






 
Figure 10. (a) Example machined notch in ABS beam and (b) loading case for repair tests 

It was also noted that using the stitching patch actually decreased the strength of the joint for the slant 
patch for both materials. It was observed during the tests that the slant patches completely separated from 
the surface of the ABS bar during the tests, but not without carrying some of the load early in the test; it 
appears that the breaking of the patch introduced a shock to the base material, suddenly increasing the 
load around the notch. This behavior was captured in the experimental data and can be seen in Figure 11a. 
Overall, four of the six cases were successful in adding strength to the base material while adding only a 
minuscule amount of extra material to the part. The benefits, however, were not significant in two of the 
cases. The different patch geometry showed significantly different performance, thus, this is a promising 
method of repair once the behavior is more well-known. Further study is needed in this area for different 
kind of patch materials, surface treatments, and boundary conditions. 

 
Figure 11. (a) performance for ABS patches, and (b) performance for PETG patches 

6.3. Addition of Missing Feature to Broken ABS Part 

In the final case study, FDM was used to repair a broken high-value plastic part by printing a 
replacement for a feature that had broken off. The feature in question was a mounting boss that was used 
to help contain a pulley running a soft rubber belt in a power transfer system (and therefore subjected to a 
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load of 50 N); Figure 12 shows the setup before the break and the location of the repair. The part to be 
repaired is the lower housing, made from ABS and was originally made (for the purposes of this case 
study) using FDM from Hatchbox® ABS (print speed of 60 mm/s, extrusion temperature of 220°C, layer 
thickness of 0.2 mm, and printbed temperature of 90°C). Using the same technique used in the previous 
two case studies, the mean surface roughness for the area to be printed on was observed to be 76.6 μm (n 
= 25, standard deviation = 24.2 μm). Similar to Case Study 1, the part was determined by the stakeholders 
to be repairable, as the part met two of the four criteria for a high-value plastic part (essential to the system 
and much more expensive to replace than repair) and was determined to be easy to repair since the printing 
surface was flat and easily reachable.  

 
Figure 12. Power transfer system with broken feature to be repaired using FDM 

The mounting boss was a standard design (attached to a customized part), allowing quick and easy 
modeling and generation of a repair plan for adding it to the part. Overall, it was determined to be easily 
repairable, but the repair material to be used was a source of contention among the stakeholders. Since the 
compatibility of different FDM materials has not been conclusively established, it was decided that four 
different materials should be tried and the one with the best performance (under the loading conditions 
shown in Figure 13a) would be selected to repair the component (Figure 13b). The four cases were to:-  

1. Print a new feature immediately on the ABS base using the same brand of ABS filament and 
settings as the original part (Figure 13c). This process was used as the baseline case to compare 
the performance of the other three cases.  

2. Print the new feature using a higher-temperature ABS (Makerbot ABS, extrusion temperature of 
240°C) with a print speed of 30 mm/s (Figure 13d). 

3. Complete the repair using PETG, with an extrusion temperature of 245°C and a print speed of 30 
mm/s (Figure 13e). 

4. Finally, repair the component using a new feature made from polycarbonate (PC) printed at 245°C 
and 30 mm/s (Figure 13f). 

As with the other case studies, strong carpet tape was used to secure the parts to the printbed. The base 
parts used were conditioned for 40 hours, as previously described, before printing of the features. The 
only exception was the original ABS (Figure 13c), which was printed as soon as the base part was cool. 
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This exception was done to distinguish it from the later repair, using the higher temperature ABS and to 
provide a baseline for comparison.  

Figure 13. (a) Loading condition and interface for broken feature, (b) repair processing, (c) baseline 
feature, (d) ABS repair, (e) PETG repair, and (f) PC repair 

Figure 14. (a) Experimental setup view 1 and (b) view 2 and (c) the experimental results for repair cases 

To test the realistic performance of the appended feature for the four cases, a custom destructive testing 
apparatus was built, as shown in Figures 14a and 14b. In this experiment, the repaired component was 
secured to a piece of wood with screws, which was attached to the lower part of the MTS universal testing 
machine used in the previous two case studies. A tensile testing grip was used on the top end to hold a 
steel strip which was attached to the boss to apply the load shown in Figure 14a.  The results of the four 
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tests are shown in Figure 14c. The baseline case performed the best, but all four were able to tolerate the 
50 N load necessary for the component to be used. The baseline case, as shown in Figure 14c, broke in 
the boss itself and left the interface intact. The other three cases were observed to fail by delamination 
(specifically, separation at the joint interface in Figure 13a), the PETG failing suddenly and the other two 
slowly separating from the main component. Of the three repair cases completed after conditioning, the 
240°C ABS performed the best with PC coming in a close second. This order was not a surprise, but it 
was surprising that the conditioning of the base part and the difference in temperature were so impactful 
on the bonding conditions. After the performance of the PETG patches in Case Study 2, the results 
observed for this material were expected. Overall, all the repairs were successful under the use conditions, 
but with a wide variance of performance and behavior for the various cases. 

7. Summary and Conclusions

This study focused on exploring the use of fused deposition modeling (FDM) as a method for repairing 
high-value plastic components. First, the benefits of repairing plastic components were discussed in depth, 
as well as important previous works on additive repair methods were enumerated, both to motivate the 
research presented in this article and to better understand the limitations of the current knowledge in the 
area. Next, a framework for logically determining the feasibility of repairing high-value plastic parts was 
proposed, consisting of three fundamental levels: (1) determination of the feasibility of repairing the part, 
(2) determination if an AM process would be appropriate for the job, and (3) determination of the value
of a particular AM process for this. The first two were presented as decision analysis problems, with the
third simply being a checklist to ensure feasibility and that a good repair outcome was likely. A detailed
definition of what a high-value plastic part was then given, where four criteria determine the designation;
any one or combination of these criteria could make a given part “high-value”. After this definition was
given, the FDM process itself was analyzed in great depth so that the benefits and challenges are clear
before using it as a repair process. A brief discussion of post-processing and repair evaluation was
presented, but it was not covered in depth as it was not within the scope of this study; the method for post-
processing and evaluation for the case studies were presented in depth, but a general discussion was not
undertaken. This is a topic of further research. Finally, three large case studies were done to further explore
the concepts and derive conclusions about the value of FDM as a repair process for various tasks involving
high-value plastic parts; the two fundamental AM repair tasks (patching and feature addition) were
explored, with two of the case studies examining different aspects of the patching task. Major conclusions
from this study were:

FDM was a good repair process for some of the cases presented, but not for all.
More ductile materials, such as ABS, performed much better as repair agents than stronger but
more brittle materials such as PC and PETG.
Some potential repair materials are far more compatible with each other (such as ABS on PLA)
than others (such as PETG on ABS).
Surface preparation, as observed in all three case studies, is vital for a successful repair.
Conditioning of the surfaces after preparation and before repair had a very high impact.
The highly anisotropic nature of FDM materials was very apparent in the results of the case
studies, providing a wide range of performance relative to small changes in the design and
orientation of the repairs.
In conclusion, FDM appears to be a feasible process for repair of plastic parts, as long as the
conditions of the repair are taken into consideration, and careful preparation is performed.
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