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Abstract

By pausing an additive manufacturing process in mid-print, it is possible to create
multifunctional structures through strategic insertion of foreign components. However, in polymer
material extrusion, previous research has shown that pausing the build decreases the eventual
strength of the final part, due to cooling between layers. To better predict this part weakness, this
paper seeks to quantify how the toolpath affects the thermal history of a cross-section, thus
impacting the formation of weld strength between printed layers. This is pertinent to in-situ
embedding as different embedded geometries will require different cavity designs, which, in turn,
will affect toolpath design. In-situ thermal measurements are experimentally collected with a
thermocouple at the layer interface of structures with different cavity designs. The weld strength
between layers is then obtained through tensile tests and theoretically evaluated using polymer
weld theory. Results show more accurate predictions of load at failure with this method.

1. Introduction

The layer-by-layer nature of Additive Manufacturing (AM) provides an opportunity to embed
sensors, actuators, circuits, and other functional components within a part, during the
manufacturing process [1,2]. For in-situ embedding with the material extrusion process, first, a
cavity is designed in the part and the printing process is paused once the cavity is printed. The
foreign component is inserted into the cavity, and the print is resumed. This integrates the
functionality of the inserted components into structures along with the offered flexibility in viable
designs. This capability recently has been recognized for its application to the design and
production of optimized electronics in aerospace industries and sophisticated “smart” objects [3—
7]. The flexibility in manufacturing offered by AM allows cost effective manufacturing of
customizable embedded electronics for applications where weight and volume is critical to overall
performance. Various assembly-related processes and resource waste are eliminated with in-situ
embedding, which makes AM a vital tool contributing towards the vision of Industry 4.0 to
revolutionize manufacturing.

While in-situ embedding with AM shows potential for the future of manufacturing, its layer-
by-layer process also presents with some limitations. AM structures are specifically weaker in the
build direction [2,8]. Furthermore, cavities must be designed with orientations that allow foreign
components to be completely submerged into the part to avoid any damage to the print head [9].
However, prior research has shown that the required process interruption for embedding process
directly reduces the tensile strength of printed parts [10]. The introduced weakness at the paused
layer, as well as further reduction of part strength due to the designed embedding cavity, raises
concern over direct manufacturing of products via in-situ embedding with AM.
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To address these weaknesses due to embedding, understanding how various factors in the
process directly influence the part strength is important. One such factor in the material extrusion
process is the thermal history at the interface of deposited material, that has been known to directly
control the part strength [11,12]. This thermal history is subject to change with the material,
ambient temperature, printing parameters like speed or layer height, and the material deposition
toolpath [12—-14]. Previous studies have almost exclusively focused on either the impact of these
process parameters on the strength of the AM structures or the material’s behavior under the
processing temperature. To build this gap in design and theory of materials, this research focuses
on investigating effects of different cavity designs for embedding on thermal history between the
layers, especially due to different toolpath of material deposition. For this purpose, printed
structures with different embedding cavity designs are studied with a computerized tomography
(CT) scans, and the cross section area is categorized on the basis of the toolpath. Thermal
measurements are obtained for each of these categories and polymer weld theory is utilized for
prediction of strength. The predictions are then validated through uniaxial tensile tests.

2. Literature Review

The following sub-sections summarize literature of relevance to the in-situ embedding process
with material extrusion AM. The next section details the design for embedding considerations.
Section 2.2 describes the link between toolpath and temperature of the layer interface. Section 2.3
details the polymer theory for predicting strength.

2.1 Design for in-situ embedding

As with other manufacturing processes, a successful AM part with embedded components
requires certain design considerations before manufacturing. To avoid damage to the print head or
the embedded component, cavities must be designed so that the component is completely
submerged and secured into the print [ 15—17]. Direct writing techniques to manufacture electronics
also require process-based design planning such that the wire interconnects are accurately formed
[18-21]. While these literatures focus on exploring applications and development of hybrid
processes for embedding, few studies address the design for embedding considerations needed to
retain the structural strength of the printed part [22].

