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Abstract 
 

 Ensuring a robust and reproducible Laser Powder Bed Fusion (L-PBF) process depends on 
the design of the shielding gas flow in the corresponding manufacturing system. The gas flow 
assures the removal of particles from the process zone that emerge from the interaction with the 
laser irradiation. Minor disturbances may influence the stability of the L-PBF-Process and cause 
defects in final parts produced. The objective of this work comprises visualizing the convection 
processes and particle dynamics to analyze their influence on process stability. Therefore, a high 
speed camera based Schlieren and Shadowgraph setup is used to visualize convection flows as well 
as trajectories of metallic condensate and particles with up to 10,568 fps. This arrangement allowed 
investigating the influence of shielding gas flow conditions on single melt tracks. Corresponding 
results and studies on the interaction between laser irradiation and particles in varying shielding 
gas flow conditions are contents of this work. 
 
Keywords: Laser Powder Bed Fusion; Schlieren; Shadowgraph; Process Development; Shielding 
gas flow; Process stability; 316L stainless steel 
 

Introduction 
 
 The shielding gas flow becomes ever more important in modern L-PBF machines with 
increasing build volumes and numbers of simultaneously working laser sources. Therefore, it is 
critical to understand how the shielding gas flow influences the stability of the Laser Powder Bed 
Fusion process. It is known that material defects resulting from an insufficiently adjusted process 
gas flow might affect the tensile strength of parts produced as shown by Ferrar et al. [1]. Their 
work suggests, that differing shielding gas flow conditions cause the defects. New imaging 
approaches can help to characterize different shielding gas flow mechanisms like the gas 
convection that might lead to an unstable process. A high speed Schlieren and Shadowgraph system 
is suitable for visualizing convection of hot gas and particle movement during the exposure of the 
metal powder bed. The Schlieren as well as the Shadowgraph method enables the visualization of 
convection processes in transparent media. With the Schlieren method, the local fluctuation of the 
refractive index is exploited by inhomogeneities of density in the medium under consideration. 
Parts of the refracted light can be prevented from reaching a screen by means of a cutoff. The shape 
that emerges on the screen is called a Schliere (german for "smear"). The shadow method uses the 
shadow cast by objects. Since this method does not require a cutoff, the luminous efficacy is much 
higher than with the Schlieren method. The high temporal resolution of the high speed camera 
enables researchers to see small changes in the range of microseconds that would otherwise be 
overseen. 
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 Bidare et al. [2,3] have shown that it is possible to visualize the convection of argon gas 
entraining metal vapor while being ejected from the melt pool. This was enabled through a custom 
Schlieren setup and a high speed camera. They have shown that the melt pool geometry is decisive 
for the particle ejection behavior. Different variations of laser power PL and scanning speed vscan 
lead to changing ejection behaviors. Hoppe et al. were able to verify these findings with a similar 
setup and widened the scope of analyzed parameters [4]. Metal condensate is generally entrained 
in the convection flow of heated shielding gas. The appliance of Shadowgraph imagery in addition 
to the Schlieren images allowed for clearly linking the condensate movement to the convection 
flow. This holds true when applying a forced shielding gas flow to the process. Interaction between 
the metal condensate and laser beam was observed. Furthermore, single melt tracks were analyzed 
via particle tracking to measure the particle ejection behavior at varying laser power PL and 
scanning speed vscan. The ejection angle of particles changes according to the convection flow of 
the heated shielding gas. Increasing PL or decreasing vscan lead to a higher ejection angle. The effect 
of adjusting parameter values for PL is observed to be more dominant than similar modifications 
for vscan. However, it was not analyzed in detail how this influences part quality. 
 
 Hoppe et al. focused solely on the observations made by Schlieren and Shadowgraph. This 
work will therefore focus on further analyzing the interaction of laser beam and ejected particles 
from the melt pool as well as the resulting part topology. Varying shielding gas flow conditions 
and their influence on the L-PBF process stability will be looked at in more detail. 
 

