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Abstract 

The Solvent based Slurry Stereolithography (3S) system has the capability of fabricating high 
quality objects using high performance ceramic (HPC) material. The 3S system is able to fabricate 
intrinsic features without supporting structures; while its downsides exhibit consuming lot of time 
(30 sec/layer) for fabrication compared to other DLP apparatuses and low efficiency raw material 
consumption. A new system named as Circular - 3S (C3S) is developed by adapting the 3S 
technology to improve the fabrication process. It consists of multiple DLP and a circular platform 
where a paving blade paves the slurry in a circular manner. The demonstrated system has increased 
the production rate to 200% with printing speed of 15sec/layer. In this paper, the development of 
the C3S system is presented by simultaneously displaying the capabilities and raw material 
efficiency of the new C3S system. 
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1. Introduction 

Manufacturing and prototyping of ceramic components in a small-scale can increase the expenses 
for the molds and processing. Particularly for the new and complex designs, it is difficult to adapt 
to produce in a smaller volume at an economical price. Additive manufacturing (AM) can cut 
down the processing expenses by reducing the number of steps down to only a few. AM allows 
for the production of structures with complex topologies, while also allowing for the usage of 
different materials, including metals and alloys (Frazier, 2014), ceramics (Wang, Dommati and 
Hsieh, 2019), polymers and plastics (Ligon et al., 2017; Dizon et al., 2018).  

AM with ceramics has existed since the year 1986 (Lee et al., 1986), in which a photopolymerized 
tape casting process was described. In addition to tape casting, laser scanning and digital light 
projection are also very common methods of fabricating ceramic products. In recent times, there 
have been major developments in building High Performance Ceramic (HPC) materials with 
intrinsic features while preserving the thermal, mechanical and corrosive resistance properties of 
the structure materials. AM systems are now able to build functional grade dense ceramic materials 
in small scale. (Tang, Chiu and Yen, 2011; Liu et al., 2013; Wang, 2013; Schwentenwein and 
Homa, 2015; He et al., 2018; Hu et al., 2018). Although most of the systems are capable of 
fabricating the functional grade HPC objects, they tend to exhibit low efficiency in the overall 
process and are limited to small volumes of parts. 
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The Lithography based Ceramic Manufacturing (LCM) based process by Lithoz GmbH 
(Schwentenwein and Homa, 2015), is a commercial system claims to fabricate 99.3% dense 
Alumina (Al) objects with 427MPa at 30 μm resolution and maximum volume of 76.8 × 43.2 mm 
in length and width. The CeraFab 7500 system claims to print up to 100 layers/ hour, i.e. 37.5 
sec/layer, and the CeraFab S65 system claims to print up to 150 layers/hour, i.e. 24 sec/layer. This 
enables users to fabricate an 8mm thick object with a layer resolution of 25 μm within 3.2 hours 
and 2 hours respectively. 

The 3S system developed to fabricate HPC materials is able to fabricate tiny features as small as 
several hundred microns (Wang, 2013; Wang and Dommati, 2018). However, the 3S system has 
a build volume of only 57.6 × 32.4 mm in length and width. The ratio for the build volume to the 
amount of slurry utilized in the 3S system is extremely high which leads to low efficiency of the 
system. The printing speed of the 3S system is 30 sec/layer. 

Within industrial applications, it is important to optimize the fabrication time to reduce the wait 
time and increase productivity. The first 3S system has been improved to a new process called the 
Circular 3S system (C3S), in which the platform has a circular build plate and the cycle time for 
each layer is cut down to half the previous time. By adding another DLP system, the productivity 
has been multiplied to twice that of the single DLP system. In this paper, a new C3S system 
apparatus is built and compared to the previous 3S systems and other commercial systems 
available on the market. The samples 3D printed using C3S system are subjected to sintering and 
characterized by their flexural strength, density, surface roughness, and shrinkage rate.  