Research suggests that careful design of cavities is essential for viable in-situ embedding.
However, these cavities can also act as defects and directly affect the part’s strength. Furthermore,
the presence of cavities also influences the toolpath for material deposition. For example, in a
material extrusion process, each layer starts by printing perimeters or shells. These shells define
the boundary of the layer, according to the shape of that layer (See Figure 1). Research has shown
that the presence of these shells is essential for the final quality of the part and directly influences
the finish and strength of the structures [23-25]. The layers with the embedding cavities have
additional perimeters defining the boundary of the cavity itself. Next, the empty spaces inside the
perimeters are filled with the infill, for which users can typically select both density and pattern.
A large body of literature exists that centers on optimizing the toolpath to minimize the time to
print a layer [26-28]. Few address toolpath optimization based on structural strength [29].
However, for embedding, the strength between layers is of particular interest as the process is
typically must be paused between the layers. This process interruption has been shown to directly
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weaken the structure at the paused layer in prior research [10,22]. This strength is dictated by the
thermal history of the interface.

(b)

FIGURE 1. Shows the digital layer display in the Cura software, for a print layer. (a) Shows the
toolpath for a 100% dense print with rectangular pattern infill. (b) Shows a toolpath for 20% dense
infill for a triangular pattern infill.

2.2 Toolpath and thermal history

In order to increase the interfacial strength between layers for in-situ embedding AM, the
thermal history, and thus the toolpath, must be considered. A typical desktop polymer material
extrusion process uses polymer filament material that is fed in the nozzle, melted, and deposited
layer by layer [30]. As the molten polymer is deposited in its viscous state, it cools and solidifies
into roads of elliptical cross section due to the shear force on material by the nozzle [12—14]. This
also leads to inbuilt air gaps between the road and the layers, which impact the overall strength of
the structure [31-33]. The final strength of the part depends on the thermal history at the interface
of the deposited and depositing roads; this thermal history defines the weld strength at the layer
interfaces [12,14,34,35].

The thermal history at the layer interface depends on the toolpath, since the toolpath defines
the location of molten material over time [11,14]. As discussed in Section 2.1, the toolpath varies
in different regions and thus varies the thermal history at the layer interface. This results in
differences in weld strength at each point of the embedding cross section [36,37]. A series of
literature has indicated that all the print parameters that directly influences part strength can be
attributed to the thermal history at the material interface [11,12]. To predict how this thermal
history leads to weld formation in printed parts, it is necessary to understand the polymer’s unique
response to temperature quantified through its rheology [35].

2.3 Prediction of weld formation in polymer material

Thermal bonding or weld formation at the interface depends on material in processing and how
cohesion occurs in that material. A polymer’s behavior with temperature is unique because the
long polymer chain molecules exhibit random motion at higher temperatures. This motion is
known as reptation and causes polymer molecules to entangle with each other [38]. These
entanglements result in cohesion at the interfaces. However, polymer molecule reptation is highly
dependent on the time for which it stays at any elevated temperature. In isothermal states, the
degree of cohesion can be directly measured with Ezekoye equation [34], using knowledge of the
polymer’s reptation time. Reptation time is the time taken by the polymer chain to completely
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move out of its initial boundary at a given temperature [34]. The Ezekoye equation for estimating
the weld strength at the interface is:

1

Oweld _ (L)Z (1)

ouUTS Trep

Here, 0yye1q 1s the weld strength formed at an interface when it stays at a high temperature for
time t, Trep 1s the reptation time for the polymer material at that temperature, and oyrs is the

