Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International
Solid Freeform Fabrication Symposium — An Additive Manufacturing Conference
Reviewed Paper

IN-PROCESS UV-CURING OF PASTY CERAMIC COMPOSITE
Stefan Mischliwski', Matthias Weigold'

! Institute of Production Management, Technology and Machine Tools (PTW),
Technische Universitidt Darmstadt, Darmstadt, Germany

Abstract

Within recent years,a wide range of additive manufacturing processes have been developed.
While powder bed based fusion processes like selective laser melting and melting processes like
fused layer modelling are being increasingly used in industrial applications, prototyping other
processes are in the initial stage. This paper develops a new method for an extrusion-based process
of pasty UV-curing ceramic composite material. The method proposes an approach to continuously
cure the material while it is deployed to reduce process time and generate complete cured parts. A
milling machine has been modified with a syringe and a UV-light source to accommodate the
process. Experimental studies have been carried out to examine the influence of the process
parameters on the curing process. As a result, a parameter set has been found to make fully dense
and cured ceramic composite parts.

Introduction

Additive manufacturing (AM) processes are currently the base for a variety of research
projects. This emerging field in manufacturing technologies functions on the common principle of
building up solid parts directly from 3D-CAD data by adding material layer by layer. Metal, plastic,
ceramic or, as expected in the future, human tissue, can be used in AM. Particularly in areas like
medical and dental technology, extensive requirements are placed on the production processes and
resulting products. Using new production processes, the main goal is to match the specific material
properties in the conventional production process. This is possible through the controlled use of a
variety of process parameters. Stereolithography is the state-of-the-art in the field of AM of UV-
curing ceramic composites. However, this process can only be used on flat surfaces so that it is
currently not possible to print on freeform surfaces. Therefore, a new process must be developed
to apply pasty material onto freeform surfaces. Precautions must be considered in order to stabilise
the location of the material application and to prevent the material from running.

This paper investigates the in-process UV-curing concept for an extrusion-based 3D
printing process of pasty ceramic composite. To do so, a state-of-the-art conventional UV-curing
process within a UV oven is investigated and critical factors are identified. Adjusting the hardware
setup, the process is then ready to be transferred into a different environment in the form of an
extrusion-based 3D printer. The influence of critical factors is examined and process parameters
are adjusted with a focus on reaching the same surface hardness as the curing process within a UV
oven.

The UV-curing process of composites themselves has been studied for years so that many
interactions of individual process parameters are known. However, these have yet not been
investigated for curing during an extrusion-based material application. For this purpose, the
interactions must be re-examined and assessed from the perspective of the overall process.
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State-of-the-art

Many correlations of process parameters of the curing process have already been outlined
in studies. It has been shown that there is a partially linear relationship between the surface hardness
of the cured ceramic composite and the light intensity used. However, this linearity only applies to
a limited area [1]. A reduction of the light intensity used can be compensated by an increase in the
exposure time [2]. Another insight is the decreasing hardness depending on the material depth or
sample height. This can be explained by the absorption of light entering the translucent material.
For this purpose, a model was created, depending on the depth of cure, light intensity and curing
time. However, due to a maximum achievable surface hardness, the model can only be used in a
limited range [3]. In a further study to determine parameters relevant to the curing depth, in
addition to the curing time and the light source, the material composition was also identified [4]. It
turned out that in all examined composites, the depth of cure remains almost constant to a certain
depth, between about 0.5-5 mm at a lighting duration of 300 s and then decreases rapidly. It has
also been shown that as the illumination duration decreases, the cure depth decreases as well, and
that the proportion of starters in the different composites is crucial for the curing depth. In [5], the
material composition, the light intensity of the light source, the curing time and the distance
between the tip of the light source and the body to be cured were identified as the four crucial
factors of the curing process. In addition to the affirmation that lighter and more translucent
materials allow a greater hardening depth under the same conditions, the result was a correlation
with increasing distance from light source to the body to be cured. As the distance increases, a
significant reduction in polymerisation occurs at >20 mm. To determine the influence of the light
source, [6] compares conventional halogen lamps with an LED light source. Both achieve a more
than sufficient hardening depth.