Experimental Setup and Methodology 
 
 Exposing two scanning patterns with a laser beam allows analyzing the influence of the 
shielding gas flow on the process stability. A high speed camera captures Schlieren and 
Shadowgraph images during the exposure process for visualizing the convection flows of the 
shielding gas and the particle ejection behavior. The surface topology and melt track geometry are 
evaluated by means of reflected light microscopy and SEM images. Correlating these results to the 
Schlieren and Shadowgraph images should than provide explanations on the mechanisms leading 
to an unstable melting process. The employed experimental setup and analyzing methods are 
described in the following. 
 
 The experimental setup is based on a modified AconityMINI machine from Aconity3D 
GmbH for having the opportunity of controlling and creating a desired process gas atmosphere. 
The system has openings at the opposing ends of the process chamber with 4 mm thick glass 
windows installed therein. This enables the light to pass unhindered through the chamber during 
the L-PBF process in order to run the Schlieren system. Additionally, the powder coater has an 
aperture so that it can remain in the process chamber during the process and allow measurements 
to be made. The setup corresponds to the setup used and described by Hoppe et al. in [4] 
 
 The z arrangement described by Settles [5] is used for the mirror Schlieren system in this 
work, but has been customized so that it is compatible with the described machine type. The 
Schlieren system consists of an illumination side and an imaging side, which are arranged point-
symmetrically to the process chamber center.  
 
 A mounted LED MCWHL5 from Thorlabs produces the cold white (6500 K) light required 
for the Schlieren imagery at a minimum light output of 800 mW. This light is focused by a 
condenser lens onto a variable slit diaphragm and then reflected via a deflecting mirror onto a first 
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off-axis parabolic mirror (OAP). The reflection at the OAP leads to a collimation of the light, which 
enters the process chamber through the first glass window. The light illuminates the observation 
plane which is approx. 230 mm away from the second glass window. The light leaves the process 
chamber through the second glass window and is refocused by a second OAP onto a cutoff 
(consisting of a standard razor blade) via a second deflecting mirror. The cutoff is positioned in the 
focal point of the OAP and set to reflect 75% of the focused light. The cutoff allows adjusting the 
contrast of the Schlieren image recorded by a high-speed camera (HS camera) with a resolution of 
51.8 μm/pixel and a mounted Nikon zoom lens (70 - 210 mm focal length, f/4). 
 
 The OAP of Thorlabs have a fixed reflection angle of 15°, a focal length of 381 mm and a 
diameter of 50,8 mm. They are made out of a silver-coated aluminum substrate and reflect a 
wavelength range from 450 nm to 20 m. The deflecting mirrors have a flat square reflection 
surface with an edge length of 50.8 mm. All components are mounted onto breadboards with a 
surface area of 300 x 300 mm² and firmly connected to the test chamber using aluminum profiles. 
 
 A VEO640L HS camera from Vision Research generates the high-speed videos. The 
monochrome sensor enables a maximum image acquisition frequency of 1,600 Hz at full resolution 
of 2,560 x 1,600 pixels. The Schlieren images are captured at a resolution of 1024 x 500 pixels, an 
image acquisition frequency of 9,656 Hz and an exposure time of 14.64 μs. For the Shadowgraph 
shots a resolution of 896 x 500 pixels, an image acquisition frequency of 10,568 Hz and an 
exposure time of 5.13 μs are set. The laser modulation signal is used as a trigger signal. 
 
 The laser radiation with a wavelength of 1070 nm and a nominal laser power of 400 W is 
generated by an ytterbium single-mode fiber laser beam source from IPG Photonics GmbH. A 
HurryScan 20 scanner system with an RTC-5 control card enables the deflection of the laser beam. 
An F-Theta lens with a focal length of 254 mm focuses the laser beam to a beam diameter dB of 
approx. 80 μm in the working plane. This corresponds to the surface of the powder bed. 
 
