






in concurrence with the test standard, the overhang length for the beam on either side of the 
supports was set to be 10% of the span length. 

Figure 4.Test setup used for this study

The flexural test measures the force required to bend a beam under 3-point loading 
conditions. In this study, as the cross section of these beams are different from a uniform cross 
section for which an area moment of inertia I may be readily computed, an effective flexural 
rigidity (E*I* ) is instead used as the primary criterion for comparison between beam designs. Thus, 
while there is no specific E (elastic modulus) and I value that is computable for these beams, the 
product E*I* may be assessed from relating beam deflection at an applied load to derive this 
measure. The relative density is the density of the test beam by the density of a solid beam of 
identical dimensions and the relative flexural rigidity is the flexural rigidity of the test beam by 
that of a solid beam of identical dimensions.

Results and Analysis

Figure 5 shows the load-displacement responses of all 23 beams – while comparing these 
curves is misleading, since each beam has a different mass, it is still noteworthy that the stochastic 
cellular beams show a wider range than the periodic ones, and that topology optimization solutions 
are confined to a relatively narrow range at the bottom. The solid box, as expected shows the 
highest load bearing capability, and is also among the stiffest and the hollow box and hollow 
cylinder show similar behavior. Figures 6 through 8 are isolated load-displacement plots for each 
of the three design strategies employed in this work: topology optimization, periodic cellular 
materials, and stochastic cellular materials, respectively. 
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Figure 5. Load-displacement plots for all beams tested, color coded by high level design strategy

Figure 6. Bending load-displacement response of topologically optimized beams only

Figure 7. Bending load-displacement response of periodic cellular beams only
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Figure 8. Bending load-displacement response of stochastic cellular beams only 

To enable meaningful comparisons between these beams, we must isolate the contribution 
of mass from the estimated quantities of interest – for this work, the two parameters of interest are 
flexural rigidity, and the maximum bending stress experienced in the beam. Figure 9 shows the 
effective flexural rigidity plotted as a function of relative density, where relative density is the 
mass of the designed beam divided by the mass of its solid bounding (enveloping) box. Therefore, 
the solid beam has a relative density of 1.  

Figure 9. Effective flexural rigidity (E*I*) plotted as a function of relative density of the beam, with solid 
beam representing a relative density of 1
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As can be seen in Figure 9, the topology optimized beams, despite being optimized with 
the objective of maximizing stiffness at different mass fractions, greatly underperform the beams 
populated with cellular structures. Further, the stochastic cellular materials once again display a 
wide range of results, including two designs that have rigidity measures far higher than the majority 
of periodic and stochastic designs. Plotting the maximum bending stress (estimated at the peak 
load experienced by the beam) against relative density, as shown in Figure 10, shows similar 
trends. The stochastic 2 design (see table 3), which is a graded stochastic geometry in a hollow 
box, showed an ability to withstand very high peak loads for its relative density in comparison to 
the other solutions.  

Figure 10. Maximum bending stress (estimated at the peak load experienced by the beam) plotted as a 
function of relative density of the beam 

A final study of interest was to examine the effect of PolyNURBs on the bending response. 
PolyNURBs is a feature in the Inspire software that enables smoothing of faceted geometries that 
are typical of topology optimization software outputs. As can be seen in Table 2, the topology 
optimized designs selected for the study included 3 geometries that were smoothened with 
PolyNURBs, and 2 that were printed as optimized, with all facets intact. While this represents a 
very small sample size, a comparison of the geometric efficiency of the flexural rigidity was 
performed. Following Berger et al. [11], the geometric efficiency is estimated as a dimensionless 
ratio of the effective flexural rigidity discussed before, divided by the flexural rigidity of an 
equivalent solid beam, and expressed as (E*I*/EI). As can be seen in Figure 11a, smoothing a 
faceted geometry does have the effect of increasing the geometric efficiency of its bending rigidity, 
and also its maximum bending stress, as seen in Figure 12a. However, when plotted with respect 
to relative density (Figures 11b and 12b), it is apparent that the improvements are essentially 
emerging from an addition of mass that is typical with smoothing applications. Thus we may 
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conclude that smoothing functions do improve the solution (at least in the context of maximizing 
stiffness and peak load per unit mass) but do so only at the expense of increasing mass of the 
structure.

(a)      (b)
Figure 11. Geometric efficiency of flexural rigidity: (a) as a comparison between PolyNURBs and the 

faceted topology optimized solution, and (b) versus relative density 

Figure 12. Maximum bending stress (a) as a comparison between PolyNURBs and the faceted topology 
optimized solution, and (b) versus relative density 

Discussion

Topology optimization and cellular materials represent two exciting avenues for design 
enabled by AM. However, much work is needed to validate the results of using these design 
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software solutions, and identifying trade-offs and risks in implementing supposedly optimized 
designs. In this rather limited, and preliminary work, an effort has been made to demonstrate how 
the application of these software solutions to well-studied problems such as the 3-point bend test 
may elucidate practical aspects of implementing these optimization software without relying on 
more complex, component level design. 

The reader is cautioned against necessarily interpreting from this study that topology 
optimization solutions will underperform lattice based structures in bending – in fact there is 
computational evidence suggesting the opposite [12]. The use of two different software packages 
is also complicated by their own assumptions – however the experimental results do suggest that 
there is perhaps a loss of redundancy with topology optimization when these parts are fabricated 
and tested, that is not observed as much with cellular materials. Ultimately, this work hopes to 
make the case for greater experimental study of optimized geometries, be they via topolo
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