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Abstract 
 

 A study performed at KU Leuven provided a proof-of-concept of vibro-acoustic locally 
resonant meta-materials manufactured with Laser Sintering (LS). However, the geometry and 
material properties of the manufactured parts deviated from their nominal (specified) values, 
resulting in differences in resonant frequencies of the locally added resonators and a deviation from 
their predicted vibro-acoustic performance. In this work, the fabrication of locally resonant vibro-
acoustic metamaterials was improved through a holistic engineering approach, resulting in an 
improved vibro-acoustic performance. It is shown that unequal energy density distribution within 
the printing layers is one of the main causes of deviations.  
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1. Introduction 
 

The reduction of noise is an important challenge in ensuring healthy living and working 
environments [1].  

 
As such, there is a demand for the development of compact, lightweight, reliable, and 

affordable acoustic insulation materials. Vibro-acoustic metamaterials have a high potential, for 
instance as an acoustic insulator for noise in a targeted, tunable frequency band, referred to as stop 
band [2-4].  A study performed at KU Leuven serves as a proof-of-concept for meta-materials 
manufactured with Laser sintering (LS) [4], In this work, an enclosure consisting of arrays of 
structural resonators was designed (Figure 1). Each resonator consists of two thin legs acting as 
leaf springs to connect a mass to a host structure, such that a spring-mass-like resonant system is 
obtained. The inclusion of resonators to the cavities of a sandwich structure leads to pronounced 
vibration attenuation. This reduced vibrational response, in turn, prevents acoustic transmission 
from the inside of the enclosure to the outside of the enclosure, and therefore create increased 
acoustic performance, at least in targeted frequency bands.  

 
The LS manufactured resonators exhibited geometrical and material deviations from their 

nominal values, which consequently resulted in a discrepancy between the actual and intended 
resonant frequencies of the added resonators, also altering the predicted resonance frequency, and 
hence also the vibrational and acoustic behaviour of the enclosure. The dimensions of the 
manufactured parts were consistently smaller than nominal. Figure 2a shows an example of shape 
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deviations for the connecting leg where it can also be noticed that the leg is not straight. The 
nominal and actual (measured) dimensions are shown in Figure 2b; the largest errors were observed 
for the thickness of the connecting leg and the resonator mass. Both of these features strongly affect 
the resonance frequency of the structure. The thickness of the connecting legs dictates the 
structure’s stiffness while the thickness of the mass mainly determines the total vibrating mass of 
the resonator. Together they affect the vibro-acoustic performance. For example, a deviation in leg 
thickness of -0.17 mm and a deviation in resonator mass thickness of -0.15 mm resulted in a 
deviation in stop band frequencies from the intended 1065 - 1226 Hz to 600 - 661 Hz [4]. Moreover 
it was reported that the actual weight of enclosure was significantly lower than predicted, which 
might indicate a lower quality of sintering and thus a higher porosity [4].  

 
 

Figure 1. Structural resonator (top) and enclosure design (bottom) [4]. 
 
There is therefore a need to improve the LS manufacturing of vibro-acoustic metamaterials 

to ensure that the parts achieve their intended vibro-acoustic performance. 
 
 

a) 
 

  
 
 
 
 

 
 
 

 
 
b) 

Figure 2. a) On the left we show one of the connecting legs, which was not straight, and on the 
right side we show a resonator mass. b) Characteristic dimensions from a strip of resonator cells. 
On the top the dimensions as defined in the CAD file are shown. The average measured distances 
for each resonator are depicted on the bottom. [4] 
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LS has the ability to produce freeform complex structures, which are not manufacturable by 
traditional manufacturing technologies [5-7]. Parts with complex geometries, such as the structural 
resonators, typically contain features of various shapes and sizes that are difficult to manufacture 
within the required tolerances. In fact, both the slicing process, which discretizes the part into 
process-layers, and the local processing conditions determined by feature’s size and scanning 
strategy, have an influence on the local dimensions [8]. Manufactured dimensions are also affected 
by non-uniform energy density (ED) during production. Modelling the energy density prior to a 
build, particularly for areas near the part edge, can be useful in ensuring a more homogeneous 
deposition of energy for complex geometries [9].  