 Gas atomized stainless steel powder 316L  with a particle size distribution of 22 - 63 μm 
and an average particle diameter of x50 = 36.86 μm represents the raw material of the process. The 
powder is applied with a layer thickness DL = 60 μm by means of a silicone lip. The round substrate 
plates with a diameter of 100 mm also consist of 316L and the corresponding surfaces are 
roughened with sandpaper and then cleaned with ethanol. Additionally, a 5 mm thick detachable 
metal sheet manufactured out of 316L is used on top of the substrate plate to facilitate the 
generation of cross sections. The experiments were carried out directly on the substrate plate 
without a pre-melted, shrunk layer. 
 
 The noble gas argon is used to create a shielding gas atmosphere by flooding the process 
chamber until the measured residual oxygen value drops below 200 ppm. By manually controlling 
the argon supply, the residual oxygen value can be kept below 200 ppm during the L-PBF process. 
The investigations are performed at an overpressure of 80 mbar relative to the ambient pressure. 
The changing weather-dependent ambient pressure is not measured. The flow velocity across the 
substrate plate is set to approx. 2 m/s. This value corresponds to the maximum flow velocity in the 
test setup considered here, at which the metal powder is not removed by the shielding gas flow. 
 
 To recreate process conditions comparable to industrial parts two scanning patterns are 
defined. These are rectangular shaped with edge lengths of 35 mm x 6 mm and are schematically 
depicted in Figure 1. The side view scanning pattern contains 8 stripes with fill vectors aligned 
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parallel to the long edge of the rectangle. The six central stripes are 5 mm wide while the two 
border stripes are 2.5 mm. The tip view scanning pattern contains two 3 mm wide stripes with fill 
vectors aligned perpendicular to the long edge of the rectangle. The stripes of the side view pattern 
are exposed from bottom to top and the tip view pattern from left to right. Both patterns begin with 
the start vector of the first stripe and finish with the end vector of the last stripe. 
 

 
Figure 1. Schematic depiction of the scanning patterns used. Top: Side View Pattern with 5 mm 
and 2.5 mm wide stripes. Bottom: Tip View Pattern with 3 mm wide stripes. 

 
 The scanning patterns were chosen to take into account the point of view of the HS camera. 
The long edge of the rectangle is oriented parallel to the observation plane. Hence, only the side of 
the vectors are visible, when recording the side view pattern. The tip view pattern enables capturing 
the tip and tail of the vectors respectively. 
 
 The exposure parameters used for the experiments were developed by Pichler et al. [6]. A 
relative part density of 99.92% is achieved with using PL = 250 W, vscan = 800 mm/s and a hatch 
distance of Δyh = 100 μm. Hence, these process parameters are utilized for all described 
experiments in the following. 
 
 The exposure of the fill vectors is performed in skywriting mode 3 with NPrev = 200 μs, 
NPost = 200 μs, Timelag = 280 μs and Laser-On-Shift = 20 μs. 
 
 The ImageJ distribution FIJI allows to preprocess the video recordings [7]. This software 
also enables to correct darkening of single frames by means of flat field correction which is applied 
to all images presented in this work. A flat-field-correction is able to correct edge shadowing of 
the lens, scratches, dust etc. by means of a reference image of a uniformly bright image surface. 
Each pixel of every single video frame is adjusted in its intensity. Additionally, a tonal value 
correction is performed with manually determined parameters to achieve the highest possible 
contrast in the image without losing information. The parameters used are determined separately 
for Shadowgraph and Schlieren shots, as the different exposure settings lead to different brightness 
distributions. 
 
 To analyze the surface and cross sections of the samples contactless measuring devices 
are used. Surface imagery is performed through a scanning electron microscope LEO 1455EP 
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with a magnification of up to 4000x. Colored imagery and analysis of the cross sections are 
enabled by means of a reflected light microscope from Olympus Deutschland GmbH. 
 

Results and Discussion 
 
 This work covers four exposures for result discussions. Two side view and two tip view 
exposures are investigated with and without shielding gas flow respectively. 
 
