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Abstract

This paper demonstrates the potential for qualification through local part property
prediction of 304L stainless steel parts manufactured by Selective Laser Melting (SLM). This is
accomplished through voxel based processing of SWIR imaging data measured in-situ. Thermal
features are extracted from time-series SWIR imaging data recorded from layer-to-layer to
generate 3D point cloud reconstructions of parts. The voxel based data is indexed with localized
measurements of SLM part properties (light-to-dark microstructural feature ratio, microhardness,
uCT data) to demonstrate the correlations. Various features are extracted from the thermal history
for comparison of their respective abilities to predict the resulting local part properties. The
correlations and comparisons developed in this paper are then used to discuss the capability of a
voxel based framework using information from in-situ measurements of the thermal history to
locally qualify parts manufactured by SLM. This work was funded by the Department of Energy’s
Kansas City National Security Campus which is operated and managed by Honeywell Federal
Manufacturing Technologies, LLC under contract number DE-NA0002839.

1.0. Introduction

The incorporation of in-situ radiometry during Selective Laser Melting (SLM), a powder
bed based Additive Manufacturing (AM) technology, provides a better understanding of the
manufacturing process through non-contact measurement of emitted signals. The measurement
and processing of radiometric signals provides insight into the complex thermal history
experienced by a part during the manufacturing process. The complex thermal history is a result
of the laser processing parameters, scan pathing, and part geometry, and can vary significantly in
the volume of parts. This is an issue since the thermal history (along with material chemistry)
determines the part microstructure and mechanical properties. The variances in the thermal history
can lead to non-uniformity in the properties of SLM parts and defects. Measuring the variances in
the thermal history allows informed decisions to be made in the production of SLM parts. The
information from radiometric measurement methods can be used to identify defects, develop
correlations with part properties, and make predictions of part properties resulting from SLM.

Various instrumentation including visible cameras, infrared cameras, pyrometers, and
photodiodes have been used in studies to obtain information (apparent melt pool geometry,
intensity/temperature, laser spatter, etc.) from the radiometric signals [1]. The features extracted
from the measurements performed during the SLM process have been analyzed for various
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processing conditions [2] and mapped to generate 2D and 3D data sets for parts [3]. Data
processing methods have been developed for analysis of both time series data and voxel based
maps of powder bed based AM parts to identify defects (melt pool quality, variances in the thermal
history, porosity, failure of parts, etc.) [4-10]. Efforts are found in the literature to explore how
these defects change with SLM processing conditions with an example in [11]. The understanding
of this relationship has been expanded in a limited number of reports by correlating the AM part
properties (tensile strength, porosity) with the information extracted from radiometric
measurements [12-14].

The studies conducted to understand how radiometric signals relate to part quality and
properties have shown the technique to be success. However, there is an ongoing need to mature
the radiometric monitoring methods for the SLM process to enable in-situ part qualification with
high confidence and simultaneous prediction of the part properties. The ability to predict bulk part
properties has been explored through the development of models informed by FEA, or
experimental part property measurements. In these works, the predictions of SLM part quality and
properties include residual stress [15,16], porosity [17,18], mechanical performance [18], surface
roughness [19], and microstructure [20]. These bulk predictions of part properties are valuable,
but understanding the thermal history through experimental radiometric measurements permits the
ability to predict part properties on a local basis. The radiometric measurements are necessary due
to the previously discussed complex nature of the SLM process, where the variances in the local
thermal history can affect the properties. The ability to make predictions of the variances in local
part properties adds value to a radiometric process monitoring framework by providing a
fundamental insight into how measured local processing conditions ultimately relate to the SLM
part properties.

There are very few reports in the literature in the high potential area of predicting local
SLM part properties through in-situ radiometric measurements. Coeck et al. demonstrated that
melt pool event information measured with photodiodes can be used to detect and predict porosity
in samples with high efficiency [21]. While this approach works well, recording the entire spatial
and temporal components of the thermal history through thermographic imaging could provide
some advantages over photodiodes with the cost of sampling frequency. Recording the spatial and
temporal components of the SLM thermal history permits the effects of material re-melting to be
included in predictions of part properties. Data processing of measurements from thermographic
imaging can also be expanded to incorporate spatial (temperature gradients) and temporal
derivatives (cooling rates), which are related to the final part microstructure.

