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Abstract

Topology optimization has emerged as an effective design approach that obtains complex
geometries suitable for additive manufacturing. However, additively manufactured structures
typically have anisotropic material properties, and residual thermal stresses result from
nonisothermal processes. This paper presents a new topology optimization-based approach that
incorporates both material anisotropy and weakly coupled thermomechanical loading into the
material layout computations. An optimality criterion-based update scheme minimizes
compliance or strain energy of a design space over material density and orientation where special
attention is given to the optimal material orientation computations. The coupled
thermomechanical analysis and material direction optimization reflects the anisotropic Young’s
modulus and thermal stresses present in large-scale polymer deposition. Resultant structures
show how thermal loading influences the optimal topology, and how different penalty values
determine convergence of the design.

Introduction
Motivation

Additive manufacturing has transitioned from a method for rapid prototyping to a
growing manufacturing technique for end-use parts within the past decade. Although early
additive manufacturing systems were confined to prototyping applications due to part weakness
and print inaccuracy, new developments in material strength and print reliability are overcoming
these flaws. The ability to add design complexity for little extra cost opens enormous design
freedom, which is extremely useful for lightweight high-strength applications that often require
complex geometries.

The traditional part design methods do not fully utilize the design freedom present in
additive manufacturing. New methods are under development to optimize the design of parts
while considering the near-arbitrary complexity now permitted. Topology optimization methods
can model this level of design freedom and can be developed to reflect the unique factors present
in the additive manufacturing process.

The topology optimization algorithm presented here considers the design of a two-
dimensional anisotropic structure with continuous spatially varying material properties under
weakly coupled steady-state thermomechanical loading. The additive manufacturing process is
simulated by the anisotropic material properties and thermal loading. The optimality criterion
method has been modified to solve the constrained minimization problem over material density
and orientation to minimize either compliance or strain energy. Design sensitivities were
determined with the adjoint method for both objective functions and the method was
implemented in a custom finite element program in Matlab based on Sigmund’s 99-line topology
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optimization code [1]. The results can be manufactured with existing technology in proof-of-
concept parts.

History of Topology Optimization

Topology optimization encompasses a family of optimization methods designed to find
the geometry of a design space with the highest performance. The term was first used by
Bendsoe and Kikuchi in 1988 [2] to minimize the structural compliance of a two-dimensional
part under linear elastic loading by using the homogenization method. Other methods have been
developed since, including the optimality criterion method [1], the level-set method [3], and the
method of moving asymptotes [4]. These have all been applied to the structural compliance
problem, but they have also been used for a diverse set of problems including thermal
performance, frequency of vibration, compliant mechanisms, electromechanical systems,
anisotropic materials, and multiphase materials. These cases and more are discussed in Bendsoe
and Sigmund’s book on the subject [5].

Considering anisotropic materials is important due to its application in additive
manufacturing. Bendsoe and Sigmund’s original work allowed for this by adding rectangular
holes of various dimensions and orientation to the part under consideration. More recent work by
Hoglund [6] modified a density-based approach to optimize the compliance of anisotropic
materials for use in additive manufacturing. This work was extended to three-dimensional parts
by Jiang [7], [8], who sought to model big-area additive manufacturing specifically. Their use of
a general Matlab optimizer demonstrated that the method is viable and allows it to be used with a
variety of different topology optimization methods. A similar technique was used by Luo and
Gea [9] in two-dimensional problems.

The thermal response of the material during the additive manufacturing process also
significantly affects part performance, as fused-filament fabrication and selective-laser sintering
require high localized heating. Isothermal weakly coupled systems thermomechanical systems
have been considered, but design-dependent thermal loading has, to the best of the author’s
knowledge, not been considered for compliance or strain energy optimization. Deaton [10]
considered a constant temperature increase in aircraft fuselages and optimized their performance.
Pedersen and Pedersen indicated that optimizing compliance can result in a higher maximum von
mises stress than optimizing strain energy. This was further supported by Neiford et al [13], who
also considered maximum displacement as an objective function.