ultimate tensile strength of the bulk material. The interface between the polymer material will heal
to 100% and exhibit the bulk-strength if it stays at a high temperature for the duration of reptation
time for that temperature. Wool and O’Connor [38] used this equation to estimate the degree of
healing in a polymer interface in isothermal conditions. Bartolai et al. [8] used equation 1 to
develop a strength predicting “weld theory” for the non-isothermal case of material extrusion AM,
which requires reptation time as a function of temperature. They demonstrated that by collecting
thermal history at the road interfaces, and incorporating air gaps in the cross-sectional area
measurements, the model was successful in predicting strength. The weld theory uses the above
equation for non-isothermal interfaces by breaking the thermal history information into time steps,
and integrating for each time step consecutively, with the following equation:

tr—t;
Oweta; = Ours — (Ours — Owera,)exp [— (2= (2)
f Trep

Where, 0y014 p is the final weld strength at time tf, 0y,¢14, 1s the initial weld strength at time

ti, oyrs is the ultimate tensile strength of the polymer, and 7,., is the average reptation time
evaluated for the time step (tr - ti). For each subsequent time step in the thermal history, the obtained
Oweld, is used as the new 0y,¢4,. Bartolai et al. demonstrated the applicability of equation 2 in

predicting the weld strength along the X-Y direction of the build. However, for in-situ embedding,
the process must be paused between the layers. Therefore, it is necessary to adapt the previous
weld theory to predict the strength along the Z direction of the build.

3. Materials and Methods

The aim of this paper is to use polymer weld theory to predict weld strength between layers
for printed specimens with different toolpath designs. This will enable an understanding of how
the cavity design affects the strength of the structures. As discussed, the strength of welding
between the layers is directly correlated with the thermal history at the interface [11,37]. Therefore,
thermal history measurements of the layer interfaces were first obtained. CT scans of the printed
specimens were then taken to obtain the actual contact area of the embedding layer’s cross section.
The cross sections were divided into zones of similar thermal history based on the type of toolpath
(i.e., boundary, infill). To use the polymer weld theory for strength prediction, material rheology
measurements were also made. Finally, to validate the strength predictions, experimental
specimens were tensile tested until failure. The following sections discuss these methods in detail.

3.1 Specimen design and preparation

To analyze the strength between layers, a series of tensile specimens were designed and printed
upright, with their length along the Z direction of the build plate. However, ASTM standard tensile
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specimens require smaller cross section areas than necessary to accommodate cavities for
embedding. Therefore, a rectangular specimen of cross section 24 mm X 12 mm and length 96
mm was specially designed for the purpose of tensile tests. A series of control specimens were
prepared without an embedding cavity; these then serve as the baseline for comparison. In order
to make the results of this research broadly applicable, basic primitive geometries (e.g., cuboid,
triangular prism, and cylinder) were chosen for the initial cavity designs. Each printed tensile
specimen was designed with the cavity located at the geometric center of the specimen. Groups of
samples with four different cuboid orientations (denoted as Cul, Cu2, Cu3, and Cu4, as seen in
Figures 2a, 2b, 2c, and 2d, respectively) were prepared. It is crucial to note that, each different
orientation results in a different cavity cross-sectional area at the specimen’s embedding plane.
Additionally, a group of samples with an equilateral triangular prism cavity (denoted as Prism,
Figure 2¢) and a group with a cylindrical cavity (denoted as Cyl, Figure 2f) were prepared.

All build preparation and manufacturing parameters were kept consistent with a layer height
of 0.2 mm and 100% infill density, prepared with Cura-lulzbot-3.2.27 software. The toolpath was
automatically generated in the Cura software; this results in each specimen groups exhibiting a
different toolpath due to differences in cavity cross-section. The natural PRO Series PLA
(Polylactic acid) 3 mm filament by MatterHackers™ was used to print the specimen with a desktop
material extrusion system (Lulzbot Taz 6). Specimens were printed one at a time, oriented with
their length (96 mm) along the Z axis and their base centered on the build plate. An MTS 100
system with a 3000 Ibf load cell was used to conduct uniaxial tensile tests until the specimens
failed. A pull rate of 0.05 mm/sec was applied until failure using wedge action grips.
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FIGURE 2. Specimen groups with different cavity designs.
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3.2 Thermal history and cross section area measurements