Research methodology

VITA VM LC flow (Enamel), a commercially available ceramic composite for the top layer

of dental applications, is used as raw material to conduct the experiments. In dental laboratories, a
dental technician manually applies the material according to the processing instructions given by
the material manufacturer VITA Zahnfabrik H. Rauter GmbH (VITA). The part is than placed in a
VITA recommended UV oven for the UV-curing process to reach its necessary surface hardness
of > 60 HVO0.5. In this study, the bre.lux Power Unit 2 UV oven is used. This curing process serves
as a reference during the experiments. The light source in the UV oven contains 72 LEDs, the exact
type and wavelength spectrum of which is unknown. The ceramic composite Enamel consists of
an organic matrix, a disperse phase and a composite phase. Monomers, in this case, di-acrylates,
form the organic matrix which react with one another by radical polymerisation and cure. To start
the curing process, the organic matrix is enriched with two initiators:

e Kampherchinon with an initiating wavelength of 468 nm

e TPO with an initiating wavelength of 380 nm.
Colour pigments are another ingredient, but just for cosmetic reasons. The disperse phase consists
of silica and zirconium dioxide. These are responsible for hardness and polishability after curing.
The composite phase represents the functional connection between organic matrix and disperse
phase.
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As none of the above studies deal with the ceramic composite Enamel used here or with the
goal to integrate the curing process into an AM process, the individual factors must be considered
again.

The curing process with the oven used fulfills the requirements of DIN EN ISO 10477:2017
[7]. To better understand the process, hardware components of the oven are examined. Here, the
wavelength spectrum of the LEDs used and the light intensity over time are of particular interest.
The LEDs of the oven use the wavelengths 380 nm and 468 nm to initiate the hardening process of
Enamel. Because the LED wavelength bandwidth is narrow in comparison to other light sources,
it is assumed that intensity peaks are close to these initiation wavelength [8]. To carry out the
wavelength measurement, a hand spectrometer, a pulse generator, a specially designed mounting
box for the LEDs and optical Mirror and filter are used and arranged according to Figure 1. The
LEDs of the UV oven are mounted in groups of three on PBC printed circuit boards. One printed
circuit board is placed in a specially made box, which allows the shielding of the individual LED
light beams, whereby the control technology of the UV oven for driving the LEDs could continue
to be used. In order to take the temperature dependency of LEDs into account, the measurement
was carried out over 720 sec, the reference time specified by VITA. Therefore, the control
technology of the UV oven runs an internal programme of 360 sec twice.
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Figure 1: setup for the measurement of LED wavelength spectrum

hand spectrometer

In a further step, the light intensity is measured over the reference time of 720 sec. The
maximum light intensity is selected to achieve maximum curing and curing depth during the limited
curing time. For this measurement, it is important to keep the functionality of the oven’s LED
control intact. By constantly introducing energy into the body, the temperature also has influence
on the curing process. In the Enamel data sheet [9] has described that a temperature range between
60 °C and 80 °C is beneficial for the polymerisation.

In order to implement a curing process into a 3D printer, a light source has to be available
inside the interior of the printer. For this purpose, a holder for numerous LEDs is developed in
which different LED types can be installed. In order to create a possibility for transporting the light
from the source to the body, the PURAVIS® GOF70 light guide from SCHOTT AG is used for
the required wavelengths due to the transmission rate. With this hardware setup, preliminary tests
are carried out. In these tests, the surface hardness of the top, the bottom and the ratio of these two
are measured and compared. These represent the quality feature according to which the quality of
the process can be assessed. For comparison, the experiment is also carried out in the UV oven.
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The test body is manufactured manually according to DIN EN ISO 10477:2017 [7] specifications.
The test body is a 1 mm thick disc with a diameter of 15 mm. The hardness measurement on the
surfaces is carried out after Vickers.

An LED pairing of suitable wavelengths, the influence of the light intensity, the curing
temperature and the number of light sources are examined in respective test series. The post-curing
time, the time after the LEDs turn off until the surface hardness is measured, is standardised to 20
min because of results reached in [10]. Here, no significant differences in surface hardness are
shown in the time windows between 20 and 60 minutes or one and seven days post-curing. The
results obtained are used to draw conclusions on how a further optimisation can be designed to
reduce lighting time and therefore the curing process time. The main objective is to achieve the
same or better component properties, so it is sufficient to look at the process qualitatively. Since
the curing is taking place as a radical polymerization, it needs to be considered that this is a
chemical reaction over time. All experiment are carried out in an air-conditioned measuring room.

