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Abstract 

Users of Fused Filament Fabrication (FFF) can choose from a wide variety of new materials as 
filament producers continue to introduce new polymer and polymer composite filament into the 
marketplace. This paper describes a low-cost device capable of measuring the rheological 
properties of off-the-shelf polymer filament. In this approach, measurements are taken during 
filament extrusion which are combined with a pressure drop model based on simple shear flow 
within the FFF nozzle to perform inverse analysis that computes parameters for the power law 
generalized Newtonian fluid (GNF) model. The applicability of our FFF-filament rheometer is 
demonstrated with four commercially available polymer filaments by comparing the results to 
those obtained from a commercial rotational rheometer. A filament characterization approach 
similar to Melt Flow Index (MFI) is also proposed to assess the extrusion characteristics of 
materials specific to FFF. 

Introduction 

Fused Filament Fabrication (FFF) as one of the Additive Manufacturing (AM) techniques 
shows the enormous potential to benefit the household customers and the professionals in both 
research and industry due to its cost-effectiveness as well as the wide support from many open 
source communities. FFF is a molten polymer extrusion-based deposition AM process where a 
filament of polymer or polymer composite is supplied continuously into a heated liquefier, melted, 
and then extruded onto the platform or the extrudate below. The gantry system moves the extruder, 
or in some designs, the build surface to build the product layer-by-layer. [1] 

Gaining a thorough understanding of polymer melt rheology behavior in FFF will benefit the 
processing control as well as the quality of products. Rheological properties of polymer melt, such 
as the shear-thinning and viscoelasticity govern the flow behavior during processing. Lab scale 
rheometers which perform off-line measurements can provide various high-quality rheological 
data of materials. However, common lab scale rheometers cannot incorporate filament directly and 
instead require the user to first prepare samples of materials for testing. Also, the rheometers are 
expensive, particular for those who simply want to characterize a filament or measure the 
fundamental rheological properties of a polymer being considered for FFF before printing. The 
primary goal of this paper is to develop a new approach for evaluating the rheology of polymers 
directly from filaments used in FFF. 

The flow of polymer melt in FFF may be characterized as pressure-driven flow. Therefore, 
measuring the pressure drop as the filament is processed through the FFF nozzle provides a means 
for obtaining rheological properties of materials from an FFF-based device. However, measuring 
the pressure of the flow in an FFF nozzle has practical difficulties where the small size of nozzle 
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makes it impractical to attach a pressure gauge inside without having an impact on the flow 
behavior. Therefore, an indirect pressure measurement method offers promise and will be 
investigated in this paper. 

Several research groups proposed different approaches to monitor the pressure drop of FFF 
nozzle flow. Phan, et al. [2] measured the consumption of the electric power supplied on the 
stepper motor used to deliver the filament then converted measured results to the overall pressure 
drop through the nozzle as a user-defined function of the feedstock feeding rate. Instead of 
measuring the pressure drop implicitly via the working power of stepper motor , Coogan, et al. [3] 
and Anderegg, et al. [4] customized the nozzle by inserting a load sensing probe and a piezo-
resistive pressure transducer, respectively, into the upper region of the nozzle to measure polymer 
melt pressure. Our approach differs in that, we developed a relatively simple and low-cost device 
to obtain pressure drop by directly measuring the extrusion force acting on the filament without 
interfering the flow inside of nozzle.  

The inside geometry of a typical nozzle used in FFF can be recognized as having three regions 
as shown in Figure 1. Region II is a coni-cylindrical region designed to act as a transition zone 
allowing the polymer melt to accelerate into the capillary die (Region III) such that the shear rate 
increases significantly, decreasing the shear viscosity while aligned molecular chains without 
vortex generation. Bellini, et al. [5] assumed a power law generalized Newtonian fluid (GNF) flow 
in the nozzle with simple shear flow while ignoring entrance and exit effects. In the Bellini model, 
the total pressure drop in the nozzle is regarded as the sum of the pressure drops from each of the 
three regions in Figure 1. This model is commonly used in FFF analysis such as the work 
conducted by Ramanath, et al. [6], Sukindar, et al. [7], Pandey, et al. [8], and Tlegenov, et al. [9], 
and its feasibility as describing the polymer melt flow behavior in FFF is supported by these works. 
In this paper, we employed this model to predict the pressure drop contribution from the three 
separate regions and then use the computed pressure drop data to obtain rheological data.  