2. Circular Solvent based Slurry Stereolithography (C3S) system

The C3S system follows the same working principle as the 3S system. The slurry is deposited on 
the build platform, the paving blade paves the slurry uniformly in a circular manner and the DLP 
system projects the blue light to cure the deposited layer. These steps are repeated until the green 
parts are formed. The obtained green parts are cleaned under the running water to remove the 
uncured residual slurry as a part of post processing. The post-processed objects are then sintered 
at up to 1600  to form completely dense ceramic objects.  

2.1. Slurry formulation 

The slurry is formulated using structure material, solvent, photo-curable resin, dispersant, and dye. 
The solvent used in this process is methanol while alumina is used as a structure material. The 
solvent is used to increase the viscosity of the slurry in order to enable homogenous distribution 
of alumina particles. An orange dye is used as a coloring agent to control the light rays’ penetration 
during the curing process. 

2.2. C3S apparatus 

The C3S apparatus mainly consists of the following subsystems: 

1) DLP system
2) Build platform
3) Rotating paving blade
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4) Electronics control system
5) Human to Machine interface

The whole system is built into a closed cabinet with continuous air circulation and filters to avoid 
the surrounding dust. The layout of the C3S system is shown in Figure 1. 

Figure 1: Layout of C3S system 

2.2.1. DLP system 

The C3S apparatus is able to host more than one DLP system in order to increase the productivity. 
In this present apparatus, two DLP systems are installed. However, the current setup is built to 
enable up to six projectors. Meaning, the productivity can be directly increased up to 6 times. Six 
different build volumes can be utilized to fabricate green parts. Figure 2 shows the NVM UV 
engine used in this process. 

Figure 2: NVM UV Engine 

The NVM UV engine is 2K resolution, naked body type setup that is compact in size. Hence, it 
is easy to accommodate multiple of such DLP systems.  

2.2.2. Build platform 
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The build platform in this apparatus is a stainless steel square cut non-erosive plate on which the 
slurry is paved in a circular ring. The circular shape enables the slurry to pave over the surface 
continuously without letting it go waste, which is unlike the old 3S system where the excess slurry 
that is deposited for each layer goes waste. The build platform is setup with a linear actuator to 
carry it decremented or incremented in the Z-axis. Figure 3 shows the layout of the circular 
platform with up to 6 DLP configurations. In this paper, the P2 and P5 areas are used for exposing 
masking light on the slurry ring with two DLP systems. 

 

Figure 3: Build platform with circular paving 

2.2.3. Rotating paving blade 

The paving blade is used to pave the slurry into the circular ring over the build platform. It rotates 
continuously at a controlled speed. The paving blade design is as shown in the figure 4 (a), while 
Figure 4 (b) represents the setup of the paving blade in the apparatus.  

      

(a)                   (b) 

Figure 4: (a) Paving blade design (b) Paving blade setup 

2.2.4. Electronics control system 

The C3S apparatus consists of a slurry dispensing system, a stirring system within the slurry tank, 
and an electronic control system that controls the whole setup.  
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The slurry dispensing system collects the slurry from the slurry tank through a pump and disperses 
it over the build platform. The pump motor speed is controlled in open loop and the input pulses 
are fixed to maintain the equal proportion of the slurry to be dispensed for every layer. The stirring 
system in the slurry tank is required to keep the slurry homogenous 

In this setup, an open source Arduino board is used as the motherboard to control the Z-axis motion, 
paving blade motor control, masking light ON/OFF control, stirring motor ON/OFF, and the slurry 
dispensing pump. Figure 5 (a) and (b) shows the stirring system and the electronics control system. 

Figure 5: (a) Stirring system (b) Electronics layout 

2.2.5. Human Machine Interface 

An interface is developed to control the apparatus and feed the geometric codes to the machine 
from the computer. The interface is integrated with a slicing code that can directly slice the 3D file 
and send the control commands to the machine. The interface is as shown in the figure 6. 

