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Abstract

Additive manufacturing (AM) is known for its large variance in mechanical properties. 
This is not only true for properties like strength, but also surface roughness. Build settings, which 
affect surface roughness, are often chosen to optimize strength or ductility. As part requirements 
change, build settings change, thereby changing resultant surface roughness. When describing 
surfaces, arithmetic roughness (Ra) is the most common parameter. However, it may not provide 
an adequate representation of surface topography for AM parts. Traditional surface roughness 
parameters for defining surface topography were well-established before the advent of AM, and 
a need has arisen to investigate applicability of these parameters to the unusual surfaces created 
through various AM technologies. This study demonstrates that Ra is not a suitable parameter in 
correlating surface topography to AM build parameters. Other existing parameters and 
combination of parameters will be investigated for their suitability in describing the AM process. 

Background

Additive manufacturing (AM) is becoming increasingly popular for a variety of 
applications. Since AM is unique in that both the dimensional shape and material properties are 
being formed at the same time, traditional qualifications methods need to be updated. To qualify 
a part using non-destructive methods means leveraging every possible measurement to indicate 
the material quality of the part. One such measurement is surface roughness. Surface roughness 
has always been a dictated part requirement, which is still the case, but now it is also being used 
as an indicator of the AM process. Especially in metallic AM process, such as laser powder bed 
fusion (L-PBF), surface roughness can be an indication of the process, which will be discussed in 
later sections. This paper will investigate the applicability of using surface topography as an 
indication of the AM process quality. The focus will specifically be on metallic parts created 
with the L-PBF process as it the most popular of the metallic AM technologies and therefore has 
had the most research performed related to it [1]. The material of focus for this study will be 316 
stainless steel as it is popular in industry and has also been the largest focus of the of metallic 
AM surface roughness research [1].

Surface Roughness Standards

ASME B46.1 [2] and ISO 4287 [3] are the two commonly used standards for defining 
surface texture, including roughness, waviness, and lay. In both standards, techniques for 
measuring, analyzing, and defining surface topography are present. Within both standards, 
universal surface roughness parameters are defined. The most common of these parameters is 
average roughness, Ra, which relates to the mean height of the surface. The equation used for 
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calculation can be found in Equation 2. A representative surface with definitions can be found in
Figure 1. 

Figure 1: Surface Roughness Variables Diagram.

Other common surface roughness parameters include root mean square roughness (Rq),
skewness (Rsk), and kurtosis (Rku). The respective equations for each can be found in Equations 
2-4. Skewness is a numerical indication of the surface’s presence about the calculated mean line.
A negative value for skewness represents a surface mainly composed of valleys, while a positive
valued surface is mainly composed of peaks. Kurtosis is the measure of the sharpness of the
peaks of the surface. The creation of these standard surface roughness definitions preceded the
advent of additive manufacturing. Therefore, it is important to ascertain their effectiveness in not
only delineating different AM surfaces but also in correlating topography to AM process
settings. One such parameter that was suggested in Grimm et al. as a more effective delineator
was RΔq, or root mean square slope [4]. The equation for this parameter can be found in
Equation 5. R∆q is a unitless parameter whose value as it increases indicates steeper slopes in the
surface topography.
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The standards not only define linear surface roughness parameters, but also area 
parameters as well. Most linear surface roughness parameters can be translated into area 
parameters by measuring in two perpendicular directions. Examples of the area parameter for 
average roughness and root mean square slope can be found in Equations 6 and 7 below. 

Surface Roughness in Additive Manufacturing

Additive manufacturing has created unique surface finishes that range in both size and 
feature types depending on the process used. Processes like laser engineered net shaping (LENS) 
and laser powder bed fusion (L-PBF), can create surfaces rougher than those generated with 
traditional subtractive manufacturing techniques. For example, stainless steel surfaces that were 
finished with conventional milling practices have Ra values of roughly 1-4 microns and R∆q
values less than 0.5. These values were measured with parts that were produced during this study 
as a roughness comparison to the AM parts. In traditional manufacturing, surface roughness is
instructive for how smooth or rough the surface of a part needs to be for its intended purpose. 
Whereas in additive manufacturing, surface roughness for the end use part can be specified, but 
researchers are also using it as an indicator of the process, the purpose of this study. 

Due to the popularity of laser powder bed fusion processes such as L-PBF over other 
metal additive techniques such as electron beam additive manufacturing (EBAM), this category 
of additive manufacturing will be the focus of this study. A sample of a L-PBF generated top 
surface can be found in Figure 2.
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Figure 2: 160x Magnification Surface Height Map of 316 Stainless Steel AM Part created with L-PBF.