Figure 1. (a) Sketch of the typical inside geometry of a nozzle used in FFF that consists of three regions: 
I, upper cylindrical die; II, coni-cylindrical die; III, capillary die. (b) Cross-sectional view of the nozzle 

used in this study 

Experimental Methods 
Materials 

Before describing our device for measuring filament rheological properties it is helpful to note 
that this study included measurements with commercially available filaments. Four neat polymers 
were considered in this study which includes two brands of ABS (3DXTECH and Triptech Plastic), 
PLA (3DXTECH), and Amphora (Triptech Plastic) in filaments with 1.75 mm diameter. The 
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rheological properties of all materials were obtained using the HAAKE MARS 40 (Thermo Fisher 
Scientific, Waltham, MA) cone and plate rheometer. The extreme frequency window set as 0.1–
100 Hz for two ABS filaments and 0.5-100 Hz for PLA and Amphora to guarantee the 
measurements under the linear viscoelastic region (LVER). The oscillation frequency sweep 
measurements were repeatedly conducted five times for each material. Typical values for dynamic 
viscosity as a function of oscillation frequency appears in the plot in Figure 2. If Cox-Merz rule
[10] assumed, then the results could also represent the shear rate dependent viscosity.

Figure 2. Complex viscosity curves for four neat polymers measured using MARS 40 rotational 
rheometer.  

Device Overview 
By separating the liquefier and the stepper motor of a direct extruder system, the overall force 

acting on the nozzle can be measured via a load cell which is the same as the compressive force in 
the filament. Assuming the pressure at the nozzle exit is zero, then the measured force recorded by 
the load cell may be written in terms of the pressure drop  over the entire nozzle as 

=   (1) 
where A is the area of nozzle inlet and  is the resultant force. Our device is composed of an off-
the-shelf beam-style load cell along with commercially available FFF machine (or desktop 3D 
printers) components as shown in Figure 3. In this approach, the heated nozzle is separated from 
the drive system and mounted on the load cell as shown where care is given to ensure that the 
filament is appropriately aligned with the nozzle axis. Furthermore, assuming that melting only 
occurs in the nozzle, the measured force equates to the compressive load in the filament between 
the drive system and nozzle. 

Accurate temperature control is required to obtain consistent melt flow measurements. To this 
end, we use an NTC thermistor along with a K-type thermocouple to monitor the temperature 
simultaneously where the heater block is redesigned to ensure the two temperature sensors are 
equal-distanced from the nozzle screw inside the heater block. Generally, the built-in framework 
of a commercial desktop 3D printer monitors the temperature by interpolating the pre-defined 
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temperature-resistance table for a certain thermistor. However, we observed significant deviation 
of temperature readings for these thermistors. Hence, we calibrated the thermistor using ETC-
400A (AMETEK Inc, Berwyn, PA) to avoid the deviations, then verified its accuracy using a K-
type thermocouple. We also found that the thermocouple had a short delay on reading temperature 
as compared to the thermistor. Considering the small difference of temperature readings from 

the thermistor was selected as the temperature sensor served for our 
PID controller.  
 

 
Figure 3. Measuring protocol and design of the FFF filament rheometer 

 
To maintain the desired constant heat flux from the nozzle heater as filament feeding velocity 

varied, PID control parameters were calibrated for each material under different feeding rate. Then 
we performed the temperature tests for same material under different delivery speed, and the 
results show that the maximum temperature fluctuation of the device in operation is about 0. . 
An example temperature reading appears in Figure 4.  