 The top images in Figure 2 show exposures of two side view patterns with (a) and without 
(b) shielding gas flow support. In both cases the melt pool is visibly glowing and shining particles 
get ejected from the melt pool. The exposure without shielding gas flow support shows an 
additional glowing area above the melt pool. This is caused by laser irradiation interacting with the 
particles ejected from the melt pool. 
 

 
Figure 2. In-situ images of the exposure of stripes with (left) and without (right) shielding gas 
flow support. The process without shielding gas flow is forming a glowing pillar out of 
condensate and vapor. PL = 250 W, vscan = 800 mm/s 

 
 The images in Figure 3 show the resulting surfaces of two corresponding exposures of the 
tip view patterns. The exposure in the upper image is supported by the shielding gas flow and the 
lower is not. The surface of the exposure with shielding gas flow shows an evenly distributed 
pattern of melt tracks. In contrast, the surface without shielding gas flow appears to have an evenly 
distributed pattern of melt tracks up to 5/6th of the lower stripe until a transition zone. The last sixth 
of the lower stripe shows this light colored transition zone of approx. 2 mm before changing to a 
darker color. This darkening and undefined surface structure are also visible on the upper stripe 
until the end of the exposure on the upper right side. Light Balling can be observed on the surface 
after the transition zone that is increasing on the upper stripe. 
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Figure 3. Reflected light microscope images of two consecutive stripe exposures of tip view 
patterns with (top) and without (bottom) shielding gas flow. The surface without shielding gas 
flow shows a transition from a stable process to an unstable darkened process with balling at 
around 5/6th of the lower stripe in exposure direction. 1: Upper stripe. 2: Lower stripe. 
PL = 250 W, vscan = 800 mm/s 

 
 Scanning electron microscope images are taken and shown in Figure 4 for understanding 
the process of surface structure formation. Image areas (a) and (b) show consecutive pictures of 
the lower stripe of a tip view pattern exposure without shielding gas flow. Initially, evenly 
distributed single melt tracks can be observed until the melt tracks enter a transition zone and 
become undistinguishable to each other. The evenly distributed melt tracks are similar to the ones 
in image area (c) that depicts the melt tracks of a section of the top stripe with shielding gas flow. 
Following the transition zone light balling becomes apparent (b) with a sphere diameter of up to 
150 μm. Furthermore, no single melt tracks as in (a) can be identified. The balling effect continues 
at the beginning of the upper stripe (not shown) and becomes stronger until the end of this stripe 
(d). The spheres now reach a diameter of up to 250 μm. Powder particles are attached to all surfaces 
regardless of their overall topology. 
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Figure 4. Surface of post-exposure tip view patterns. (a) and (b) show the end of the lower stripe 
exposure without shielding gas flow with the transition zone and the beginning of light balling. 
The bottom images show one section of the upper stripe with shielding gas flow (c) and without 
shielding gas flow (d). In (d) strong balling can be observed. PL = 250 W, vscan = 800 mm/s 

 
 The darkening and balling only occur in absence of the shielding gas flow. Residual oxygen 
in the process chamber was carefully monitored and kept below 200 ppm. Therefore, oxidation is 
not considered as the cause for the darkening and the increased balling. 
 