The parameters present in additive manufacturing have been partially modeled in
topology optimization. Material anisotropy has been considered in mechanical compliance
optimization but has not yet been expanded to coupled thermomechanical systems. The weakly
coupled thermomechanical systems have been modeled for given temperature fields, but not for
design-dependent thermal properties. The purpose of this work is to build on the progress already
made by modeling design-dependent thermal loading of anisotropic material.

Relevant Developments in Additive Manufacturing

Topology optimized parts often incorporate complex geometries that can only be
produced with additive manufacturing. The recent development of high-strength techniques like
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fiber reinforcement and expansion to large scale systems allow topology optimization to be
applied to new industries. These innovations, while accurately producing end-use parts, can
exacerbate the manufacturing challenges inherent in additive manufacturing.

Polymer composite additive manufacturing systems are widely used due to their
versatility, ease of use, and cost effectiveness. In techniques such as fused-filament fabrication or
screw extrusion deposition, the polymer is melted and then deposited onto the part. The flow of
the molten polymer can align molecular strands in the direction of flow, which increases the
stiffness of the deposited polymer in the direction of deposition while weakening the stiffness
perpendicular to that. The polymer is usually deposited in beads, and imperfect bonding between
these beads further decreases elastic stiffness perpendicular to deposition. This anisotropy can
cause premature part failure, but the deposition direction can be altered to improve performance.

Adding short chopped fibers, usually of carbon or glass fiber, to a polymer matrix can
increase the stiffness and tensile strength of an additively manufactured part. The elastic modulus
can double [14] in the direction of deposition, but the fibers align in a similar manner to the
polymer strands above. The increase in performance is thus primarily in the direction of
extrusion, enhancing the anisotropy. Altering the direction of deposition can drastically affect the
performance of fiber-reinforced composite components.

The thermal behavior of the manufacturing process is also complicated by incorporating
reinforcement fibers. The carbon and glass fibers usually have a lower coefficient of thermal
expansion than the surrounding polymer matrix and can reduce the thermal stresses in that
direction of the fibers. The thermal behavior of the manufacturing process is already anisotropic,
as layers are applied and cool sequentially, creating complex stress fields primarily perpendicular
to the build plane. These thermal stresses are present once the part has been manufactured and
can thus affect its behavior under loading.

The anisotropic material properties and complex thermal loading that arise in additively
manufactured parts can significantly complicate the design process. Topology optimization
methods are beginning to investigate these aspects and include them in the part design. The
material location and orientation of deposition must be considered simultaneously and optimized
to best model the anisotropic deposition process, particularly when fiber reinforcement is
considered. The thermal cooling process must also be included as a weakly coupled
thermomechanical analysis where thermal stresses generate mechanical deformations. The
method presented here modifies and extends topology optimization methods for anisotropy and
coupled thermal behavior to model both the manufacturing process and the end use of the part.

Methodology

Design Domain Definition
The algorithm presented in this work considers a single part defined in a two-dimensional

design space. The design space is discretized into square linear finite elements with identical
dimensions, and the constituent equations for linear thermal conduction and linear elasticity are
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discretized across the part in the usual manner. Here, the cooling process is modeled by steady
state thermal conduction under non-isotropic material properties. It is understood that this does not
accurately represent the full complexity of the cooling process, but it is a first step toward
incorporating the coupled thermomechanical behavior. The thermal analysis is weakly coupled to
the mechanical analysis that represents part use via thermal stresses.

In this model each finite element has two design variables. The density x; represents the
amount of material in element i. It is bounded between x,,;, = 0.001 and 1, with x; =1
representing an element with material and x; = 0.001 representing an empty element. Values of
x; between X,,;;, and 1 signify a fractional density which lacks a physical interpretation but is
permissible in the algorithm. The lower limit x,,;, is chosen to be small but nonzero to prevent
singularities.