In this paper, the ability to use thermographic imaging in the prediction of local SLM part
properties (microstructure, microhardness, porosity) is explored as a part of an effort toward local
part qualification. The advantage of this method to account for re-melting of material was used in
this work (incorporation of derivative data will be completed in the future). To accomplish the
goal of local part property predictions, a Short-Wave Infrared (SWIR) imaging camera was used
to record the thermal history during SLM of 304L stainless steel. Thermal features were extracted
from the time-series SWIR imaging data (time above threshold and maximum radiance) and used
to develop models for predicting the local part properties. The framework was then used to predict
the local part properties of an SLM part with a complex embedded feature.

1612



2.0. Experimental Setup

2.1. Samples for Local Property Correlations and Predictions

The two samples illustrated in Fig. 1 were manufactured by using a Renishaw AM250 and
304L stainless steel powder. The AM250 is a SLM system that processes samples with a fiber laser
(Pmax =200 W, 4 = 1070 nm) scanning with a point-to-point exposure strategy. The first sample
was used to develop correlations between thermal features measured through SWIR imaging and
local SLM part properties. This sample (Fig. 1. (a)) was partitioned into 20 sections of 20 layers
for assigning various laser processing parameters. This generated a range in local thermal histories
and part properties. The laser processing parameters varied in this work included the power, P =
100 — 200 W, and exposure time, z. = 50 — 125 ps (point distance, d, = 60 pm, and hatch spacing,
sp =85 um, held constant). The various process parameter combinations resulted in fluence values
(optical energy per unit area) ranging from 1.3 J/mm? to 6.5 J/mm?. The various fluence values
were randomized before assigning them to the sections of the part. Manufacturing the first sample
by this procedure assumed that an increasing the distance in the build direction does not
significantly impact the thermal history of parts for a constant layer-to-layer time. The procedure
also assumes layer-to-layer steady state is reached for the part thermal history in the base (50
layers) and changing the parameters between the sections resulted in convergence to steady state
for that parameter set immediately.
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Fig. 1. CAD model of (a) various parameters sample and (b) embedded feature sample cross-
section.

The correlations developed by analysis of the various parameter set sample were used with
new SWIR imaging measurements from a second sample to predict its local part properties. This
second SLM 304L sample (Fig. 1. (b)) was manufactured with an embedded feature of text
processed with a laser power of 100 W (surrounding geometry processed with 200 W). Both the
surrounding geometry and text features of this second sample were built with border scans.
Processing the second sample in the described way led to the potential for local variances in part
microstructure and mechanical properties due to several factors. The first factor was the lower
laser power leading to sub-optimal mechanical properties and an increase in lack of fusion porosity
in locations corresponding to the text interior. Additionally, at the edges of the text border scans
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re-melting material could cause differences in microstructure due to changes in thermal boundary
conditions during and after solidification. The border scans could have also led to an increase in
porosity due to keyholing (repeated energy input in localized region). Finally, the differences in
cross-sectional area processed for the text and surrounding regions led to changes in scan pathing
from layer-to-layer. This introduced the potential for geometric dependence for local part
properties. The predictions of the local part properties for the embedded feature sample were
validated through experimental measurements.

2.2. Voxel based Processing of SWIR Imaging Data

The Renishaw AM250 used to manufacture the samples for this work contains a FLIR
SC6201 SWIR imaging camera (sensitive: 4 =0.9-1.7 um, filtered: A = 1.45+£0.05 um) installed in
a staring configuration to record the SLM process layer-to-layer. For this work, the camera was
windowed to an 80 by 80 pixel array (~130 um/pixel) to enable high frame rate recording (~2500
Hz) during SLM of the samples. Figure 2 is an illustration of the camera observing the SLM
process where it collects time-series radiance data for each pixel in the image array. The measured
time-series data from two locations of a layer in the various parameter set sample is plotted in Fig.
2 (b). The time series data is from the middle of the part (location 1) and the border scan region
(location 2). In Fig. 2 (b), differences in the shape, number, and frequency of heating and cooling
curves are observable when comparing the data from the two locations. These differences in the
time-series data potentially correlate to differences in the local part properties across the part. In
this work, thermal features have been extracted from the raw time-series radiance data to compress
the data and allow informative correlations to be made with local part properties. Thermal feature
extraction compresses the data for a layer from ~100 MB to ~0.003 MB by converting the time-
series radiance data, L(X,y,t), to a single feature image per layer, f(x,y). This enables efficient
processing and storage of SWIR imaging data measured for SLM parts.