 
 Non-uniform thermal history during production also affects part properties [10]. Heat 

dissipation depends on whether the layers below or above are sintered (Figure 3). The finite depth 
of the melt pool means that lower layers are re-melted multiple times. Recrystallization therefore 
occurs with a time delay and at a particular depth (usually a few centimeters) below subsequently 
sintered layers [11] . For inner volume (in-skin) layers, this re-melting occurs relatively uniformly. 
There might be an exception, however, in the case of upward facing (up-skin) layers. Subsequent 
layers are not melted, which means that re-melting of upper layers (up to and including the last 
sintered layer) is not consistent with the re-melting of in-skin layers. As a result, materials in 
regions near up-skin layers are not completely sintered and might exhibit higher porosity. 
Furthermore, powders below down-skin layers might be partially melted by the significant heat 
deposited on the down-skin layer. This effect contributes to dimensional deviations for downward 
facing surfaces. These effects might be exacerbated in the production of parts with complex shapes 
and small features, such as those found in structural resonators of vibro-acoustic metamaterials, 
which exhibit decreased resonant frequencies in the presence of such discontinuities. To the 
knowledge of the authors, the influence of modifying the deposited energy for up-skin and down-
skin layers on the acoustic performance of structural resonators has not been studied in the 
literature. The amount of deposited energy and the slicing process should be adapted to ensure 
proper sintering for up-skin and down-skin layers. In this study, the effect of adapting scanning 
speed for up-skin and down-skin layers on the LS production of structural resonators is 
investigated. 
 

 

 
Figure 3. Schematic view of up-skin and down-skin layers.  
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which result in the generation of pores [9]. The ED maps used in this work have a pixel size of 12.8 
μm. The defined region of optimal sintering window was calculated using the equation describing 
the surface ED formulation [13]:  

                                                              
                                                                    =

  
,                                            (1) 

 
where LP is the Laser Power, SS the Scanning Speed and HD is the Hatching Distance.  
 

Figure 5 shows the ED range which allows to obtain optimal porosity/density, mechanical 
properties and dimensional accuracy. 
 
 
 

 
Figure 5. Optimal ED sintering window 

 
It is also possible to define an ED range yielding insufficient sintering and one for high ED 

values which lead to uncontrolled sintering (i.e. dimensional deviations). 
 
2.3 CT. 
CT is a non-destructive technique that allows the measurement of internal and external 

structures as well as porosity of a part [8].  
 
CT measurements were performed using a Nikon XT H 225 ST (Nikon Metrology) using a 

Molybdenum X-ray source target, an electron acceleration voltage of 110 kV, and a filament 
current of 127 μA. A magnification factor of 11 was used, yielding a voxel size of 18 μm. A set of 
3142 X-ray projection images were acquired of the samples and subsequently reconstructed into a 
voxel volume by filtered back projection in CT Pro 3D software (Nikon Metrology). The CT 
reconstructed volumes are analysed using VGStudio MAX 3.2 (Volume Graphics GmbH). 

 
2.4 Vibrational measurements 

 
Ideally, the acoustic performance of the entire enclosure is evaluated. Since this would 

require printing each time an entire enclosure, in this paper it is chosen to evaluate the vibrational 
properties, i.e. the resonance frequency, of the structural resonators. This choice is justified since 
the acoustic properties of the acoustic enclosure in the stop band frequency region directly results 
from the resonance frequency of the structural resonators. In order to evaluate the vibrational 
performance from the samples, two main characteristics are measured: resonance frequency and 
the damping of each resonator. The resonance frequency is determined by attaching each printed 
sample to a rigid metal base which is connected to a shaker (Figure 6). Each sample was attached 
to the base using double-sided tape, thereby not affecting the material properties of the printed 

Optimal Insufficient sintering Uncontrolled sintering 
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samples. The vibration response of the resonator is measured at the mass-part of the resonator using 
a Scanning Polytec PSV-500 Laser Doppler Vibrometer (LDV) [14].  

 
The resonance frequency is acquired as the frequency where the peak of the measured 

frequency response function occurs. Measurement repeatability was determined by repeating each 
measurement 3 times at 30-minute intervals. The modal damping is obtained applying the half-
power bandwidth method [15]. 