The second design variable is the element orientation angle 6; and it represents the
direction of the anisotropic material properties of each element. The material is assumed to be
stiffer in the direction of the element orientation and weaker perpendicular to that. It is not
bounded, but the element orientation is considered mod m so that it can be represented between 0
and . For fused-filament fabrication, the element orientation corresponds to the direction of
extrusion, with an orientation of zero corresponding with an element oriented in the global x-
direction. The elemental stiffness matrix Krp, can be written in terms of the design variables as

(D
Krn, = x™ f BELR” (0;) D1y R(0;) By dQ;

Q;

Here, the Th subscript indicates the thermal analysis, Dy, is the anisotropic thermal
elasticity matrix, and By, is temperature gradient matrix. The constant pyj, is a density penalty
parameter used below in the optimality criterion method. The mechanical elemental stiffness
matrix is constructed similarly [6].

L

(2)
Ky; = x'™ f B RT (0;)DyR(8,) By, dQ;
Q

i

The M subscript indicates the mechanical analysis and B,, is the displacement gradient
matrix. The mechanical penalty constant p,, is a similar constant to the thermal penalty constant
Prn, but the two need not be equal. The anisotropic elasticity matrix D), can be written in terms of
the anisotropic Young’s Moduli and Poisson’s ratios [6].

[ Ex VxyEy 0 3)
Dy =

1=VixyVyx  1=VxyVyx

VxyEy Ey 0
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The standard rotational tensor R(6;) is only dependent on the element orientation [6].

cos?(6,) sin?(6,) —2 * sin(0;) * cos(6;) 4)
R(6)) = sin?(6,) cos?(6;) 2 = sin(0;) * cos(6;)
sin(6;) = cos(6;) —sin(6;) xcos(8;) cos?(8;) — sin?(6;)
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The thermal analysis is performed first, which solves the thermal equilibrium to determine
the nodal temperatures. These are then used to determine the thermal stresses on each element,
which are summed and included in the mechanical analysis. This couples the two models weakly.
The thermal load within element i is evaluated with [15].

ax
BiDy R (6)) {“y} R(6)NTT;d;
0

. 5)
Frp; = Xm; f
Q

The nodal temperatures for element i are denoted T;, and N is the thermal element shape
function. Note that the coefficient of thermal expansion is also anisotropic, with a, and a,, the
values parallel and perpendicular to the element orientation, respectively. The mechanical analysis
is then performed to determine the nodal displacements.

i

The global finite element equations satisty the linear equilibrium K;,T = Frp, and KU =
F for the thermal and mechanical systems respectively, with Kr, the global thermal stiffness
matrix, T the global temperature vector, Fr, the global thermal flux vector, K the global
mechanical stiffness matrix, U the global displacement vector, and F the global mechanical force
vector. The displacement due only to the thermal loading can be written as KUrp = Frp.

Optimization

The purpose of this algorithm is to maximize the stiffness of the part in the design domain.
The design variables are the element densities x; and the element orientations 6;. This can be
written as a minimization problem, subject to a volume constraint.

minimize f(%,0) (6)

x.
subject to L <V
Nel

This is written for a general optimization function f(%,@) because, under thermal and
mechanical loading, there are multiple ways to define stiffness and its inverse. The constant N,; is the
number of elements, and Vf is a constant between 0 and 1 that defines what fraction of the design domain
should be filled with material.

Two objective functions are considered here. The first, compliance, is traditionally used as
the inverse of stiffness in purely mechanical topology optimization [2]. It can be written in terms
of the displacement and force, which are themselves functions of the design variables

C(x,0)=U(x0)F(x,0) (7)

This is regarded as the inverse of stiffness for purely mechanical problems, so minimizing
compliance can maximize stiffness. However, in weakly coupled thermomechanical systems the
strain energy has been proposed as an alternate objective function that may generate parts with
lower maximum stresses [12]. Strain energy can be expressed as
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S(x,0) = %U(i 0)TF(x,0)-UX 0)Frp(X,0) + % UL, (x,0)F,(%,0) ®)

Recall that simple bounds are applied to the design variables. The densities are constrained
to be between x,,,;; = 0.001 and 1, and the element orientations are bounded between 0 and 7,
but they are considered modulo 7w and no must be enforced.