Figure 6: Interface layout 

2.3. Fabrication of green parts 
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3D models and desired print parameters are fed to the user interface in Figure 6, which sends the 
information to the machine, which fabricates green parts layer-by-layer. The layer resolution that 
is possible in this apparatus is between the ranges of 10 – 50 μm range. With a recommended layer 
resolution of 20 μm and pixel resolution of 30 μm, the green parts can be fabricated at the rate of 
15 sec/layer. In C3S system, the paving blade is not required to go backwards to initiate paving 
the new layer; this cuts down the drying time starting from the first cycle of slurry paving. Unlike 
the linear 3S system, where the paving blade needs to wait until the paved layer dries and returns 
to its origin.  

Figure 7 (a), (b) & (c) represents the flow chart of the fabrication of green parts. Initially, the slurry 
is deposited on the build platform and a paving blade paves the slurry in the form of a ring as 
shown in 7(a). Next, the masking light is projected by the DLP systems, which is P2 and P5 in this 
case. The masking light is exposed for 0.7 sec each layer for curing. Finally, the build platform is 
removed from the system and the green parts are washed with water until the uncured slurry is 
gone.  

   

 

 Figure 7: (a) Paving of the deposited slurry on the build platform (b) P2 and P5 projectors 
exposing the masking light (c) Post processing the green parts under running water 

Table 1 shows the data of the dimensions of the green parts obtained after 3D printing. The design 
sample is 6mm x 6mm x 1.8mm. The green parts obtained from the experiment with 15 sec/layer 
printing speed exhibited bigger dimensions than the parts obtained from 30 sec/layer printing speed 
experiment. It is due to the vaporization of the solvent from a paved layer, causes increase in vol 
% of the dye. At low printing speeds the vaporized solvent is high at high printing speeds. The 
increase in vol % of dye decreases the penetration of light through the paved layer. Hence, at the 
same exposure time of masking light, the parts printed at 15 sec/layer penetrate more light energy 
than parts printed at 30 sec/layer. More light energy can cause over curing and more diffuse 
scattering, which results in increase in the dimensional errors.  

Table 1: Dimensions of the green parts 

 15 sec/layer 30 sec/layer 

Sample Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

1 6.24 6.24 1.93 6.03 6.09 1.86 
2 6.07 6.12 1.97 5.95 5.95 1.83 
3 6.18 6.11 1.92 6.00 6.02 1.87 
4 6.06 6.11 1.94 6.03 6.02 1.86 
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5 6.13 6.11 1.94 6.02 5.94 1.83 
6 6.10 6.11 1.94 5.90 5.93 1.81 
7 6.10 6.07 1.92 5.87 5.90 1.85 
8 6.12 6.10 1.94 6.10 6.04 1.87 

Average 6.125 6.121 1.938 5.988 5.986 1.848 
Deviation 0.052 0.044 0.014 0.067 0.058 0.019 

2.4. Debinding and sintering of the green parts 

Debinding is the process of removing the binder from the green parts. The debinding is done by 
subjecting the green parts to heating up to 350  at the rate of 3.4 /min for 1 h 30 min and then 
from 350  to 600  at the rate of 0.92 /min for 4 h 30 min. This is followed by a sintering 
process, which is done by heating the parts up to 1600  at the rate of 1.6 /min. At 1600 , 
the green parts become highly densified and exhibit pure ceramic properties. The parts are left at 
1600  for two hours to let the densification process complete. After densification, the objects 
are cooled down to 40  at the rate of 2.8 /min for 9 hours. Figure 8 (a) represents the debinding 
and sintering cycle of the green parts and (b) shows the green parts kept inside ceramic containers 
ready for sintering.  

(a)               (b) 
Figure 8: (a) Debinding and sintering cycle (b) Sintering of green parts 

Table 2 shows the dimensional data of the sintered samples. From the data, it is observed that the 
dimensions of the low speed printed parts are less than the parts printed at high speed.  