 

 
Figure 6. Vibrational measurements of resonators with Scanning Polytec PSV-500 Laser 
Doppler Vibrometer.  

 
2.5 Design of Experiments 
The builds of the samples of structural resonators have been prepared using Magics v22.1 

(Materialise NV) [16] and sliced using the StandardSLx Build Processor (BP) v2.3 (Materialise 
NV) [12]. Analysis on up/down-skin contour borders distribution was performed using Materialise 
Inspector 3.2.0.2003 (Materialise NV) [17]. 

 
In a previous study [1], the acoustic enclosure was produced such that each edge was oriented 

at 45 degrees with respect to the Cartesian axes of the build platform (Figure 7, a). All resonator 
structures were therefore manufactured in similar build orientations to avoid variations in the vibro-
acoustic performance within the enclosure. In this study, strips of 8 resonators were produced along 
three axes (hence referred to as X, Y, and Z axes) each oriented at 45 degrees with respect to the 
build platform (Figure 7, b). These axes were chosen to correspond to the edges of the enclosure 
built in [1]. For each axis, three strips were produced and labeled numerically, i.e. X1, X2, X3, Y1, 
Y2, Y3, Z1, Z2 and Z3.  
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a)                                                                             

 
 
b) 

 
Figure 7. Orientation of acoustic enclosure and design of samples  

 
Typically, the laser hatching direction is alternated by 90° between adjacent layers, 

henceforth referred to as 0/90°. In this study, for the first scanning strategy alternated the hatching 
direction in a 5/125/245° strategy, that is in increments of 120°. This strategy has been selected, 
since it was found that the generated scan pattern improves the homogeneity of the energy delivered 
at the edge of the resonators, and may influence the local dimensions [18]. This scanning strategy 
will be referred further in the study as ‘optimized scan pattern strategy’. 

 
Also the effect of adapting scanning speed for up-skin and down-skin layers to compensate 

for insufficient and excess deposited energies, respectively was studied. These adaptations are 
made on the optimized scan pattern strategy. Up-skin and down-skin layers are identified in BP as 
those layers that are inclined by 50° or less with respect to the horizontal build plane (Figure 8). 
Up-skin and down-skin regions are deposited as contours, i.e. no scan hatching was implemented 
for these regions. To compensate for insufficient energy in up-skin areas, a scanning speed of 2500 
mm/s was applied for corresponding contour vectors in ‘up/down-skin strategy 1’. Based on 
feedback from the parts build with ‘up/down-skin strategy 1’, a scanning speed of 2000 mm/s was 
applied for ‘up/down-skin strategy 2’. To compensate for excess energy in down-skin areas, a 
scanning speed of 3500 mm/s was applied in  both ‘up/down-skin strategy 1’ and ‘up/down-skin 
strategy 2’. In this study it is not possible to generate ED maps for the up/down-skin strategies 
since it requires additional calculation in the simulation program. Therefore, values of optimized 
scanning speed for up/down-skin contour vectors were chosen as equivalent deviations above and 
below the reference scanning speed.  
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a)                                                                b)

 
Figure 8. Schematic view of dedicated scanning strategy for up skin and down skin layers.  

 
The laser scanning parameters used to manufacture the samples in this study are summarized 

in Table 1. The reference strategy in Table 1 shows the common process parameters used in 
manufacturing of LS polyamide parts.                                                                                                                        
 

Table 1. LS process parameters used to produce samples.  
 

Scanning strategy 

Contou
r 

Laser 
Power 
(W) 

Contour 
Scanning 

Speed 
(mm/s) 

Hatching 
Laser 
Power 
(W) 

Hatching 
Scanning 

Speed 
(mm/s) 

Hatching 
Scan 

Spacing 
(mm) 

Inclination 
of scan 

pattern (º) 

