






FIGURE 5. (a) Isothermal time-temperature superposition (TTS) of storage modulus and loss 
modulus for PLA, and (b) TTS master curve at reference temperature 180 °C.

4. Results and Analysis
This section uses the methods from Section 3 to predict the tensile load at failure for specimens

with different in-situ embedding cavities.  This prediction leverages both contact area and thermal 
history at layer interfaces. To validate the accuracy of the prediction, experimental tensile tests are 
also conducted.

4.1 Impact of cavity design on thermal history at the interface
The cross-sectional area was measured through the CT scanned images of the interfaces, as 

detailed in Section 3.2. The total cross-sectional area for each specimen lies in the range of 164 to 
185 mm2, but the cross-sectional area distribution between the zone types change notably
depending on cavity geometry.  CT data, summarized in Table 1, shows that, since the presence of 
a cavity introduces more perimeters, more cross-sectional area becomes dedicated to the shell zone
(see Figure 6.).

FIGURE 6. CT scanned slice and digital slice of the specimen.
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TABLE 1. Cross section area distribution within the different samples. 

Groups 
Shell Infill Infill Boundary Total c/s area 

(mm2) Area 
(mm2) 

% of 
total 

Area 
(mm2) 

% of 
total 

Area 
(mm2) 

% of 
total 

Control 70.9 39% 61.3 33% 50.8 28% 183.0 
Cu1 83.1 51% 32.7 20% 48.2 29% 164.0 
Cu2 83.5 46% 40.8 23% 55.8 31% 180.0 
Cu3 75.8 41% 36.0 19% 73.7 40% 185.5 
Cu4 79.9 48% 35.6 21% 51.0 31% 166.5 

Prism 102.3 55% 31.3 17% 51.3 28% 184.9 
Cyl 93.4 51% 30.0 16% 58.3 32% 181.7 

 
 For each of the three zones, the thermal history was obtained by carefully positioning the 
thermocouple wires in the control specimen’s cross section, as discussed in Section 3.2. The 
resultant temperature history for each zone is shown in Figure 7. In the plot, abrupt jumps in 
temperature denote the deposition of molten material in close proximity to the thermocouple. The 
smooth curves that follow after each peak quantify the rate of cooling at the interface after material 
deposition. These results show that each zone exhibits a distinctly different thermal history. The 
next section validates the prediction of weld strength with these thermal histories and the cross 
sectional area of each zone obtained for the different cavity geometries. 
 

 
FIGURE 7. Thermal history as obtained by the thermocouple for each zone for one layer of 
material deposition with the location of measurement in the control specimen cross section.  
 
4.2 Validation failure load predictions using weld theory and rule of mixtures 
 As discussed, the different thermal history in each of the three cross-sectional zones leads to 
different weld strength formation for each of them. Therefore, to simplify prediction, these AM 
structures can be treated as composites made from sections with different strength values. Under 
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this assumption, the rule of mixtures can be used to calculate the total load in the cross section by 
the using the following equation:

(4)

Where is the predicted tensile load at failure, and are the predicted weld
strength for the shell, infill, and infill boundary zones, respectively. Similarly, As, Ai, and Aib are 
the actual cross-sectional areas in each of the three zones. The ultimate tensile strength ( ) for
PLA was taken as 50 MPA [43].

With the known function of from Equation 3, the for each time step from the
recorded thermal history was obtained and substituted in Equation 2. The time step (tf-ti) was taken 
as 0.04 seconds, which is equal to the resolution of the data acquisition system for the 
thermocouple. Subsequent calculations for each time step where the freshly deposited layer was 
above the melting temperature (150 °C) gave the predicted final weld strength. Through Equations
2 and 3, the weld strength of the shell, infill, and the infill boundary zones were obtained as 27
MPa, 45.3 MPa, and 39.2 MPa, respectively. The failure load for specimens with different 
embedding cavity geometries were then predicted using Equation 4.

The results of tensile tests of different embedding cavity specimens, along with their predicted 
strength values derived from polymer weld theory are shown in Figure 8. For comparison, the 
figure also shows the predicted load at failure if the cross section were not divided into zones, and 
only the total area was used by assuming one thermal history throughout the cross section.

FIGURE 8. Experimentally obtained and predicted tensile load at failure for all the groups of specimens.
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TABLE.2. Summary of the experimental and predicted loads at failure for the groups with errors. 

Groups 
Predicted load distribution in 

the cross section (N) Tensile load at failure 

Shell Infill Infill 
Boundary 

Predicted 
(N) 

Experimental 
Avg (N) 

% 
error 

Control 1915.0 2776.9 1991.6 6683.5 6991.6 5% 
Cu3 2047.6 1632.2 2889.1 6568.9 5530.9 16% 
Cu2 2253.8 1848.4 2187.8 6290.0 6384.3 1% 
Cu4 2158.4 1613.6 1999.5 5771.5 5614.1 5% 
Cu1 2243.3 1480.5 1890.8 5614.7 5400.5 4% 

Prism 2761.9 1419.0 2012.5 6193.4 5831.8 7% 
Cyl 2521.6 1358.4 2285.8 6165.8 5404.0 12% 

 
Cyl and Cu3 groups show high error in strength prediction by considering the three weld zones. 

The experimental load at failure were lower than predicted for these two groups. Qualitative 
observations show that under extrusions in the infill zone were the reason for low strength value. 
Furthermore, 80% of the tensile failures for the cavity specimens occurred at the layer where the 
cavity started or ended printing. Stress concentrations due to the abrupt start of the cavity could 
explain this location of failure. The other 20% of the time, the failure occurred at layers with the 
cavity. With the added process interruption required for embedding, this location of failure is 
expected to be the paused layer due [10,22]. 

 
As is evident from the Figure 6 and Table 2, the proposed method of dividing the cross section 

into weld zones and leveraging them to predict the load at failure through the rule of mixtures more 
accurately predicts the load at failure than assuming a constant thermal history throughout a printed 
layer. This method results in prediction error as low as 1%, depending on the geometry of the 
embedding cavity. By comparison, approximating the cross section as a bulk with only one thermal 
history either under- or over-predicts the load at failure. Establishing this understanding is a crucial 
step toward enabling engineers to account for cavity geometry and toolpath design in their 
estimation of part strength for multi-functional embedded AM parts. 

 
5. Conclusion and Future Work 

The research presented in this paper proposes a method to predict the strength of parts with 
different cavity design for embedding applications with material extrusion AM. The thermal 
history of printed layers is used in conjunction with PLA’s rheology behavior to predict the 
strength between the layer interfaces using the weld theory by Bartolai et. al [8]. Interfaces were 
considered as composites made of zones with different thermal histories. The experimental results 
confirm that this method of considering thermal history in a layer results in more accurate 
predictions of failure load when compared with assuming a constant thermal history across the 
layer. This demonstrates the importance of toolpath design when incorporating cavities to support 
in-situ embedding in AM. 

 
This research demonstrates that the thermal history at the layer interface as a result of the 

toolpath and material distribution has a considerable impact on printed part strength. However, the 
methods presented approximated the thermal history for each cross-sectional zone as one, due to 
limitations in the thermal data collection techniques. Additionally, variations in the speed of 
material deposition due to changes in toolpath direction were ignored. Because of the high 
sensitivity of the thermal histories to the toolpath, these effects should be considered to improve 
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prediction accuracy. This requires development of a computational tool to more precisely consider 
toolpath design and capture thermal history at each point in a layer. The thermal histories for each 
point can then be used to improve the accuracy of weld strength prediction between the layers. 
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