 It was intended in the following to visualize the convection processes of heated gas and the 
particle movement for finding an explanation on how the absence of shielding gas flow leads to a 
transition from a stable to an unstable process. In Figure 5 a comparison between Shadowgraph 
(top) and Schlieren (bottom) images is shown. The Shadowgraph images allow the illustration of 
particles that block light such as metal condensate and powder particles. The Schlieren images 
enable the visualization of the convection flow of the heated shielding gas. It needs to be noted that 
Shadowgraph and Schlieren Images could not be taken at the same time. Hence, the images show 
the same exposure of a tip view pattern but are recorded in two separate experiments with differing 
timestamps. The images show the process without shielding gas flow in rows (a) and (c) and with 
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shielding gas flow in rows (b) and (d) at three different points in time. A dark plume with an 
upwards direction can be seen at 283.985 ms into the exposure in the Shadowgraph image (a). The 
corresponding Schlieren illustration at 283.968 ms in row (c) shows the convection of hot gas with 
the same upwards direction. The images at 1324.915 ms (Shadowgraph) and 813.328 ms 
(Schlieren) show the process entering the transition zone described in Figure 3. The plume in (a) 
becomes lighter in color and the corresponding Schlieren image in (d) depicts a weakening 
convection flow which indicates a change in process stability. The amount of ejected particles 
seems to decline compared to the images at 238.985 ms. At 1419.545 ms (Shadowgraph) and 
906.914 ms (Schlieren) the transition is completed and light balling begins to occur. A full 
sequence of Schlieren images can be found in the Appendix. 
 

 
Figure 5. Tip view pattern exposure at start, transition and after transition with light balling. 
Top: Shadowgraph Images without (row (a)) and with shielding gas flow (row (b)). Bottom: 
Schlieren without (row (c)) and with shielding gas flow (row (d)). Schematic depiction of 
scanning pattern at the bottom shows the current exposure position. PL = 250 W, vscan = 800 mm/s 
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 The corresponding images of the shielding gas flow supported exposures in rows (b) and 
(d) show no changes in plume behavior. The shielding gas flow pushes the heated shielding gas 
and entrained particles from the right to the left side and away from the laser beam. This leads to 
the assumption that the accumulation of particles in the process without shielding gas flow 
influence the laser beam. The consequences might be the altering of the intensity distribution of 
the laser beam through scattering as well as the absorption of portions of the light described by 
Š eglov in [8]. This assumption is supported by the change of the particle ejection direction during 
the exposure of the side view pattern shown in Figure 6. 
 

 
Figure 6. Side view pattern exposure. (a) and (b): At start. (c) and (d): after transition. Without 
shielding gas flow. Left: Schlieren Images. Right: Shadowgraph Images. PL = 250 W, 
vscan = 800 mm/s 

 
 Hoppe et al. [4] analyzed the ejection direction of particles by measuring the ejection angle 
from the melt pool via particle tracking. They investigated that at PL = 250 W and vscan = 800 mm/s 
the particles are ejected against the exposure direction by an average angle of 30° with regard to 
the powder bed surface. The arrows in (a) and (b) indicate the ejection direction without shielding 
gas flow at the start of the exposure of the side view pattern. The particles get ejected as described 
by Hoppe et al. against the exposure direction with alternating orientation. This can be explained 
by the bidirectional vectors of the scanning pattern described in Figure 1. After passing a transition 
zone as described in Figure 3 and Figure 4 the ejection direction changes from 30° to almost 
perpendicular to the powder bed as shown in Figure 6 (c) and (d). This leads to particles being 
ejected almost directly into the laser beam. An increase of the ejection angle was also observed by 
Hoppe et al. [4] when reducing the laser power PL while keeping the scanning speed constant. This 
supports the assumption that the particles might attenuate the laser beam through scattering and 

No flow

Convection front Condensate / vapor

5 mm

Point of view

Ejection direction

Ejection direction

(a)

(c)

(b)

(d)

Current exposure position

 1531

(b) 

Convection front 

5mm 

No flow Point of view ! 
;; ;; Current exposure position 



 

 

absorption of light. The attenuation effect is reinforced by the particles being ejected almost 
directly into the laser beam. This also explains the observation of increased balling on the surface 
of the exposed areas in Figure 4. Powder particles are also lifted into the laser beam and 
subsequently melted midair as depicted in Figure 7. 
 

 
Figure 7. Time sequence of the fusion of melted particles midair. Side view pattern without 
shielding gas flow. PL = 250 W, vscan = 800 mm/s 

 
 These melted particles drop onto the solidified surface of the exposed areas forming solid 
spheres. Some of the melted particles fuse midair and form larger particles with a diameter of up 
to 250 μm as shown in Figure 4. Part defects are more likely to happen in these areas since the 
particles are remelted in consecutive layers as described by Tolochko et al. in [9] and Li, Liu et al. 
in [10]. 
 