Reference  34 3000 40 4000 0.3 0/90 

Optimized scan pattern strategy 34 3000 40 4000 0.3 5/125/245 

Up/down-skin 
strategy 1 

In skin 

34 

3000 

40 

4000 

0.3 

5/125/245 Up skin 1 2500 
Down skin 1 3500 

Up/down-skin 
strategy 2 

In skin 3000 
4000 5/125/245 Up skin 2 2000 

Down skin 2 3500 

 
3. Results and discussion  
 
3.1 Optimized scan pattern. 
 
In Figure 9a a cross-sectional cutaway resonator from one of the Y oriented strips. The ED 

map for the resonator built using the reference scanning strategy is shown in Figure 9b and exhibits 
zones of excessive and inadequate deposited energy. The ED map for the resonator built using the 
‘optimized scan pattern’ strategy is shown in Figure 9c and exhibits a more uniform distribution of 
energy. The high energy zone in Figure 9b is a result of significant overlapping between adjacent 

y 

Up-skin area of layer n 
with individual 
scanning strategy 

In-skin area of layer n 
with individual 
scanning strategy 

x 

> 50º No Up/down skin 

< 50º Up/down skin 
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x-y 
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laser paths; the laser beam diameter in this study is 0.6 mm. Despite the improvement in the energy 
distribution within the main region of the part, high energy regions near corners remained despite 
the adapted scanning strategy.  CT cross-sectional images of the samples printed with reference 
and ‘optimized scan pattern’ strategies are shown in Figure 9b and Figure 9c, respectively. The 
solid lines in these figures correspond to the nominal triangulated surface, which was best-fit 
aligned to the surface thresholded CT datasets.  The dimensions of the samples printed with the 
‘optimized scan pattern’ strategy are visually closer to the nominal dimensions of the triangulated 
surfaces. In Table 2 the measured thicknesses of the connecting leg and resonator mass, measured 
porosity percentage, and the measured resonant frequencies for samples built with the reference 
and ‘optimized scan pattern’ strategies is shown. The deviation of the leg and resonator mass 
thicknesses from nominal was reduced in the ‘optimized scan pattern’ samples. Also, variation in 
these thicknesses along all printed resonator structures decreased in the ‘optimized scan pattern’ 
samples. The porosity percentage in the reference samples was 15.44 %, while porosity percentage 
in the ‘optimized scan pattern’ samples was 8.22 %. 

 

  
a)  b) c) 

Figure 9. Comparison of ED maps before and after optimization for Y-strip resonator. a) Cross-
sectional cutaway of a resonator. b) ED map and corresponding CT slice of reference sample. c) 
ED map and corresponding CT slice of ‘optimized scan pattern’. The solid lines at the bottom of 
(b) and (c) are the contours of the nominal model after best-fit alignment to the surface-
thresholded CT volumes. 

 
 
The improvement in the manufactured dimensions of the ‘optimized scan pattern’ samples is 

reflected in their higher resonant frequencies.  Resonance frequency results are consistent between 
the strips within one orientation for a given scanning strategy. The largest variation in measured 
resonance frequencies occurs for the samples printed in the Y-direction. As a result of decreased 
porosity, the average measured volume of sintered material for a single resonator increased from 
112.80 mm3 in the reference scan pattern to 133.59 mm3 in the optimized scan pattern.  
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3.2 Up-skin / down-skin strategy 1 and 2. 
 
Samples produced with the up-skin/down-skin strategies exhibited further improvements in 

resonant frequencies and porosity percentage in comparison with ‘optimized scan pattern’ (Table 
2).  

 
Table 2. Average measured thickness of connection legs and resonator mass, average volume 

and porosity, and vibroacoustic measurements of a single resonator.  
 

 

O
ri

en
ta

tio
n Thickness of 

connecting leg 
Thickness of 

mass 
Average 

volume of  
single 

resonator 
[mm3] 

Average 
porosity 

[%] 

Resonance 
frequency 

Average 
[mm] 

Std. 
dev. 

Average 
[mm] 

Std. 
dev. 

Average 
[Hz] 

Std. 
dev. 