Process development

The process development is carried out to estimate the potential of the UV-curing process
for integration into an extrusion based additive manufacturing process. Therefore following
investigations of the curing process and critical process parameters are made:

e Measurement of the wavelength spectrum and radiation intensity
Measurement of surface hardness over lighting time
Measurement of surface hardness over different wavelength
Measurement of surface hardness over operating current
Measurement of surface hardness over curing temperature
Measurement of surface hardness over lighting time of preheated sample

Measurement of the wavelength spectrum and radiation intensity

The results of the wavelength measurement in the UV oven show that three different types
of LEDs are installed. The wavelength peaks of the three LED types are at 450 nm, 459 nm and
395 nm, as shown in Figure 2 a-c. Figure 2 d shows the wavelength spectrum of all three LEDs put
together. Here, the wavelength to trigger the initiators for the curing process, Kampherchinon (468
nm) and TPO (380 nm), are also marked in the graph. It is shown that the intensity peaks of the
used LEDs do not align with the initiator wavelengths. This indicates the potential for optimisation
through the use of more suitable LEDs in which the intensity peaks are at the initiator wavelengths.
Based on these results, a larger wavelength range is covered in the later LED selection with the
attempt to ensure optimised performance.

A second result of the hardware setup is the radiation intensity of the LEDs. It can be
concluded from the results that the lighting in the oven runs a specific internal programme. The
radiation intensity starts with a jump to 50% of the possible power, is held there for about 30 s, and
then increases linearly to 100% intensity. A slightly decreasing radiation intensity after approx. 80
sec 1s due to thermal effects within the LEDs themselves, as they show decreasing efficiencies with
increasing temperatures. From 180 sec, the modulation programme of the UV oven begins with a
variation of the radiation intensity between 50% and 100% for intervals of a few seconds.
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Figure 2: a-c) wavelength spectrum of the three different LEDs used in the uv-oven; d) combined
wavelength spectrum of all three LEDs used in the uv-oven and marking of the qualitative intensity of the

initiator wavelength

Measurement of surface hardness over lighting time

For the development of a new curing process, a test setup is designed. In this setup, the
variable combination of same or different LEDs is possible. A base body is designed to hold up to
ten LEDs while ensuring sufficient heat dissipation for the LEDs. An upper body serves as a carrier
of the light guide and is fitted appropriately. To carry out the experiment, individual LEDs are
fastened in the base body and connected to a power source and a controller. The ends of the light

guides are positioned 20mm above the samples to be cured, as shown in Figure 3.
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During the experiments, LEDs with wavelength peaks shown in Table 1 will be used, where
twice-occurring wavelengths differ by different power and technical specifications:

Table 1: List of LEDs and wavelength used

UV LED blue LED
Name wavelength Name wavelength
LED A 370 nm LED E 445 nm
LED B 385 nm LEDF 458 nm
LED C 395 nm LED G 458 nm
LED D 395 nm LED H 470 nm
LED I 475 nm

In the first series of experiments, the lighting time tg is varied between one and twelve
minutes. The LED pair consisting of the UV LED B and the blue LED I was operated with a current
of 0.5 A. The graph in Figure 4 shows that, from an exposure time of more than 5 minutes, no
significant influence on the total hardness Hg was observed, taking into account the standard
deviation. In order to exclude the lighting time as an influencing factor in the following series of
experiments, lighting time tg is set to six minutes. The experiment is repeated with other LED
pairings and show similar results.

Hs [HV1]
34,0 -

32,0 A

30,0 A

28,0 A

26,0 A

24,0 A

22,0

20,0 . T r r r r
1 2 3 t [min] 4 5 6 12

Figure 4: Total hardness Hg over the lighting time tg, LED pairing B & 1, current Iz = 0.5 A, post-
curing time t, = 20 min, curing temperature Ta =21 ° C, number of LEDs n =2

Measurement of surface hardness over different wavelength

To achieve a process in which the two initiators are triggered optimally, the LEDs are paired
with each other, consisting of a UV LED and a blue LED. The goal is to find a combination that
is particularly suitable for the process. For the experiments a lighting time of six minutes, a current
0f 0.5 A, and a post-curing time of 20 minutes are used. The 20 possible LED pairings are examined
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and the surface hardness of the prepared samples is measured at six points, three at the top and
three at the bottom. The results are shown in Figure 5. Regardless of the influence of the five blue
LEDs, the two UV LEDs A and B appear more suitable for the curing process than the LEDs C
and D, since the achieved average surface hardness is higher. A statement about a specific blue
LED could not be made with this measurement series because whether the results have a big range,
e.g. LED E from 28 to 33.3 HV1, or the values are in too low a range, e.g., LED I from 29,6 to
31,2 HV1, additional iterations are necessary.
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Figure 5: Total hardness Hg of twenty LED pairs, lighting time tg = 6 min, current Iz = 0.5 A,
post-curing time t, = 20 min, curing temperature Ta =21 °© C, number of LEDs n =2