A voxel based method was used to extract the thermal features from the time-series
radiance data. The thermal features extracted in this work were the time above threshold, z, and
the maximum radiance Lmax. The time above threshold and maximum radiance are illustrated on a
section of the radiance curve from location 2 in Fig. 2 (c¢). The time above threshold is the total
time a pixel is above the apparent phase transition region. As discussed, extraction of the thermal
features from each pixel in the camera array results in a 2D map for each layer of a part. The
thermal feature map (time above threshold) for the layer from the various parameters sample is
illustrated in Fig. 2 (d). This figure shows the variances in the thermal feature across this layer of
the part where higher thermal feature values are measured at the edges of parts due to the laser
cornering and border scans. After performing feature extraction for each layer in a part, the data
can be arranged to generate voxel reconstructions based on the thermal history. This is illustrated
for the various process parameters sample in Fig. 2 (d). The voxel reconstructions of parts can be
sliced for inspection and processed further to identify differences and make predictions of local
part properties.
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Fig. 2. (a) SWIR camera observation of SLM process, (b) time series data from location in center
of part cross-section (location 1) and border scan region (location 2), (c¢) definition of thermal
features in time series data with melt pool image, and (d) thermal feature maps showing
generation of volumetric data and slicing.

2.3. Local Part Property Measurements

The local part properties measured in this work included the light-to-dark microstructural
feature ratio, LDFR, the microhardness, HV, and the volumetric porosity, ¢. Fig. 3 (a) demonstrates
the light and dark microstructural features in the etch response of SLM 304L stainless steel
(polished to 0.05 pum, electrolytically etched with 40/60 nitric acid). The light and dark features
are due to differences in the solidification mode, which is described in [22]. The light feature
corresponds to material that solidified as ferrite and then transformed into austenite upon further
cooling. The dark feature corresponds to material that solidified as austenite and remained
austenite. Mapping the ratio of these features within the part cross-sections provided insight into
the solidification mode that was most prominent for a particular region. This was completed
through implementation of an image processing framework developed in MATLAB. The Vicker’s
microhardness (representative indent in Fig. 3 (b), 4.9 N and 10 seconds) was mapped in the part
cross-sections following ASTM E384-17 [23]. The porosity in the volume of samples was
determined through processing micro-computed tomography (micro-CT) data. This was
accomplished by assuming voxels with intensity values three standard deviations less than the
mean intensity value of a solid volume corresponded to porosity. The micro-CT data for the parts
was down-sampled to the resolution of the SWIR imaging data by determining the percentage of
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porosity voxels in a 130 um by 130 um by 50 um volume. This process is illustrated for a slice of
the various parameter set sample micro-CT data in Fig. 3 (c).
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Fig. 3. (a) Optical micrograph of 304L stainless steel showing light and dark microstructural
features, (b) micrograph of indent for determining microhardness, and (c) micro-CT slice with
processing to determine voxel based local porosity.
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3.0. Local Part Properties Correlations

The following details the development of the correlations between local part properties and
thermal feature measurements using data from the various parameter set sample. The LDFR and
microhardness were determined for the cross-section of the part, while the porosity was measured
for the entire volume. Figure 4 contains the data maps for the cross-section of the sample. Figure
4 (a) is the etched micrograph of the sample that shows differences in the amount of porosity and
etch response for the different fluence inputs (values annotated to the left). The LDFR plotted in
Fig. 4 (b) shows that higher fluence values corresponds to more of the light feature within a section.
The increase in the light feature is due in part to differences in thermal boundary conditions during
and after solidification. The increase in light feature is also because more energy input leads to
larger melt pools and more overlap of laser scans. This leads to more re-melting within the parts
which corresponds to an increase in the light feature. The same effect is observed for the border
scan regions of parts. The microhardness for the part mapped in Fig. 4 (c) appears qualitatively
uniform except in areas corresponding to low fluence values where the part was softer, or a pore
led to no measurement. The porosity from micro-CT scanning of the part is displayed in Fig. 4 (d)
and shows that low fluence values resulted in an increase in porosity. The time above threshold
and maximum radiance thermal feature reconstructions are included as Fig. 4 (e) and Fig. 4 (f),
respectively. Qualitative comparisons of the thermal features and local part properties shows that
low feature values correspond to low LDFRs, low microhardness, and high porosity. High thermal
feature values generally correspond to higher LDFRs, uniform microhardness, and low amounts
of porosity.
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Fig. 4. (a) Optical micrograph after etching, (b) LDFR, (c) microhardness, (d) porosity, (e) time
above threshold, and (f) maximum radiance in cross-section of various process parameters
sample.