In metallic laser powder bed fusion, there are two main ways surface roughness is 
generated on the horizontal or top surface. The first major phenomenon is the solidification of 
ripples generated in the melt pool as the laser moves across the powder bed. These ripples are 
caused by shear forces generated through thermal gradient present in the process. Since the 
process is moving at high speeds and the solidification time for metals is short, the ripples 
become frozen, generating surface roughness [5]. This effect can be seen in Figure 3, which is a
scanning electron microscope (SEM) image of a stainless steel surface generated with the L-PBF
process. Scan tracks are clearly visible with ripples contained in them. 

Figure 3: SEM Image of Stainless Steel L-PBF Sample Top Surface with Rippling and Balling Effects. 

The other major phenomenon that creates rough surface features is balling. This can be 
generated when the laser power is too high, causing material to be ejected from the melt pool 
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which solidifies on other parts of the surface [6]. This phenomena can be seen in Figure 3 in
addition to a 3D height map taken of a surface shown in Figure 4 where some of the solidified 
ejected material is circled. 

Figure 4: 3D Height Map of L-PBF Surface with Instances of Balled Material Circled.

For all angled surfaces of the part, the major contributing factors for surface roughness 
are partially melted powder and stair stepping, which results from the layer-wise build process 
found in most additive techniques. Since almost all lasers used in metal powder bed fusion 
processes are a Gaussian beam, the edges of the beam partially melt powder on the edges of the 
part due to a lack of power [5].

Since the surface texture of horizontal surfaces is highly dependent on the melt pool 
dynamics, certain process parameters have a considerable influence on the surface roughness. 
Rombouts et al. found that scan speed and scan spacing, which is the distance between the 
centerline of successive scan lines, to be the most influential process parameters on surface 
roughness [7]. As seen in the literature, there are a wide range of parameters used in both 
research and industry. The scanning parameters of speed, scan spacing, and laser power are 
chosen based on both material and whatever final part properties the manufacturer determines as 
paramount. Most research focuses on mechanical properties, for which the process parameters 
will be tuned for optimization. Therefore, the parameters that are chosen can have a broad range, 
which would result in numerous possible surface textures. 

Experimental Procedure

To demonstrate the range of surfaces produced by the laser powder bed fusion process, a 
range of process parameters was used to produce the samples. The key value in the L-PBF
process that many researchers control to change the quality of parts is the energy density input 
into powder bed. The equation for applied energy density is seen below in Equation 8 [8].
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Another commonly used descriptor for the additive process, is volumetric energy density (VED). 
This parameter is nearly the same to the applied energy density with the exception that layer 
thickness is also in the denominator of the equation. VED describes the amount of energy input 
into a volume of material during the L-PBF process. Although only one parameter change is 
needed to affect the energy density, two variables were altered throughout the building process to 
affect the other mechanisms at play that affect surface topography, density, and mechanical 
strength such as heat transfer and fluid dynamics seen in the melt pool.  As was stated in 
introduction section, the generation of surface roughness is directly related to both laser power 
and scan speed. Therefore, laser power and scan speed were the only variables that were changed 
for this specific study. Scan spacing was not varied for these parts as the focus was on the effects 
of laser power and scan speed. 

The parts were built on a 3D Systems ProX 200. Parts were built with laser powers 
ranging from 20-180 Watts, and scan speeds ranging from 300 to 2000 mm/s. The parts built 
were 1 cm cubes. The cube design was chosen so that surface roughness and part density could 
be measured. Most parts were built in sets of 24 on a single build plate. Some were built with 
only 10 cubes per build plate. A sample image of the completed build with 21 out of 24 cubes 
moving on for measurement can be found in Figure 5. As seen in the figure, there is one cube 
that delaminated early on in the first column on the left and two cubes which also had issues 
located at the top of the second column from the left and the fourth cube down from the third 
column from the left.

Figure 5: Sample Cube Build Plate [9].

Most of the parts were built with 316L stainless steel powder with a mean particle size of 
15 microns. The layer thickness for most parts was 30 microns, but there were two builds that 
had 40 micron layer thickness. For certain combinations of parameters, the cubes were not 
completed due to a lack of fusion or extremely rough surfaces that did not allow the powder 
roller of the machine to proceed in placing an even layer of powder down. These combinations 
had either too low or too high energy density. For example, very slow scan speeds with high 
laser power produced parts that were too rough for the process to continue due to over-melting 
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and part distortion. Therefore, the data presented is only the subset of parameters that allowed 
the cubes to be fully built. A total of 80 parts were able to be fully completed. Further details for 
the build procedures and on which settings were used when parts failed can be found in Koepke 
et al. [9].