As discussed before, different specimen toolpaths lead to a unique thermal history at each point
of the cross section. Unfortunately, capturing this comprehensive thermal history experimentally
is challenging due to obstruction from the motion of the printing nozzle. Therefore, to simplify
measurement, the cross section of each specimen was divided into three zones: shell, infill, and
infill boundary (see Figure 3). The shell zone occurs at the external perimeter of the cross section
(shown in orange in Figure 3), while the infill zone is the central area of the cross-section filled
with alternating roads of material (shown in green in Figure 3). Finally, the infill boundary zone
(shown in blue in Figure 3) occurs where the infill meets the shells. In this zone, the tool changes
direction, which causes it to decelerate, stop, and then accelerate. This results in a concentration
of thermal energy as well as thicker material deposition [8].

W Shell MInfil M Infill Boundary Shell :

3

o

y—
v AW

Infill
Boundary
FIGURE 3. The shell, infill, and the infill boundary zones in the cross section of a control
specimen. The air gaps are visible as white spaces between the deposited roads in the CT scanned
slice of the cross section (left)

As shown in Figure 3, the deposition of polymer roads naturally results in air gaps present in
each layer. As such, to obtain the actual cross-sectional area necessary for weld strength
calculations, samples were CT scanned with a GE v|tome[x L300 multi-scale nano/micro CT
system at a 16-micron resolution. The software program Image J was used for analysis of the
obtained scans. The image slices were converted to binary, representing scanned point cloud data
as black (0) or white (255) for analysis. The CT scanned slices were sectioned into shell, infill,
and infill boundary zones and the area of each zone was calculated. Three slices were assessed for
each group by counting the number of colored pixels in each zone using Image J. For the infill
zone, this calculation includes overhanging roads that are not in contact between the layers due to
the changing infill orientation in each layer. To compensate for overestimation of infill contact
area, the computed cross-section area of each infill zone was reduced by half for future
calculations.

To experimentally determine the thermal history of each of the three toolpath zones, a
thermocouple was used to capture the temperature-time data for each zone during printing. A type
J thermocouple (KK-J-245) by OMEGA Engineering was used to obtain the thermal history at the
interface (see Figure 4b and 4c) through a DI-245 by DATAQ instruments data acquisition system.
Holes were designed in the control specimen to allow the thermocouple wires to be embedded.
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The print was paused once the holes were printed, then the two thermocouple wires were inserted
and brought in contact at the paused layer. Once the build is resumed, the thermocouple should
capture the thermal history at the interface between the paused and the resumed layer (Figure 4d).
The thermal histories for the three zones were obtained by carefully positioning the thermocouple
contact point in these zones for a control specimen. Two measurements for each of the zones were
repeated for consistency in measurements.

Fresh layer
(T

[T; = Avg(T,, Ty)] /

Deposited layer

k\ @
(a) (b) (d)

FIGURE 4. (a) Snapshot from the IR camera while recording the thermal history. (b) Embedded
thermocouple wires in red and green, through the designed cavity, connected at the exposed paused
layer. (c¢) Shows the location of thermocouple at the interface of deposited and resumed layer. (d)
Shows the representation of the print, and the layer interface location with respect to the deposited
and the fresh layer.

When pausing the print to place the thermocouple wires in the specimen, the topmost layer
will naturally cool down more than would be observed in continuous print. This may skew
calculation of the average thermal history between layers. Because of this, an IR camera (Optris
Pi450, by Optris Gmbh, with Optris Pi Connect thermal imaging software) was also used to collect
the temperature-time data at the topmost visible layer of a continuous printing process (see Figure
4a). The temperature data from the IR camera shows that, in a continuous print, the previously
deposited layer has already cooled to ~60 °C at the moment that a fresh layer is deposited.
However, the necessary pause to embed the thermocouple causes the previously deposited layer
to cool down to ~35 °C at the moment a new layer is deposited (a discrepancy of ~25 °C).
Assuming that the temperature at the interface is an average of the temperature of the paused layer
and the freshly deposited layer (Figure 4d), the interface temperature history for a continuous print
can be estimated by adding 12.5 °C to the interface temperature obtained from the thermocouple.