Measurement of surface hardness over operating current

The radiation intensity of the light sources is examined as an influencing factor to the curing
process. By varying the operating current, the radiation intensity is adjusted. These are in an
approximately linear correlation to each other [11]. The temperature of the LEDs is kept constant
during the experiments by active cooling. As a result, a decrease in the efficiency by increasing
temperature [11] is prevented. For the experiments, the LED pairing B and I is used with a lighting
time of six minutes and a post-curing time of 20 minutes. The operating current is varied in a range
from 0.06 A to 1 A. The resulting graph is shown in Figure 6. Here, no significant differences for
the surface hardness are shown in a corridor of the operating current Ig between 0.25 A and 1 A.
The surface hardness decreases strongly below an operating current of 0.25 A, from 29.5 to 27.3
HV1 within a range of 0.125 A. Than sharply from 27.3 to 20.8 HV1 within a range of 0.06 A. As
a result, the operating current IB is maintained at 0.5 A for the further factor variations.
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Figure 6: Total hardness Hg as a function of the operating current Iz, LEDs B & I, lighting time tg
= 6 min, post-curing time t, = 20 min, curing temperature Ta =21 °© C, number of LEDs n = 2

Measurement of surface hardness over curing temperature

The curing temperature Ta is examined as an influencing factor. For this experiment, a new
hardware setup is created that allows it to vary the temperature of the test body before the curing
process. Otherwise, the experimental conditions, e.g., distance between test body and light guides,
are kept constant. Because the experiments for determining a suitable LED pairing at room
temperature did not provide a clear statement, they are repeated in parts. For this purpose, all four
UV LEDs were combined with one LED each at the lower and upper blue wavelength spectrum,
the LEDs E and 1. The results of the first series of measurements at a curing temperature Ta of 60
° C, a lighting time tg of 6 min, a post-curing time of 20 min, and an operating current Is of 0.5 A
are shown in Figure 7. It draws the conclusion that LED B has the best suitability for the process,
with a surface hardness of 64 HV1. The desired reference surface hardness of > 60 HV1 is achieved
for the first time during the entire experiment procedure.
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Figure 7: Total hardness Hg of eight LED pairings, lighting time tg = 6 min, current IB = 0,5 A,
post-curing time t, = 20 min, curing temperature Ta = 60 °© C, number of LEDs n =2

LED B is chosen for the UV range for further testing. Therefore LED B is combined with
all blue LEDs and the experiment is repeated with the results displayed in Figure 8. The graph
shows that the results of the pairing B & E (49.2 HV1) and B & I (54.9 HV1) deviate from the
results of the previous test series (B & E = 65 HV1; B & I = 64 HV1). This deviation can be
attributed in part to a shorter warm-up phase of the test bodies. By reaching a new maximum

surface hardness of 66.9 HV1, the LED pairing B & F is selected for further tests.
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Figure 8: Total hardness Hg of five LED pairings, lighting time tg = 6 min, current Iz = 0,5 A,
post-curing time t, = 20 min, curing temperature T = 60 °© C, number of LEDs n = 2
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In order to validate the results, further test series were carried out which are not considered
in detail. As a conclusion of these experiments, it can be stated that, above all, the temperature
increase has a decisive influence on the achievement of the surface hardness of the reference
process. Therefore, the focus is on the influence of the curing temperature Ta in the following step.
The temperature Ta will be varied between 21 °C room temperature and 60 °C and a preheating
time of tv of 6 min for the test body is set. As shown in Figure 9, the resulting surface hardness Hg
decreases exponentially as a function of the curing temperature Ta from 64.7 HV1 at 60 °C to 27.3
HV1 at 21 °C. This underlines the cure temperature Ta being the strongest process factor so far.
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Figure 9: Total hardness Hg of the LED B&F as a function of the curing temperature T, lighting
time tg = 6 min, current Iz = 0,5 A, post-curing time t, = 20 min, number of LEDs n = 8

Measurement of surface hardness over lighting time of preheated sample

Having found the appropriate light source constellation LED B & F, examined the influence
of radiation intensity Is and the curing temperature Ta, and after increasing the number n of LEDs,
one more step to identify the possibility of an inline curing process is to minimise the lighting time
tg. In this experiment, the test body is preheated for tv = 6 min and removed from the heat source
directly after lighting time. The curing temperature was increased to 70 °C. The resulting graph in
Figure 10 shows a lighting time of two seconds and a surface hardness of 46.1 HV1. After 30
seconds, a hardness of 68.5 HV1 is measured and represents a maximum value in these
experiments. The value set by the reference process > 60 HV1 is measured after a lighting time of
8 sec. Furthermore, a sample was heated at 70 °C for six minutes without exposure to a lighting
process. Even after a waiting time of 20 minutes after the process, the composite was still pasty.
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Figure 10: Total hardness Hg of the LED B&F as a function of the lighting time tg, preheating
time tv = 6 min, current Ig = 0,5 A, post-curing time t, = 20 min, curing temperature 70 °C, number of
LEDsn=8