 Through Schlieren and Shadowgraph imagery it is possible to visualize the changes in the 
melting process in dependency of the shielding gas flow. The occurrence of balling is visualized 
and linked to the change in ejection angle of the particles while the laser beam is altered before 
reaching the powder bed. The darkening of the surface could not be explained by the Schlieren and 
Shadowgraph imagery. Since oxidation can be ruled out as a reason it is thought that condensate 
nanoparticles adhere to the solidified part surface. Particles with a diameter of 80 - 150 nm in the 
welding plume are described by Š eglov in [8]. These nanoparticles would be small enough to 
cause the darker appearance of the surface by plasmonic surface resonance. To verify this 
assumption, additional SEM images were taken with a magnification of 4000x and are shown in 
Figure 8. Image (a) depicts the surface of a shielding gas supported exposure and (b) the surface 
of an unsupported exposure. 
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Figure 8. SEM images at 4000x magnification. (a) With shielding gas flow. (b) Without 
shielding gas flow. PL = 250 W, vScan = 800 mm/s 

 
 The surface in image (a) shows no sign of adhesion of particles smaller than 1000 nm. 
Without shielding gas flow on the other hand, the surface is covered with particles smaller than 
200 nm, which coincide with the expected size of 80 -150 nm. The sections of the exposed stripes 
with evenly distributed melt tracks do not show a darkened surface nor nanoparticles. Hence, the 
presence of the nanoparticles can only be linked to the interaction with the laser beam when the 
particles are ejected perpendicular to the powder surface. A similar observation has been made by 
Hoppe et al in [4] showing a powder particle interacting with the laser beam and then being 
accelerated in direction of the powder bed surface. The reason is the almost instantaneous 
evaporation of material on the laser beam facing side of the particle leading to recoil pressure. The 
adhesion cannot be defined as strong since the nanoparticles can be brushed from the surface by 
mechanical interaction. 
 
 It was shown that the absence of shielding gas flow leads to an accumulation of 
nanoparticles in the process atmosphere leading to altered process conditions. This can be observed 
via Schlieren and Shadowgraph imagery as well as surface topology analysis. To evaluate the 
influence on the melting tracks we analyzed the shape of the exposure patterns. We expect the melt 
track width to change after the transition zone since the laser beam characteristics seem to be 
altered. 
 
 In Figure 9 detailed surface images of the scanning patterns from Figure 3 are depicted. 
The boundary of the upper and lower stripe of a tip view pattern without shielding gas flow is 
shown. The melt tracks of the lower stripe are evenly distributed while the upper stripe melt tracks 
cannot be clearly differentiated from each other. The upper stripe melt tracks are wider compared 
to the lower stripe melt tracks. The wider appearance suggests a conduction welding process. A 
similar melt track topology can be seen in (b), which shows the transition zone. The lower stripe 
melt tracks transition from narrow and evenly distributed melt tracks to wider non-distinguishable 
melt tracks.  
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Figure 9. Reflected light microscope images of tip view patterns without (a and b) and with (c 
and d) shielding gas flow. (a) and (c) represents the boundary between the upper and lower stripe 
near the beginning of the scanning pattern. (b) shows the transition zone and (d) the 
corresponding section of a shielding gas supported pattern. 

 
 The melt track geometry imply that the laser beam is altered at the transition zone in (b). 
The wider melt tracks can be explained by a reduction in laser power as well as a change in intensity 
distribution. Further analysis of the melt tracks via cross sections need to be conducted to verify 
the assumption of welding mode transition through attenuated laser power. 
 