Reference 
X 0.79 0.027 3.76 0.013 

112.8 15.44 
628.58 30.1 

Y 0.81 0.017 3.78 0.004 660.88 18.35 
Z 0.77 0.006 3.75 0.006 599.83 11.46 

 

Optimized 
scan 

pattern 

X 1.03 0.042 3.97 0.021 
133.59 8.21 

826.39 30.35 
Y 1.00 0.037 3.92 0.061 798.02 42.43 
Z 1.05 0.025 4.00 0.028 835.98 30.1 

 
Up/down-

skin 
strategy 1 

X 1.09 0.017 4.02 0.007 
157.21 2.75 

1174.62 26.78 
Y 0.99 0.026 3.97 0.012 999.76 14.06 
Z 1.08 0.008 4.02 0.004 1172.39 33.33 

 
Up/down-

skin 
strategy 2 

X 1.09 0.018 4.03 0.009  
155.46 

 

 
3.02 

 

1198.44 12.87 
Y 1.06 0.016 4.04 0.007 1130.94 6.69 
Z 1.08 0.019 4.04 0.003 1183.69 10.43 

 
Similarly to the results observed in the optimized scan pattern, Y-strip samples exhibited 

lower resonance frequencies than samples in the X and Z-strips. We therefore analyzed the total 
lengths of up-skin and down-skin surfaces for each strip orientation using Materialise Inspector. 
Samples in the Y-strip had in total almost two times higher length of the contour borders belonging 
to up/down-skin areas in comparison with samples in X and Z-directions (Table 3). This result 
could suggest that Y oriented resonators are more susceptible to insufficient or excessive energy 
supply for up-skin and down-skin layers, respectively. T slices in Figure 8 demonstrate that for 
‘up/down-skin strategy 1’ there is an improvement in the dimensional accuracy of the built samples 
when compared to the optimized scan pattern. However, a rough edge of up/skin contour layer for 
‘up/downskin strategy 1’ was observed for most of the contour slices. As shown in Figure 8 and 
by the results summarized in Table 2, these inconsistencies were significantly reduced in the 
samples with the up/down-skin strategy 2.Furthermore, variations in results among samples build 
in the same orientation were also reduced in the up/down-skin strategy 2. 

 
 
 
 

Table 3. Analysis of contour types of borders distribution for up/down-skin strategies 
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Orientation along principal axe X Y Z 

Lenght of of 
border [mm] 

Up-skin 146,55 347,2 191,03 
Down-skin 217,87 455,97 172,73 

Normal 989,35 502,15 989,9329 
Total 1353,77 1305,32 1353,6915 

 
 

 X Y Z 

Scan pattern 
 

  

Reference 

  

Optimized scan 
pattern 

 
 

 
 

   
   

 
Figure 10 continues on the next page 

Continue of Figure 10 
 

Normal border  
Up skin border 
Down skin border 
Hatches 
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Figure 10. Comparison of scan pattern with CT slice for all scanning strategies. Samples of 
X, Y, Z-directions are best-fit aligned to the surface thresholded CT datasets. 

 
From Figure 10. and summarized results of Table 2 it is seen that ‘up/down-skin strategy 2’ 

achieved the targeted properties through application of dedicated energy input for up skin and 
down-skin layers.  A higher consistency along resonators of X, Y, Z directions are observed.  

 
 
 
 
 
 

4. Conclusion 
 

In this study the effect of adapting the scanning strategy, namely the angle with which the 
hatching direction is alternated for adjacent layers, in the LS manufacture of vibro-acoustic 
metamaterials is investigated. Geometrical (dimensional) and material (porosity) deviations from 
nominal were reduced when using a ‘optimized scanning strategy’. The thickness of the connection 
legs and resonator mass were strongly affected by poor sintering of powder near contour vectors. 
X-ray computed tomography was used to evaluate the dimensions and porosity of the built parts. 
The vibrational performance of the samples built using an ‘optimized scanning strategy’ improved 
when compared to the same performance using a common production strategy (reference). 
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The targeted vibrational properties were achieved when implementing ‘up/skin down-skin 
strategy 1’ and ‘up/skin down-skin strategy 2’. Insufficient energy deposition for up-skin layers 
resulted in increased porosity and dimensional deviations. By adapting the scanning speed for up-
skin and down-skin layers, porosity and dimensional deviations in up/down-skin layers were 
reduced, and therefore the performance of laser sintered acoustic metamaterials was improved.  

 
The results of this study serve to inform further optimization of the LS manufacture of 

acoustic metamaterials and other small and complex parts. 
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