Table 2: Dimensional data of the sintered parts 

Sample 
15 sec/layer (high speed) 30 sec/layer (low speed) 

Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

1 4.86 4.86 1.58 4.82 4.85 1.45 
2 4.85 4.82 1.54 4.92 4.89 1.51 
3 4.83 4.89 1.51 4.8 4.84 1.47 
4 4.87 4.9 1.47 4.86 4.87 1.49 
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5 4.84 4.85 1.50 4.77 4.78 1.52 
6 4.84 4.88 1.54 4.82 4.86 1.5 
7 4.81 4.83 1.59 4.77 4.84 1.51 
8 4.83 4.81 1.52 4.84 4.82 1.53 

Average 4.841 4.855 1.531 4.825 4.844 1.498 
Deviation 0.017 0.029 0.035 0.044 0.029 0.023 

3. Characterization of the samples printed at different layer cycle time 

In this paper, the mechanical properties are characterized by printing the sample parts at different 
speeds with the same slurry material. The printing speeds are 15 seconds/ layer (high speed) and 
30 seconds/layer (low speed). 3D model of blocks with 6mm in length and width and thickness of 
1.8 mm are 3D printed to determine the shrinkage rate, average volume and density. To determine 
the flexural strength, rectangular bars with dimensions 30×2.4×1.8 mm in length, width, and 
thickness respectively, are fabricated. The printed green parts and the sintered parts of 3D models 
are as shown in the figure 9 (a) and (b). 

    

             (a)      (b) 

Figure 9: (a) Green parts (b) Sintered parts 

3.1. Shrinkage rate 

The dimensions of the obtained green parts are measured under the 3D macroscope. The table 1 
represents the length, width and thickness of the green parts obtained from C3S printing with 15 
sec/layer and 30 sec/layer. From the table 3 the shrinkage rate of the parts printed at 30 sec/layer 
speed is slightly lesser than the parts printed at 15 sec/layer speed. The shrinkage is almost linear 
in the X, Y and Z directions with slight error in length of the parts printed at low speed. The mean 
shrinkage rate of the parts printed at 15 sec/layer is 20.95 × 20.68 × 20.96 % and the parts printed 
at 30 sec/layer is 19.41 × 19.08 × 18.93 % in X, Y and Z directions respectively. Comparatively, 
the low speed printed parts exhibited the low shrinkage rate due to the occurrence of high solid 
loading with increased amount of solvent vaporization every layer while printing. 

Table 3: Shrinkage rate of the samples after sintering 

Sample 15 sec/layer 30 sec/layer 
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Length 
(%) 

Width 
(%) 

Thickness 
(%) 

Length 
(%) 

Width 
(%) 

Thickness 
(%) 

1 22.115 22.115 18.135 20.066 20.361 22.043 
2 20.099 21.242 21.827 17.311 17.815 17.486 
3 21.845 19.967 21.354 20.000 19.601 21.390 
4 19.637 19.804 24.227 19.403 19.103 19.892 
5 21.044 20.622 22.680 20.764 19.529 16.940 
6 20.656 20.131 20.619 18.305 18.044 17.127 
7 21.148 20.428 17.188 18.739 17.966 18.378 
8 21.078 21.148 21.649 20.656 20.199 18.182 

Average 20.953 20.682 20.960 19.406 19.077 18.930 
Deviation 0.727 0.686 2.037 1.067 0.899 1.727 

3.2. Density 

The density of the samples is measured using a densimeter that follows Archimedes principle. The 
obtained mean density value of the eight samples is measured as 3.846 g/cm3 for 15 sec/layer and 
3.874 g/cm3 for 30 sec/layer speed. From the data presented in table 4, the density of the low speed 
printed parts is 0.028 g/cm3 higher than the high speed printed parts. This variation is due to the 
increase in solid loading every layer. At low speed printing, the vaporization of solvent is high 
causing the solid particles to come closer and hence fixated at the masking light with a higher 
density. Whereas at high-speed printing, the presence of solvent is relatively high and caused the 
solid loading little lesser. The difference in standard deviations for high speed and low speed 
printing is also very high. The inconsistency of density in high-speed printed parts is due to 
presence of internal cracks or pores in few of the samples. Whereas in low speed printed parts the 
density values are consistent causing lower standard deviation. 