Figure 4 shows qualitatively clear relationships between local part properties and thermal
features. The local part property values and thermal features have been averaged for the various
sections of the sample for correlation development through data-driven modeling. The correlations
between the LDFR and thermal features are plotted in Fig. 5. Each data point for the LDFR is the
average and standard deviation from ~600 pixels. The corresponding thermal feature values are
the averages and standard deviations from ~7000 voxels. The LDFR as a function of thermal
features was fit to a second order polynomial. The thermal feature of time above threshold
demonstrated a slightly stronger relationship with the LDFR than the maximum radiance.
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Fig. 5. Correlation of average LDFR with (a) average time above threshold and (b) average
maximum radiance.

Figure 6 is the correlation of the averaged microhardness from the various energy inputs
with the corresponding thermal feature measurements. Each microhardness value is the average
and standard deviation from 20 measurements. Thermal feature values are again from ~7000
voxels. In this figure, the saturation of microhardness is apparent with the additional detail of a
slightly decreased microhardness for some of the higher thermal feature values. The relationship
between microhardness and the thermal features were fit to a lumped capacitance model. The
feature of time above threshold demonstrated a stronger relationship with the microhardness.
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Fig. 6. Correlation of average microhardness with (a) average time above threshold and (b)
average maximum radiance.

Figure 7 contains the fits of porosity determined by micro-CT as a function of the thermal
features. Both the micro-CT porosity values and the thermal feature values are the averages and
standard deviations over volumes of the part corresponding to ~7000 voxels. In Fig. 7, two regions
of porosity greater than 1% are observable. The first high porosity region corresponds to lower
thermal values and is a result of lack of fusion. The second region corresponds to higher thermal
feature values and is due to keyholing. The piecewise nature of the porosity-thermal feature
relationship led to fitting a linear model for each porosity regime.
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4.0. Prediction of Local Part Properties

Modeling the relationships between thermal features and the local part properties permits
predictions for new parts through SWIR imaging measurements. This is demonstrated in Fig. 8
where the models developed in the previous section are applied to the time above threshold thermal
feature measurement for the embedded text sample. In this figure, local part property predictions
are made for the entire volume of the part. The measured thermal feature predicts significant
variation in the local part properties for the sample in the locations corresponding to the embedded
text. The local part property predictions for the embedded feature sample were made by using both
the time above threshold and maximum radiance.
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Fig. 8. Demonstration of local part properties predictions using models developed in correlations
with thermal feature measurements.

Figure 9 contains the time above threshold prediction of the local part properties plotted
next to the experimental measurements. These results are for the cross-section of the embedded
feature sample (micrograph included for reference). Figure 9 shows that the predicted areas of
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increased LDFR corresponding to the text border areas match the results found in experimental
measurements. The time above threshold was also able to predict the decrease in microhardness
for areas corresponding to the text interior. The porosity predictions from the time above threshold
show localized areas of high amounts of porosity for the text interiors. There is also the prediction
of a slight increase in porosity at the location of the text borders. These results are similar to the
experimental porosity measurements.

-_— Light-to-Dark

1 mm Feature Ratio Microhardness Porosity [%]
Micrograph 012345 50 150 250 0 10 20
Il HE I

T Prediction . 7 Prediction Exp. 7 Prediction uCT

Fig. 9. (a) Etched micrograph of embedded feature specimen cross-section and comparison of
time above threshold predictions with experimental maps of (b) LDFR, (¢) microhardness, and
(d) porosity.