In order for the resultant topology to have physical meaning, it is desired that the element
densities approach one of the bounds, that is each element approaches either void (x; = x,;) oOr
solid (x; = 1). The penalty parameters p,, and prp, used in the elemental stiffness matrix and
thermal stress formulations, causes elements with fractional densities to be considered artificially
weaker, thus encouraging the densities to trend toward the extremes. This penalty method is widely
used and is known as SIMP (Solid Isotropic Material with Penalization) when p,,, = prp, although
other penalty methods can be used. Traditionally both penalty parameters have been set to 3 for
two-dimensional problems.

Optimality Criterion Update Method

The problem formulation above could be solved with several different optimization
algorithms. This work uses the optimality criterion-based method popularized by Sigmund [1], but
other common methods like Dr. Svanberg’s Globally Convergent Method of Moving Asymptotes
(GCMMA) [4] could easily be substituted. The optimality criterion method was chosen for density
optimization because of its per-iteration efficiency and rapid convergence. Under this method, the
densities are updated according to [1]:

max(Xpin, X; —m), if ;B! < max (X, X; — M) 9)
X[ = min(1,x; + m), if x;B; = min(1,x; + m)

xL-BZ7 , else

The move limit m is set to 0.2 in Sigmund’s formulation for compliance optimization of
pure mechanical systems, but in this work it is set to 0.05 as the systems are more complex. The
cases preserve the move limit and bounds on the densities. The term B; is defined in terms of the
design sensitivities.

—df (10)
_ dxl-

B; 1

The Lagrange multiplier A is constant for all elements in one iteration and is chosen by a
bisection algorithm to preserve the volume fraction constraint. The design sensitivities must be
evaluated for the objective function, whether it is compliance or strain energy. A damping constant
n = 0.5 is used to stabilize the convergence, but it is a heuristic parameter and it can be omitted
by setting it to 1 the formulation.

The optimality criterion method is a heuristic method designed for updating the densities

and is formulated specifically for that problem. The element orientations must them be updated
via a different method. Here, each element is considered independently, and the element

1868



orientation is treated as the sole design variable in a sub-optimization routine that uses the Newton-
Raphson method to optimize the objective function over that individual element, with the nodal
displacements treated as constant. This determines the optimal angle for each element 6; .., which
is used to update the element orientations by moving them toward their optimal orientations. Note
that, since the element orientations are considered modulo 7, no boundaries need be considered,
but a move limit L; is used.

0 =Ly 0;,, <0;—L; (11)
Imin’ abs(eimin - 91) = Li
Oi + Li' Himin > 9i + Li

grew = 10
4

The move limit is defined as a fraction of the distance between each element orientation
and the corresponding optimal orientation. Optimizations using a constant move limit have
demonstrated convergence issues, but this method allows for smoother convergence.

Li=01%0;—6; .| (12)
Design Sensitivity Computations

The optimality criterion update method, like most other update methods used for topology
optimization, requires the derivatives of the objective function in terms of the design variables for
operation. These can be determined using the formulation in Equations 7 and 8 and the adjoint
variable method [16] for weakly coupled systems to yield

ac
dxi

_ oF, _y (OF (13)

m—1 th 1 th ,,_

= —PmX{" Ul KUy +20] === 2prpx{™ <_6T K¢ 1)' K¢, T;
12 12

The coupled effects of density on temperature and displacement generate a more complex
design sensitivity than in the case of pure mechanical loads [1]. The expression above can be
computed directly from the displacements and temperatures, which avoids the potential

unreliability and computational burden of using finite difference calculations. The strain energy
sensitivity formulation is computed similarly.