Conclusion 
 
 The presented work shows the importance of a reliable shielding gas flow for a stable L-
PBF process. Schlieren and Shadowgraph imagery enabled visualizing the convection flows that 
entrain the nanoparticles emerging from the melting process. The nanoparticles are ejected into the 
process chamber depending on the melt pool geometry and are then distributed through natural 
convection. The absence of shielding gas flow leads to an abundance of nanoparticles in the 
shielding gas atmosphere in the process chamber. These nanoparticles begin to interact with the 
laser beam until reaching a tilting point. Entering a transition zone, the melt track topology changes 
due to the altering of the laser beam possibly by means of absorption and scattering. In the transition 
from a stable to an unstable process, ejection behavior changes and particles are directly lifted into 
the laser beam leading to further attenuation and balling on the solidified part surface. A darkened 
surface through adhered nanoparticles was observed after the transition zone indicating an unstable 
process. The analysis of the melt track topology reinforces the observation made with Schlieren 
and Shadowgraph images. The melt tracks after the transition zone become wider compared to the 
melt tracks seen in a stable process with shielding gas flow. Since residual oxygen was kept below 
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200 ppm, the most reasonably explanation for this behavior is the reduction of the effective laser 
power reaching the powder bed and a change of the beam profile. 
 
 Following this work, further investigations on the altering of the beam profile and effective 
laser power reaching the powder bed need to be conducted. The concentration of nanoparticles 
leading to an unstable process are of special interest in a multi laser setup. Cross sectional analysis 
of the melt tracks would prove the transition into a conduction welding regime and explain the 
changes in particle ejection behavior. 
 

Funding Information 
 
 This work was supported by the "Research Campus - Public-Private Partnership for 
Innovation" funding initiative of the Federal Ministry of Education and Research (BMBF) of 
Germany. 
 

References 
 
[1] B. Ferrar, L. Mullen, E. Jones, R. Stamp, C.J. Sutcliffe, Gas flow effects on selective laser 

melting (SLM) manufacturing performance, Journal of Materials Processing Technology 212 
(2012) 355–364. 

[2] P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Fluid and particle dynamics in 
laser powder bed fusion, Acta Materialia 142 (2018) 107–120. 

[3] P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Laser powder bed fusion in 
high-pressure atmospheres, Int J Adv Manuf Technol 99 (2018) 543–555. 

[4] B. Hoppe, S. Enk, Schlieren and Shadowgraphy for Visualization of the Shielding Gas 
Dynamics in Laser Powder Bed Fusion (L-PBF), in: Proceedings of the 16th Rapid.Tech 
Conference Erfurt, Germany, 25 – 27 June 2019. 

[5] G.S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent 
Media, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. 

[6] T. Pichler, J. Schrage, J.H. Schleifenbaum, Increasing Productivity of Laser Powder Bed 
Fusion (L-PBF) by Qualifying and Processing Different Powder Qualities and Application of 
Intelligent Processing Strategies, in: Fraunhofer Direct Digital Manufacturing Conference 
DDMC 2018. 

[7] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch 
et al., Fiji, Nature methods 9 (2012) 676–682. 

[8] P. Š eglov, Study of vapour-plasma plume during high power fiber laser beam influence on 
metals. Zugl.: Moskau, Univ., Diss., 2012, Bundesanstalt für Materialforschung und -prüfung 
(BAM), Berlin, 2012. 

[9] N.K. Tolochko, S.E. Mozzharov, I.A. Yadroitsev, T. Laoui, L. Froyen, V.I. Titov, M.B. 
Ignatiev, Balling processes during selective laser treatment of powders, Rapid Prototyping 
Journal 10 (2004) 78–87. 

[10] R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Balling behavior of stainless steel and nickel 
powder during selective laser melting process, Int J Adv Manuf Technol 59 (2012) 1025–
1035. 

 
  

 1535



 

 

Appendix 
 

 

 
Figure 10. Shadowgraphy images of stripe exposures at different points in time Top: without 
shielding gas flow. Bottom: with shielding gas flow from left to right. PL = 250 W, 
vscan = 800 mm/s. Shadowgraphy of stripes tip. Time Axis 
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