3.3 Polymer material rheology for weld strength

To calculate the weld strength from Equation 2, 7,., of the material as a function of
temperature is required. However, as discussed in Section 2.3, the strength prediction from
polymer weld theory is only valid for temperatures at which the polymer molecules reptate.
Previously, Bartolai et. al. used the temperature history only above the Ty value for both
Polycarbonate (PC) and Acrylonitrile butadiene styrene (ABS); this temperature allows the weld
forming polymer molecule movements to occur [8,14]. While both PC and ABS materials are
amorphous in nature, exhibiting a clear Tg region, the PLA material used in this research is semi-
crystalline. The partial crystalline arrangement of its molecules inhibits their movement until its
melting temperature is reached [39], which suggests that PLA molecules will only diffuse and
weld when the polymer is at its molten state [40,41]. Therefore, to predict the weld strength
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formation at the layer interface, only the thermal history for the polymer is at its molten state is
required. To obtain the melting temperature for PLA, Digital Scanning Calorimetry (DSC)
experiments were performed for a heat-cool-heat cycle, where the material was heated from 25 °C
to 170 °C at a rate of 10°C per minute. The melting peak occurred at approximately 148.6 °C for
both heat cycles, with the end of the peak occurring at 150 °C. Since the reptation of molecules
that causes adhesion occurs only in PLA’s molten state, only the temperature history of the fresh
layer above 150°C is of interest for predicting the strength. Therefore, only the temperature values
above 150 °C in the thermal history of the fresh layer was considered in this research. Accordingly,
the interface temperature values (which is assumed to be an average of the temperature values of
the fresh layer and the deposited layer), resulting in predicted fresh layer temperature above or
equal to 150 °C were considered for prediction.

After identifying the temperature region of interest for PLA, material rheology measurements
were made. Hot pressed PLA disks were prepared and storage and loss modulus were obtained
using a strain-controlled ARES rotational rheometer. Measurements were performed at angular
frequency range of 0.5 rad/s to 100 rad/s, at strain rate of 1% for every 10 °C from 160 °C to 200
°C. For viscoelastic materials, these isothermal sweeps do not change in shape but only shift along
the time axis with temperature (see Figure 5a), which makes it possible to obtain a master curve at
a desired reference temperature (7, see Figure 5b). This phenomenon, known as the time-
temperature superposition (TTS) principle, uses a temperature-dependent translation factor, ar to
perform a shift operation on the master curve. This enabled calculation of the isothermal modulus
properties for any other temperature. The function of ar is obtained through the Williams-Landel-
Ferry (WLF) model [42], shown in Equation 3:

Trep(T)
=— 3)

Trep(Tref)

_Cl(T_Tref))
C2+(T_Tref)

ar(T) = exp(

Where ar is the temperature dependent translation factor, 7 is the temperature of interest, 7rer

is the reference temperature, which is used for TTS, C; & C> are WLF constants that can be

obtained by fitting the experimental values for that reference temperature. A reference temperature

of 180 °C was used with corresponding WLF constant for further calculations. The reptation time

(Trep) for PLA at 180 °C is simply the inverse of the frequency at which storage modulus equals

loss modulus at that temperature. The 7,,,(180 °C) was experimentally evaluated as 1/94.2684

rad/s or 1/15 seconds. With this obtained reptation time, equations 2 and 3 can be used to calculate
weld strength for a given thermal history.
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FIGURE 5. (a) Isothermal time-temperature superposition (TTS) of storage modulus and loss
modulus for PLA, and (b) TTS master curve at reference temperature 180 °C.

4. Results and Analysis

This section uses the methods from Section 3 to predict the tensile load at failure for specimens
with different in-situ embedding cavities. This prediction leverages both contact area and thermal

history at layer interfaces. To validate the accuracy of the prediction, experimental tensile tests are
also conducted.