 

 
Figure 4. Performance of PID control for 3DXTECH ABS under extrusion at 1.5 RPM 230 . 

 
Considering the temperature effect on viscosity in equation 2, we applied the Arrhenius law 

(equation 3) which is valid for temperatures well-above the glass transition to determine the impact 
from the temperature fluctuation. In these equations, is the reference temperature, (which is also 
the setpoint of operation temperature in this case),  is the real-time temperature,  is the shear 
rate,  is the viscosity at ,  is the activation energy, and  is the gas constant. Using the
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activation energy in [11] for PLA and [12] for ABS, we found that the activation energy of the 
FFF materials assessed in this paper has the magnitude of 10  / . This small fluctuation of 
temperature yields values of ( ) near to 1 which supports our isothermal assumption. 

( , ) = ( ) ( ) (2) 

( ) = [ ( )]  (3) 

Volumetric flow rate of the extrudate for each material under varying filament feeding 
velocities was obtained by averaging three repeatable measurements. This approach is 
straightforward but somewhat time-consuming. To simplify the experimental procedure, an 
alternative approach is considered here by converting the RPM of stepper motor to the volumetric 
flow rate 

= (4) 

where N is RPM,  is the radius of filament,  is the radius of the inlet of nozzle which is slightly 
greater than the filaments’,  is the effective radius of the driving gear. The volumetric flow rate 
may be written as a function of RPM as 

= ( )   (5) 
Before performing force measurements, rollers and a tension spring which applies a

compression force to filament as it passes through the extruder were selected. The compressive 
force applied by the teeth of the roller must avoid bucking and stripping of filament. Also, the 
stepper motor was set to provide a precise RPM under 1/32 micro-steps while still being capable 
of providing sufficient torque. We considered that the filament melt flow in the nozzle can be 
regarded as nearly steady flow with respect to a well-controlled temperature as well as the smooth 
and precise filament feeding process. Unfortunately, the load signal appearing in Figure 5 (a) 
exhibits a level of variation that is too high for reliable force measurement. Therefore, the force 
signal is analyzed here to gain a better understanding of fluctuations in the signal. 

Figure 5. (a), Original force signal of 3DXTECH ABS extruded under 210°C & 1 RPM; (b), 
One-sided FFF frequency spectrum of the signal. 
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A one-sided frequency spectrum of the force signal is given in Figure 5 (b) obtained by 
performing the Fast Fourier Transform (FFT) where the first dominant frequency component is 
removed to gain a clear view of other signals. The magnitude of the signal at each frequency was 
normalized to the scale of one to make it easier to compare the intensity of each frequency 
component. Two explicit factors causing the fluctuation of the force signal were detected by 
comparing the data in both time and frequency domain. A frequency peak at 0.01706 Hz was found 
to be near the rotational frequency (0.0167 HZ) of stepper motor which was operating under 1RPM 
in this example. Notice that this frequency also matches to the frequency of the repeatable peaks 
of the signal in time domain (cf. Figure 5 (a)). This infers that either the idler pulley or the drive 
gear is not perfectly round, resulting in the filament insertion velocity of the changing over time. 
Also, the 0.593 Hz bin in FFT plot was found to be equivalent to the 0.6 Hz frequency of the drive 
gear tooth impact on the filament (i.e., 36-tooth spinning with speed of 1 RPM). Other higher but 
non-dominant frequency content may be caused by backflow of the molten material as discussed 
in Gilmer, et al.’s work [13] or the electrical noise from the circuit were filtered by implementing 
a low-pass filter in Arduino. Once extrusion begins and the initial transient response passes, a PID 
control maintains the heat flux to be nearly constant such that the temperature and volumetric flow 
rate remain nearly constant. Therefore, the force measurements were averaged over time where 
the time window was selected to provide a stable temperature reading to obtain the consistent 
readings. 