Table 4: Density of the samples after sintering 
Sample 15 sec/layer 30 sec/layer 

1 3.67 3.86 
2 3.99 3.79 
3 4.04 3.96 
4 3.83 3.81 
5 3.64 3.91 
6 3.98 3.84 
7 3.96 3.96 
8 3.66 3.86 

Average 3.846 3.874 
Deviation 0.157157 0.059987 

3.3. Flexural strength 
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The flexural strength of the workpieces is measured by the 3-point bending test as shown in figure 
10, which is based on the ASTM C1161 standards. In order to obtain the final 3D printed parts 
with the dimensions of 25×2×1.5 mm length, width and depth respectively, the shrinkage rate is 
predicted to be 20% and hence the 3D model with 30×2.4×1.8 mm in length, width and depth is 
3D printed and sintered. The obtained final parts are in the tolerances mentioned as per the ASTM 
C1161 standards. The mean flexural strength obtained for the eight rectangular bars is measured 
to be 367.72 MPa, 418.29 MPa for parts printed at 15 sec/layer and 30 sec/layer speeds. The table 
5 shows the results of the 3-point bending test on the printed samples. The difference in the flexural 
strengths is due to the higher density of the obtained samples at low speed printing. 

 

Figure 10: 3-point bending test 

Table 5: Characterization of the sintered samples  
Sample 15 

sec/layer 
30 
sec/layer 

1 339.11  455.51  
2 339.49  432.46  
3 451.44  335.03  
4 300.64  415.17  
5 378.42  319.89  
6 423.97  373.06  
7 396.99  461.58  
8 311.73  489.82  
Average 367.72  410.32  
Deviation 47.60  54.51  

4. Discussion 
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The C3S system is operated at two different printing speeds i.e. at 15 sec/layer and 30 sec/layer. 
At high printing speed, the fabrication of the green parts is reduced to half the time it usually takes. 
However, the mechanical characteristics for the parts printed at low speed exhibited better results 
compared to the parts printed at high speed. Due to the high vaporization of solvent in low speed 
printed parts, it resulted in high solid loading and higher density of the parts, 3.87 g/cm3 whereas 
it is 3.84 g/cm3 at higher speed. In addition, the flexural strength of the parts printed at low speed 
is 410.32 MPa, which is ~42 MPa higher than the parts printed at high speed. For a 6×6×1.8 mm 
3D model, after printing at high and lower speeds, the dimensional error in the green parts is 
measured to be comparatively lesser in the low speed printed parts. It is due to the raise in dye vol 
% when the solvent is vaporized at a proportional rate of the paving time for every layer. The 
masking light scattering is inversely proportional to the vol % of dye. Hence, the dimensional error 
that is caused due to overcuring is lesser in low speed parts. To obtain green parts with exact 
dimensions of the 3D model, the printing speed time can be optimized. Although it is impractical 
to achieve parts with exact dimensions as 3D model, the parts can be printed within the standard 
tolerances. 

5. Conclusion  

A new C3S system is developed based on the same working principle as 3S to increase the 
productivity. The new apparatus is suitable for small-scale and batch wise production processes. 
By implementing two projectors in the C3S, the productivity has been increased 4 times; counting 
the printing speed when reduced to half. The new C3S is capable of printing at different speeds 
effectively. The mean shrinkage rate of the parts is 20.95 × 20.68 × 20.96 % and 19.41 × 19.08 × 
18.93 % in X, Y and Z directions respectively for the parts printed at 15 sec/layer and 30 sec/layer. 
The parts printed at 15 sec/layer speed exhibited flexural strength of 367 MPa, 3.84 g/cm3 density; 
parts printed at 30 sec/layer speed exhibited flexural strength of 418 MPa, density of 3.87 g/cm3. 
The layer resolution remains the same while the mechanical properties depends upon the chosen 
printing speed. To increase the productivity and make an AM system that is suitable for batch 
production, the C3S can be utilized to its full potential by implementing up to six projectors in one 
system. 
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