Part density was measured using the Archimedes method which uses the volume of liquid 
displaced by an object to calculate mass and volume of said object. For surface roughness 
measurements, there are two problems with metallic AM parts. The first is the highly reflective 
nature of the parts, which interferes with some of the non-contact techniques used to measure 
surface roughness. The second issue is the highly rough and irregular nature of the surfaces 
produced, which can affect both non-contact and contact techniques. These issues prevent focus 
variation microscopy and white light interferometry from being used to measure the surfaces 
accurately [1]. Contact profilometry was considered, but due to its slow speed and risk of
damaging the equipment with the rough AM surfaces, it was not used. Fringe pattern projection 
microscopy was the measurement technique used to measure the surface roughness of the as built 
AM samples. This method projects fringe patterns with variable frequency and position onto the 
sample. Using a CMOS sensor which detects the fringe pattern distortions and computer 
algorithms, it calculates the surface heights of an area of interest. A diagram of this function can 
be seen in Figure 6 below. The specific measurement device used was a Keyence VR3100 visual 
macroscope.

Figure 6: Keyence VR3100 Visual Macroscope Functional Diagram [10].

The dimensions of the area that is measured depends on the focus selected at the time of 
measurement. At the lowest magnification, 12x, the area measured is about 24 × 18 mm. At the 
highest magnification, 160x, the area measured is about 1.9 × 1.4 mm with a height resolution of 
0.1 μm [10]. Examples of the height map produced from each magnification can be seen in 

Figure 7.
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Figure 7: (TOP): 12x Magnification 3D Height Map of L-PBF Sample (BOTTOM): 160x Magnification 3D 
Height Map of L-PBF Sample.

The highest magnification was used for all surface parameter calculations. The associated 
Keyence software that views and processes all the macroscope data calculated the surface 
roughness parameters that were used for this analysis. 

Results
Various surface roughness parameters were plotted against volumetric energy density and 

part density to observe the correlation strengths between them. The coefficient of determination, 
or R2 value, is an indication of how well the predictive model data fits with the existing data. The 
same type of trend line, a power function, was used across all parameters for ease of comparison. 
The arithmetic mean height has been the most common surface roughness parameter in AM 
literature when describing surface roughness [1]. Therefore, it was included in the analysis 
below to observe its correlation strength. The relationships to density and VED for arithmetic
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mean height (Sa) and Kurtosis (Sku), which is another commonly used surface roughness 
parameter in traditional manufacturing, can be found in Figures 7-10. As can be seen in Figure 8
and Figure 9, Sa is insufficient for indicating differences in volumetric energy density and part 
density. Since Sa only gives an average number for the height, there can be different shapes 
between surfaces with the same Sa value. The shapes of these surfaces alter with the volumetric 
energy density and may influence the part density since powder settling for each layer can be 
affected by the previous layer’s shape.

Figure 8: Arithmetic Mean Height Plotted Against Volumetric Energy Density.
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Figure 9: Arithmetic Mean Height Plotted Against Part Density.

Kurtosis, which does indicate the shape of the peaks of a surface is also insufficient in indicating 
differences between VED and part density. This parameter does indicate certain aspects of the 
surface’s shape but is insufficient for fully describing the varying surfaces caused by different 
build settings. 

Figure 10: Kurtosis Plotted Against Volumetric Energy Density.
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Figure 11: Kurtosis Plotted Against Part Density.

When looking at the less common surface parameters from the existing standards, their 
correlation levels improve. Root mean square slope (SΔq) had the highest correlation to both 
VED and part density. This parameter describes the slope of the surface, which is directly tied to 
the process parameters that are used to calculated VED.

Figure 12: Root Mean Square Slope Plotted Against Volumetric Energy Density.
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Figure 13: Root Mean Square Slope Plotted Against Part Density.

Another less commonly used parameter termed peak density (Spd) was tested during this 
experimental study. Peak density counts the number of peaks of the surface for a given area. It
had higher correlation to VED than Sa or Sku but had the same level of correlation for density. It’s 
clear that as the VED is an indication of the possible dynamics of the process, that the peak 
density would be affected since those peaks are generated by the frozen ripples formed during 
the process. However, peak density does not indicate the varying heights of the peaks, and 
therefore does not relate as well to density as the root mean square slope. 

Figure 14: Peak Density Plotted Against Volumetric Energy Density.
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Figure 15: Peak Density Plotted Against Part Density.

Conclusions

As seen through the comparison of several surface roughness parameters, not all current 
parameters are suited for describing the additive manufacturing process. Arithmetic mean height 
(Sa) is not suited for delineating between different additive parts, even though it is currently the 
most popular parameter when discussing surface roughness in AM literature. Root mean square 
slope (SΔq) is a better delineator as it seems to better indicate the surface topography features 
that are generated and changed when changing volumetric energy density input into a metallic L-
PBF part. However, more investigation is required to find the best existing surface roughness 
parameter. This work highlights the need for improved surface roughness standards, parameters, 
and measurement techniques to better describe parts produced through AM processes.   
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