s
dxl- B

_ 1 1 (14)
m 1
Pmxl™ " (— 3 U KU; + U KU — 5 Ul KiUen;)

The optimality criterion method was designed for compliance minimization under
mechanical loads. In that scenario, the design derivatives are all negative, as increasing the density
of any element would increase the stiffness of the structure. This is not always the case in
thermomechanical loading. It is possible, under high thermal loading that increasing the density of
an element can increase the temperature gradient across it and thus decrease the overall stiffness
of the structure. The design derivative of compliance can be positive in the cases considered here.
However, the optimality criterion method can only operate on negative sensitivities. To circumvent
this, the positive sensitivities are mapped to the negative real numbers (including zero).
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(dc dc (15)
ac {d_xi © dy

a;;lnew - 0 a _ .

Several different potential mappings exist. All must map the positive sensitivities to
negative values while preserving their ordering relative to each other and the other sensitivities.
While this method demonstrates convergence, it is an additional modification to an already
heuristic update scheme. The authors intend to investigate other update methods in the future to
determine a method that better suits the parameters of the problem, but initial testing suggests that
simply setting all positive sensitivities to zero is sufficient in most cases.

Results

The method was applied to optimize the performance of a beam in three-point bending (the
MBB beam). A two-dimensional design domain was defined with the dimensions below. Note that
the domain takes advantage of the symmetry present in the MBB beam and models only the right
half. A symmetry condition is applied to the left edge in both the thermal and mechanical finite
element models. The bottom left corner is fixed at zero displacement in the x and y directions, and
the bottom edge is set to a temperature increase of 0°C. The domain is discretized into 200x100
square linear finite elements.

0.5m

1m

Figure 1: Design Domain

Two separate optimizations were performed, one for compliance and one for strain
energy. For both, the penalties were set to p,,, = prn = 3 and the material properties of ABS
plastic were used. The material was assumed to be ten times stiffer in the direction of deposition

than perpendicular to it, i.e. % = 10 for each local element. Note that, as elements are oriented in
different directions, this does not necessarily correspond to the global coordinates. A force of
500 N and a thermal flux of 1 uW were applied. This generated topologies that were dominated

by the thermal loading which is desirable to illustrate the differences between compliance and
strain energy as objective functions, as they are equivalent in the absence of thermal loads. Heat
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. . . . K. .
conduction was assumed to be anisotropic according to K—x = 2 and thermal expansion followed
y

? = 1.2. A volume fraction of Vy = 0.5 was used for both optimizations.
y
Final Topologies

The results can be presented by showing the densities as opacity, temperature as color,
and element orientation as a vector field. The compliance optimization produces the following
design after 200 iterations.

Figure 2: Compliance-Optimized Topology

The final topology has converged to a design composed entirely of densities of x,y;, or 1,
showing a fully converged structure, and can thus be feasibly produced. However, if the penalty
parameter values are changed this may not always be the case. In the above optimization, both
pm and py, were set to 3, but this need not be the case. A parameter study will evaluate the
behavior of the structure under various parameter values.

The penalty for the thermal stresses and mechanical stiffness matrix (Equations 2 and 5)
is fixed at 3. The penalty for the thermal elasticity matrix (Equation 1) is set to integers between
1 and 5 in different simulations that are run for 100 iterations. The final topologies from those
tests indicate that a higher thermal penalty can will prevent the intermediate densities from
remaining.

Figure 3: Compliance-Optimized Topology for a Thermal Penalty of 1
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Figure 7: Compliance-Optimized Topology for a Thermal Penalty of 5

Note that the densities demonstrate full convergence in the cases where the thermal
penalty is set to at least 3, although there were only large regions of fractional density in the case
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where the thermal penalty was set to 1. In Sigmund’s 99-line code [1], it was noted that a
mechanical penalty of 1 yields poor convergence, and this suggests a similar behavior in the
weakly coupled thermomechanical system.