Once consistent force readings were obtained, the experiments on our device were performed 
for each material listed above at various filament feeding speeds from 0.5 RPM to 2.5 RPM drive 
gear speeds with 0.5 RPM as the increment. At each speed, both pressure drop and volumetric 
flow rate were obtained and further analyzed. The measured relationship between pressure drop 
and volumetric flow rate corresponding to each material appears in Figure 6.  

 

 
Figure 6.  Pressure drop versus volumetric flow rate for four polymers at five filament feeding 

rate
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Results and Analysis 
Inverse Analysis 

We made several reasonable assumptions to simplify the modeling approach for the complex 
flow based on Bellini’s model [5]. The assumptions with regard to boundary conditions, 
thermodynamic, flow, and rheological behavior used in this study are given as follows: 

1. Incompressible polymer melt flow;
2. No-slip boundary condition at the nozzle wall;
3. Isothermal fluid flow condition;
4. Gravity of extrudate is negligible;
5. Polymer melt flow is in steady state;
6. The pressure at the nozzle outlet is equal to zero;
7. Flow entrance and exit effects are negligible.
8. The melt rheology is purely viscous and can be modeled with as a Generalized Newtonian Fluid.
9. The power law model is applicable to polymer melt flow in the nozzle during extrusion.
10. The Reynolds number of the flow is small making it possible to ignore inertia effects [14].
11. The flow is axisymmetric with respect to the z-axis (cf. Figure 1)

The purely viscous power law describes the viscosity as a function of strain rate as 
( ) =   (6) 

where k is consistency index and n is power law index. The resulting expression for pressure drop 
in each region of an FFF nozzle based on equation 6 may be written as given in Bellini as   

= 2 ( / )
/ ,  (7) 

= ( ) , (8) 

and 

= 2 ( / )
/ (9) 

where regions I, II, and III are defined in Figure 1.  The overall pressure drop in an FFF nozzle is 
computed by summing , , and  yielding  

= + + = 2
( )

[ + ( ) + ]  (10) 

where , , , , and  define the geometry of the nozzle as shown in Figure 1(a). Substituting 
equation 5 into equation 10 yields the pressure drop as a function of filament feeding velocity.  

The nozzle used in this study appears in Figure 1 (b). Given that the only unknowns in equation 
10 are the power law parameters  and , we employed an inverse analysis approach to predict 
these parameters from the experimental data of  and . To this end, a nonlinear least-square 
curve-fitting method was implemented in MATLAB (MathWorks, Inc., Natick, MA) based on the 
Gauss-Newton algorithm to fit the measurements of Q and . In this approach, n and k are 
updated iteratively according as  

{ } = { } + [ ] [ ] {[ ] { }} (11) 

where {A} is a vector of unknown parameters of interest, [Z] is the Jacobian matrix composed of 
derivatives of  with respect to n and k, the vector {D} contains the residuals between the 

 1762



measured pressure drop and those from prediction, and j represents the iteration numbers. The 
partial derivatives of pressure drop with respect to n and k compose [Z] are 

= ( + + )2 3 + (12) 

=
( )

( +  ) + 3 ( + ) + ( + ) + ( ) )   (13) 

where A,B,C, and D are user-defined functions used to simplify the expression of equation 13 and 
are given in the following equations as 

= 1 + ( ) + 3 ( ) (1 + 3 ) 3 +  , (14) 

= 1 + (4 + ( ) + 3 ( )) (1 + 3 ) 3 + , (15) 
= 3 + 9  , (16) 

and 
= 3 (1 + 3 ) (17) 

The coefficient of determination ( ) was computed in the usual manner for each material is 
greater or equal to 0.99 which suggested the math model fits to the experimental data very well. 
Fitted data appears in Figure 7. Values of  and  computed in our inverse analysis along with 
the corresponding values of  appear in Table 1. 

Figure 7. Curve fitting results for: (a), 3DXTECH ABS at 230 ; (b), TRIPTECH ABS at 
230 ; (c), Amphora at 230 ; (d), PLA at 215 , where the red triangle markers are our 

measurements of pressure drop and the blue solid lines are curve-fitting results.  