Figure 10 contains a comparison of the maximum radiance predictions with the
experimental local part property measurements of the embedded feature sample. In this figure, the
LDFR and porosity predictions have increased noise. There are also a larger number of predicted
locations around the text that are softer in the maximum radiance predictions.
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Fig. 10. (a) Etched micrograph of embedded feature specimen cross-section and comparison of
maximum radiance predictions with experimental maps of (b) LDFR, (c) microhardness, and (d)
porosity.

The error of this method has been quantified by subtracting the experimental results from
the thermal feature predictions. The error maps for both the time above threshold and maximum
radiance predictions are plotted with the experimental local part property maps in Fig. 11. These
maps shows that the thermal features predict the properties of the part with some error. There is
an increase in error around the embedded text, but the increase is tolerable. To demonstrate this,
histograms of the error were generated for the cross-sections of LDFR and microhardness
predictions and for the volumes of the porosity predictions.
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Fig. 11. Experimental and prediction error maps for (a) LDFR, (b) microhardness, and (c)
porosity.

Figure 12 contains the error distribution for the thermal feature predictions of the local part
properties (outliers excluded in plots). Figure 12 (a) shows that a majority of the errors for the
LDFR predictions fell between values of -2 and 4 (error over ~13,000 pixels). The time above
threshold performed slightly better in predicting the LDFR when compared to the maximum
radiance. In Fig. 12 (b), similar errors for the predictions are seen and most of the error was found
between hardness values of -40 and 30 (error over ~570 pixels). The error for microhardness is
offset from 0 due to the models developed in Fig. 6. In the models from Fig. 6, the microhardness
saturates at a value of ~222 and this is ~7 hardness values less than the mean for the surrounding
of the embedded feature sample. Figure 12 (c) shows that a majority of porosity error was between
0 and 2% for both thermal feature predictions (error over ~580,000 voxels). The time above
threshold also performed better for this local part property. It should be noted that a reduction in
the reported error is possible by improving the indexing of predictions and experimental methods
and with the development of stronger models for the relationships between thermal features and
local part properties.
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In Figs. 9 and 10, both the time above threshold and maximum radiance were able to
qualitatively predict the variances in the local part properties in the embedded feature sample.
Quantifying the error of the predictions in Figs. 11 and 12 showed that the time above threshold
performed the best for the LDFR and porosity. This is because the time above threshold accounts
for the total amount of time the radiance of a voxel is above the apparent phase transition region.
This is a strong thermal feature to use in predicting the LDFR since the microstructural feature is
related to the total number of times the material is re-melted. The time above threshold feature is
also better for porosity predictions because the more time a voxel is above the apparent phase
transition region the more likely it is to correspond to fully dense material. Additionally, the
increase in porosity due to keyholing was related more strongly to the time above threshold which
led to better predictions. In general, the increased error of maximum radiance predictions is due to
weaker correlations with the local part properties and a larger amount of noise in the measurement.
The errors of the microhardness predictions were within the standard deviations of the
experimental measurements corresponding to the extreme energy inputs in Fig. 6 for both thermal
features. The results in Figs. 8-12 show that predictions of local SLM part properties can be made
with tolerable error for complex features in SLM parts.

5.0. Summary and Conclusions

In this paper, a voxel based framework was used to process SWIR imaging data measured
in-situ and make predictions of SLM 304L stainless steel part properties on a local basis. Thermal
features including the time above threshold and maximum radiance were extracted from time-
series SWIR imaging data and correlated with the local part properties. The time above threshold
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was found to correlate the strongest when developing models of the local part properties as a
function of the thermal features. The developed models were used to make predictions of the local
part properties based on new thermal feature measurements for an SLM sample manufactured with
an embedded feature and the error was quantified. The time above threshold outperformed the
maximum radiance in making predictions of the LDFR and porosity, but performed similarly for
microhardness.

The errors of the local part property predictions could be reduced by moving towards
machine learning algorithms with the incorporation of multiple thermal features that capture
different dynamics of the SLM process. The framework reported in this paper can be used to
qualify parts, or flag them for further ex-situ analysis, on a local basis with further development.
In this further development, confidence intervals for the minimum size of defective local part
property variation predictable will be defined.
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