In the strain energy optimization, all parameters were kept the same. No significant
regions of fractional densities were encountered, so the mechanical penalty remained at 3 and the
thermal penalty was set to 5. This ensures accurate comparison with the compliance optimization
in figure 7.

Figure 8: Strain Eﬁérgy-Optirﬁized Topoibgy

The final topologies of each case are very different, and prior work [17] indicates that the
topologies diverge as thermal loads increase. The previous work dealt only with applied
temperatures instead of applied heat fluxes, and the convergence issues present in the strain energy
optimization did not manifest here.

Conclusions
Performance Comparison

It is not surprising that each optimization has minimized their respective objective
functions more than the other. The final values can be seen below.

Final Compliance (kJ) | Final Strain Energy Maximum Von
(kJ) Mises Stress (GPa)

Strain Energy 32.37 9.826 28.80
Optimization

Compliance 14.88 10.14 27.83
Optimization: prp, = 1

Compliance 15.60 10.37 25.39
Optimization: prp, = 2

Compliance 15.40 10.52 23.77
Optimization: prp, = 3

Compliance 15.44 10.93 22.04
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Optimization: py, = 4

Compliance 15.66 11.24 20.69
Optimization: prp, = 5

Table 1: Objective Function Performance of Optimized Parts

It is apparent that the thermal penalty factor affects the shape of the final design and the
performance of the part. When the Von Mises stress and other factors are computed, it uses both
penalty values and thus the different compliance-optimization tests cannot be compared on the
basis of their compliance, strain energy, or Von Mises stress values. However, it is worth noting
that when p;;, = 3 the design is fully converged, so the penalty parameters do not affect the
evaluation of the design. Thus, the last three cases can be compared.

In comparing the performance of compliance and strain energy optimization for weakly
coupled isothermal thermomechanical systems, Neiford et al [13] examined the maximum Von
Mises stress within the part as a standard. The Von Mises stress is used a failure criterion for
some ductile materials, and the stress fields are presented below. The p;, = 5 compliance
optimization has the lowest maximum Von Mises stress value. In the strain energy optimization,
a thermal penalty factor of 5 was also used so that valid comparisons can be made between it and
the compliance optimization.

Figure 10: Von Mises Stress Field for Strain Energy-Optimized Topology

The maximum Von Mises stress is 20.69 GPa for the compliance case and 28.80 GPa
for the strain energy case. This is contrary to Neiford’s findings that strain energy had a lower
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maximum Von Mises stress [13]. It is possible that the relative performance of the methods may
be dependent on the loading case in consideration. It is also worth noting that the compliance
optimized part has a significantly lower maximum temperature, indicating that it is more
effective at distributing the heat flux.

The objective function that performs best may depend on the application. A low
maximum displacement, maximum temperature, maximum Von Mises stress, or some other
criterion may be desired, and the approach that best fits that may depend on the loading. More
testing of different loading scenarios is needed to more accurately compare methods.

Future Steps

The design-dependent thermal loading used here is a step toward modeling the cooling
process present in additive manufacturing, but it does not capture the full complexity. A transient
analysis would better represent this system. Researchers at Oak Ridge’s big area printer have
proposed a one-dimensional model of the cooling of a single polymer bead [19], which could
potentially be extended to represent more complex systems.

More testing needs to be done to determine the different behaviors of the objective
functions. Simulating a wider array of geometries and loading conditions will give a broader
understanding of their relative performance and applying the method to a three-dimensional
system will more accurately model real-world part design. At this point, only proof-of-concept
scale parts have been produced on standard desktop 3D printers. Printing and testing full-scale
parts on Baylor’s large-area polymer printer will allow for testing of parts to validate the model
and determine if additional effects should be considered.
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