4.1 Impact of cavity design on thermal history at the interface

The cross-sectional area was measured through the CT scanned images of the interfaces, as
detailed in Section 3.2. The total cross-sectional area for each specimen lies in the range of 164 to
185 mm?, but the cross-sectional area distribution between the zone types change notably
depending on cavity geometry. CT data, summarized in Table 1, shows that, since the presence of
a cavity introduces more perimeters, more cross-sectional area becomes dedicated to the shell zone
(see Figure 6.).

M Shell CT scanned slice of the cross section

M Infill

Infill
|
Boundary

Control Cu_1 Cu_2 Cu_3 Cu_4 Prism Cyl
Tool path of the specimens by Cura

FE——N

FIGURE 6. CT scanned slice and digital slice of the specimen.
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TABLE 1. Cross section area distribution within the different samples.

Shell Infill Infill Boundary Total ¢/s area

Groups Area % of Area % of Area % of )
(mm?) total (mm?) total (mm?) total (mm)

Control 70.9 39% 61.3 33% 50.8 28% 183.0
Cul 83.1 51% 32.7 20% 48.2 29% 164.0
Cu2 83.5 46% 40.8 23% 55.8 31% 180.0
Cu3 75.8 41% 36.0 19% 73.7 40% 185.5
Cu4 79.9 48% 35.6 21% 51.0 31% 166.5
Prism 102.3 55% 313 17% 513 28% 184.9
Cyl 93.4 51% 30.0 16% 58.3 32% 181.7

For each of the three zones, the thermal history was obtained by carefully positioning the
thermocouple wires in the control specimen’s cross section, as discussed in Section 3.2. The
resultant temperature history for each zone is shown in Figure 7. In the plot, abrupt jumps in
temperature denote the deposition of molten material in close proximity to the thermocouple. The
smooth curves that follow after each peak quantify the rate of cooling at the interface after material
deposition. These results show that each zone exhibits a distinctly different thermal history. The
next section validates the prediction of weld strength with these thermal histories and the cross
sectional area of each zone obtained for the different cavity geometries.

140
Control Specimen layer

—o—Infill

120
—e—Infill Boundary

—o—Shell

100
3
jg’ 80
E
®
2
g 60
H
40
L. Moo | |
20 |‘- l 1 layer | -l
0
0 2 4 6 8 10 12 14 16 18 20
Time (s)

FIGURE 7. Thermal history as obtained by the thermocouple for each zone for one layer of
material deposition with the location of measurement in the control specimen cross section.

4.2 Validation failure load predictions using weld theory and rule of mixtures

As discussed, the different thermal history in each of the three cross-sectional zones leads to
different weld strength formation for each of them. Therefore, to simplify prediction, these AM
structures can be treated as composites made from sections with different strength values. Under
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this assumption, the rule of mixtures can be used to calculate the total load in the cross section by
the using the following equation:

F,

predicted — 0sAs + 0;A; + oppAgp 4)

Where Fyregictea 18 the predicted tensile load at failure, and o, gy, 0y, are the predicted weld
strength for the shell, infill, and infill boundary zones, respectively. Similarly, As, Ai, and Aib are
the actual cross-sectional areas in each of the three zones. The ultimate tensile strength (oy7s) for
PLA was taken as 50 MPA [43].

With the known function of 7,,,(T) from Equation 3, the 7, for each time step from the
recorded thermal history was obtained and substituted in Equation 2. The time step (ts-ti) was taken
as 0.04 seconds, which is equal to the resolution of the data acquisition system for the
thermocouple. Subsequent calculations for each time step where the freshly deposited layer was
above the melting temperature (150 °C) gave the predicted final weld strength. Through Equations
2 and 3, the weld strength of the shell, infill, and the infill boundary zones were obtained as 27
MPa, 45.3 MPa, and 39.2 MPa, respectively. The failure load for specimens with different
embedding cavity geometries were then predicted using Equation 4.

