenizing with actual 
RVE increases error in 0/90 and 0/90/V.  CLT prediction using actual RVE results is under 8% for 
0/90 layup showing best performance out of all. Overall, even though the application of actual 
RVE does not provide significant improvement in some cases, it provides better insight into the 
mechanical behavior of the RVE by calculating anisotropic RVE stiffness matrix. Visualization of 
microscale stress fields enhances our understanding of stress distribution on the microscale under 
various loading conditions. 
 

a) b) 
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