Table 1. Power law parameters predicted via inverse analysis approach 
Filaments Temperature ( ) n k (Pa s )  

ABS (3DXTECH) 230 0.498 6.678e3 0.999 
ABS (Triptech Plastic) 230 0.425 1.219e4 0.997 

Amphora (Triptech Plastic) 230 0.682 6.221e3 1.000 
PLA (3DXTECH) 215 0.681 2.878e3 1.000 

Rheology Evaluation 
Power law parameters obtained from our inverse analysis may be substituted into equation 6 to 

obtain values of computed viscosity as a function of shear rate for each material considered in this 
study. Assuming Cox-Merz rule, results in Figure 2 were compared to the predictions using the 
power law parameters obtained in above inverse analysis, and the comparison appears in Figure
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8. Here we consider a range of angular frequency (or shear rate) between 50 rad/s to 280 rad/s (or
50 s  to 280 s ) since this is the averaged power law apparent wall shear rate in regions I and
III (cf. Figure 1(a)) when our filaments are extruded at 0.5RPM-2.5RPM. In addition, a shear rate
of 280 rad/s is the maximum angular frequency that can be measured with MARS 40 to guarantee
the accuracy. Note that computed values of power law viscosity describe the shear thinning
behavior very well for all materials considered here over the shear rate region typical of FFF
processing.

Figure 8.   Comparison results of viscosity with respect to the shear rate form 50 s  to 280 s  
from MARS 40 and our device for (a), 3DXTECH ABS; (b), TRIPTECH ABS; (c), TRIPTECH 

Amphora; (d), 3DXTECH PLA. 

To further compare the power law parameters obtained using our device to those from MARS 
40, we employed the same approach as in above inverse analysis, least-square curve fitting, to 
obtain  and  from measured viscosity data in Figure 2. Note that fitted values of power law 
parameters from MARS 40 data are sensitive to the shear rate region.  Having the above analysis 
as the premise, power law parameters from MARS 40 are determined over the same shear rate 
range where values appear in Table 2 and 3 along with those predicted using our device.  

Table 2. Comparison of the power law index (n) obtained using our device and those fitted from 
MARS 40 data 

Filaments Temperature ( ) n 
Our Device 

n 
MARS 40 

Percentage 
Error (%)

ABS (3DXTECH) 230 0.500 0.508 1.6 
ABS (Triptech Plastic) 230 0.425 0.418 1.7 

Amphora (Triptech Plastic) 230 0.682 0.650 4.9 
PLA (3DXTECH) 215 0.681 0.695 2.1 
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Values in Table 2 and 3 show that errors are within 6% for both comparison of n and k, and 
this favorable result suggests that the Bellini model is good for describing the creeping flow in an 
FFF nozzle, and that our device provides accurate power law data. Even though multiple 
assumptions have been employed for developing the equation of pressure drop through an FFF 
nozzle, including the converging flow in region II, the repeatable results for all four polymers 
demonstrate the validation of our approach of evaluating shear thinning behavior of polymer melt 
of FFF nozzle flow directly form filaments.  

 
Table 3. Comparison of the power law consistency index (k Pa s ) obtained using our device 

and those fitted from MARS 40 data 
Filaments Temperature ( ) k (Pa s ) 

Our Device  
k (Pa s ) 
MARS 40 

Percentage 
Error (%)

ABS (3DXTECH) 230 6.678e3 7.043e3 5.2 
ABS (Triptech Plastic) 230 1.219e4 1.279e4 4.7 

Amphora (Triptech Plastic)  230 6.221e3 5.885e3 5.7 
PLA (3DXTECH) 215 2.878e3 3.024e3 4.8 

FFF Filament Flow index (FFI)  
The Melt Flow Index (MFI) is widely used in the plastics industry that follows either ASTM 