The results of tensile tests of different embedding cavity specimens, along with their predicted
strength values derived from polymer weld theory are shown in Figure 8. For comparison, the
figure also shows the predicted load at failure if the cross section were not divided into zones, and
only the total area was used by assuming one thermal history throughout the cross section.

O Experimental M Predicted w/t weld zones M Predicted wit shell
M Predicted w/t infill M Predicted w/t infill boundary

10000
9000
8000
7000 ;. o
6000

5000 B g =

4000
3000
2000
1000

0

Load at failure (N)

Control Cu3 Cu2 Cud Cul Prism Cyl
FIGURE 8. Experimentally obtained and predicted tensile load at failure for all the groups of specimens.
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TABLE.2. Summary of the experimental and predicted loads at failure for the groups with errors.

Predicted load distribution in . .
. Tensile load at failure
Groups the cross section (N)

Infill Predicted Experimental %
Shell | Infill Boundary () ng N) error

Control | 1915.0 | 2776.9 1991.6 6683.5 6991.6 5%
Cu3 2047.6 | 1632.2 2889.1 6568.9 5530.9 16%

Cu2 2253.8 | 1848.4 2187.8 6290.0 6384.3 1%

Cud 2158.4 | 1613.6 1999.5 5771.5 5614.1 5%

Cul 2243.3 | 1480.5 1890.8 5614.7 5400.5 4%

Prism | 2761.9 | 1419.0 2012.5 6193.4 5831.8 7%
Cyl 2521.6 | 1358.4 2285.8 6165.8 5404.0 12%

Cyl and Cu3 groups show high error in strength prediction by considering the three weld zones.
The experimental load at failure were lower than predicted for these two groups. Qualitative
observations show that under extrusions in the infill zone were the reason for low strength value.
Furthermore, 80% of the tensile failures for the cavity specimens occurred at the layer where the
cavity started or ended printing. Stress concentrations due to the abrupt start of the cavity could
explain this location of failure. The other 20% of the time, the failure occurred at layers with the
cavity. With the added process interruption required for embedding, this location of failure is
expected to be the paused layer due [10,22].

As is evident from the Figure 6 and Table 2, the proposed method of dividing the cross section
into weld zones and leveraging them to predict the load at failure through the rule of mixtures more
accurately predicts the load at failure than assuming a constant thermal history throughout a printed
layer. This method results in prediction error as low as 1%, depending on the geometry of the
embedding cavity. By comparison, approximating the cross section as a bulk with only one thermal
history either under- or over-predicts the load at failure. Establishing this understanding is a crucial
step toward enabling engineers to account for cavity geometry and toolpath design in their
estimation of part strength for multi-functional embedded AM parts.

5. Conclusion and Future Work

The research presented in this paper proposes a method to predict the strength of parts with
different cavity design for embedding applications with material extrusion AM. The thermal
history of printed layers is used in conjunction with PLA’s rheology behavior to predict the
strength between the layer interfaces using the weld theory by Bartolai et. al [8]. Interfaces were
considered as composites made of zones with different thermal histories. The experimental results
confirm that this method of considering thermal history in a layer results in more accurate
predictions of failure load when compared with assuming a constant thermal history across the
layer. This demonstrates the importance of toolpath design when incorporating cavities to support
in-situ embedding in AM.

This research demonstrates that the thermal history at the layer interface as a result of the
toolpath and material distribution has a considerable impact on printed part strength. However, the
methods presented approximated the thermal history for each cross-sectional zone as one, due to
limitations in the thermal data collection techniques. Additionally, variations in the speed of
material deposition due to changes in toolpath direction were ignored. Because of the high
sensitivity of the thermal histories to the toolpath, these effects should be considered to improve
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prediction accuracy. This requires development of a computational tool to more precisely consider
toolpath design and capture thermal history at each point in a layer. The thermal histories for each
point can then be used to improve the accuracy of weld strength prediction between the layers.
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