Discussion

The wavelength measurement results conclude in a potential for optimisation of the curing
process in terms of curing time. The limited number of wavelengths considered in LED selection
offers room for further optimization and use of more appropriate wavelength LEDs is a first
conclusion to be drawn. In contrast, a reason for the temporal modulation of the radiation intensity
remains unclear. It could promote the curing process, regulate the process temperature by
regulating the energy input, or reduce the thermal load on the LEDs and the printed circuit board.
Following the steps taken to determine the critical factors of the curing process and the additionally
investigated factor preheating time tv, the following factors are listed in Table 2.

Table 2 : Critical factors for the curing process

Critical Factor Symbol Range Unit
Wavelength Auvund Ai | 385 (B) & 458 (F) | [nm]
Number of LEDs N 2-8 -
Operating current Is >0,5 [A]
Lighting time ts 8 —360 [s]
Curing temperature Ta 60 —70 [°C]
Preheating time tv 0-360 [s]

The first factor, the wavelengths Auv and Agi respectively the LED configuration of the
process, is consistent with the spectral absorption peaks at 380 and 468 nm of the two photo-
initiators Lucirin TPO and Kamherchinon used in Enamel. Individual LED characteristics and
manufacturer-dependent quality differences of the luminous efficacy at the same operating currents
Is could influence the results. There is no significant difference in the total hardness Hg of the
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samples correlating with the number of LEDs n. A negative influence of a higher number of LEDs
on the curing process is excluded, but a reduction in the number of light sources could make sense
in the context of a cost-effectiveness analysis of the overall process. The operating current Iz and
the radiation intensity of the LED light sources proved to be sufficient, starting from a value of 0.5
A. A further increase of these could neither accelerate the hardening process nor achieve better
hardness values. The determination of a more exact threshold of the operating current may be
economically viable for the continuous operation of a 3D printer. The lighting time tg can be
selected depending on preheating time ty and hardening temperature Ta between eight and 360
seconds, with a correlation of these three with each other. Thus, the UV and blue light radiation
entry into the material proved sufficient after a lighting time of 8 sec, implied that a curing
temperature Ta of 70 °C and a sufficiently high preheating time tv is selected. This result suggests,
that the 12 min lighting and curing time of the reference process is decreased by almost 99% down
to 8 sec with comparable surface hardness value. It is safe to say that the reference process incudes
a safety factor to ensure high reliability. A safety factor has not been included in the new process.
The preheating time ty is also a limiting component. If the sample to be cured is not heated
sufficiently, the curing process and thus the lighting time tg take longer, which results in a longer
heat input. Since, during these experiments, the highest examined curing temperature was 70 °C,
it is unclear how the curing process reacts to a further increase in temperature. However, according
to the product data sheet of the manufacturer Vita, it should not exceed a temperature of 120 °C.
Other problems in the process handling may occur if the curing time is too short and the curing
process is thereby too fast. For example, the deposition process of the material to the surface be
negatively influenced at the nozzle where the material is exposed to the light for the first time. The
material behavior during a dynamic movement of an extrusion based AM process within a
machinery needs to be examined. The influence of the deposition strategy considering parameters
such as nozzle diameter, travel speed and volume flow will increase the process complexity. The
transferability of the results with standard test specimens to individually deposited strands must be
evaluated and can not be considered as given.

Summary and outlook

In this work, the key process parameters for an inline curing process within a 3D printing
process are determined. An approved reference process is examined and a hardware setup is
developed, which offers the possibility to be integrated into machinery. The dependencies of
various process parameters among each other could be specified qualitatively. In particular, the
curing temperature, the lighting time, and a possible preheating time of the body to be cured play
significant roles in the process. The overall hardness, as the average surface hardness of the top
and bottom of the specimen, is suitable as a quality standard for the evaluation of curing processes.
The lighting and curing time 12 min of the reference process is decreased by almost 99% down to
8 sec with comparable surface hardness value.

Sustainable potential for further optimisation is provided by the three parameters
illumination time, curing temperature, and sample preheating time. They all have significant effects
on the curing process and influence each other during the process. With the need of further
examinations, it is still unclear which technology can optimally ensure a constant curing
temperature in this AM process or how a specific preheating can be implemented and what impact
this has on the body. These aspects for optimisation need to consider the dynamics and parameters
of an actual extrusion-based AM process.
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