D1238 [15] or ISO 01133 [16] standards. In the traditional MFI test, under certain temperature and 
weight of plunger, MFI is defined in units of grams per 10 minutes [15]. Our device is capable of 
controlling the mass flow rate and measuring the extrusion force, hence we defined a flow index 
here based on the FFF technology using the extrusion force which we define as a ‘Filament Flow 
Index (FFI)’. The experimental conditions, i.e., processing temperature and speed of stepper motor, 
were referenced from MakerBot (MakerBot Industries, Brooklyn, NY, USA), a typical desktop-
sized FFF machine where 1.2 RPM is a typical feeding rate for the printer as it prints the shell of 
the part. For each material, 3 measurements were conducted to take the average value. The 
temperature was selected as the widely applied printing temperature. The resulting FFI is shown 
in Figure 9 and Table 4.  

 

 
Figure 9.  Repeatable FFI measurements for (a), 3DXTECH ABS; (b), TRIPTECH ABS; (c), 
TRIPTECH Amphora; (d), 3DXTECH PLA, where the dashed lines in each plot represent the 

average value of the forces. 
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Our filament flow index (FFI) could provide a measure of fluidity and ease of the polymer melt 
flow. In our device, the nozzle has a geometrically complex die which does not conform to ASTM 
D1238. Therefore, when defining an FFI using our device, the value of the force which relates to 
the processing temperature and filament feeding velocity is used as a processing index analogous 
to those of MFI for characterizing the FFF filaments. 

Table 4 Filament Flow Index - Extrusion force for four polymers materials under the normal 
processing condition  

Parameters ABS 
(3DXTECH) 

ABS 
(Triptech 
Plastic) 

Amphora 
(Triptech 
Plastic) 

PLA 
(3DXTECH) 

Stepper Motor Speed (RPM) 1.2 1.2 1.2 1.2 
Processing Temperature ( ) 230 230 230 215 

Force (N) 3.00 4.35 4.97 1.41 

Conclusions 
We successfully developed an FFF filament rheometer which is composed of a device and 

computational approach that directly characterizes the rheological properties of FFF filament. 
Firstly, a device was fabricated that measures the extrusion force within FFF filament. The 
extrusion force was used to propose an FFF Filament Melt Index which is analogous to the Melt 
Flow Index that can quickly provide melt flow information on a filament. Secondly, the pressure 
drop was measured at a specified temperature at five different volumetric flow rates.  This data 
was used to obtain power law parameters via a Gauss-Newton based inverse analysis. Thirdly, a 
model for pressure drop model as a function of volumetric flow rate was employed where the 
polymer melt was assumed to be a lower law flow. The applicability of this model and its merit 
capable of providing the pressure drop of the FFF nozzle flow was verified.  

The accuracy issues of the commercial thermistor used on the FFF printers in the market were 
detected and solved. The accurate temperature readings acted as the feedback taking into the PID 
control to guarantee the steady heat flux control adapted to different filament feeding rate for 
different materials. In addition to the adjustments on temperature, the vibration from start and stop 
of each step of the stepper motor was minimized by subdividing each step into 32 micro-steps. In 
addition, the speed of the stepper motor was verified to be accurate and directly related to 
volumetric flow rate experimentally. All above adjustments benefit the nearly steady state 
extrusion process resulting in the consistent and repeatable force signal.  

Comparison results between the measured viscosities using our device to those obtained with a 
rotational rheometer shows that both power law index and consistency index can be obtained 
within 6% error for all polymers. The well-matched results of all four different type of materials 
demonstrate the feasibility of our approach for evaluating rheology of the both the existing and the 
new materials in the market.  It is also noticed that the two brands of ABS exhibit significantly 
rheological behavior, and the difference was also detected using our device as presented by both 
FFI and the power law parameters in Table 2-4. In summary, the filament rheometer developed 
here is shown to be an effective way to quickly characterize the rheology of FFF filaments.  

Future Work 
Future work includes the investigation of more complex rheology models and the 

implementation of the device into a stand-alone portable device. 
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