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Abstract

Compared to limited complexity capacity in traditional fabrication and assembly techniques, Additive 
Manufacturing (AM)-based hybrid fabrication is emerging in electronics industry for fabricating complex 
structures and simplifying the assembly steps. In this study, the fabrication process of the Electronic-Mechanical 
Integrated Systems (EMIS) is investigated, in which mechanical parts (gas/liquid chambers) were 3D printed 
directly on PCB substrate (the carrier of electronic devices). A mixture of resin with silica was used as printing 
feedstock, to reduce mismatch of thermal expansion coefficient (CTE) between the part and PCB. The silica 
loading of 60 vol% was appropriate to achieve a compromise between viscosity of the suspension and CTE. 
Adhesion forces between printed parts and PCBs were measured, showing a significant correlation with the PCB 
surface roughness. Thermal cycling test indicated that the tailored materials owned excellent CTE compatibility 
with PCB. Consequently, AM-based hybrid manufacturing is capable of fabricating protective/functional bodies 
for electronics.
Keywords: Hybrid manufacturing, Electronics devices, Stereolithography, Adhesion, Thermal reliability

Introduction
Fabricating entire systems with both electrical units and mechanical content through on-demand hybrid 

manufacturing methods has vast potential for high-value electronic devices[1-6]. Among all of the fabrication 
methods, Additive Manufacturing (AM)-based hybrid manufacturing is emerging in this new paradigm for its 
advantages. For example, 3D printing fabricates parts with complex shapes and intricate internal microstructures, 
as well as simplifies the manufacturing process by merging complicated steps of assembly. Besides, because of 
the powerful manufacturing capabilities, the AM method provides unlimited freedom of design for the engineers, 
who can focus more on achieving the functionality but less on fabrication.

Recently, this multiprocess 3D printing (or AM-based hybrid manufacturing) is mainly applicated in 3D 
structure electronics[3-8] and 3D packaging engineering [9-14]. The 3D structure electronics can achieve 
multifunctionality while reducing the part volume, and the 3D package technology is becoming a possible 
alternative process for the fan-out wafer-level package. Apart from the 3D structure electronics and 3D package 
technology, the AM-based hybrid manufacturing also has a large market in other microelectronic applications. In 
this study, we present an Electronic-Mechanical Integrated System (EMIS) manufacturing method; by integrating 
stereolithography (SLA) and traditional printed circuit board (PCB) manufacturing technique, we can fabricate 
integrated systems containing both electronic units/devices and mechanical contents.

To describe this EMIS fabrication process more intuitively, we take a Lab-on-a-chip system (LOC) as an 
example[15]. As shown in Fig. 1, in order to simplify the manufacturing process and to merge complex assembly
steps, the AM-based hybrid manufacturing can be used in this case. The Electronic devices (including the USB 
interface, MCS Module, PCB) can be first made via tradition methods; after that, mechanical parts (for example, 

 2028

 Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

Reviewed Paper



gas generator and other chambers) can be 3D printed directly on the PCB or Cu layer by AM technology. Through 
this type of EMIS manufacturing method, high power chip cooling systems [16-18] can be fabricated as well.

Fig. 1. Schematics of USB-driven microfluidic chips on PCB. (a) 3D schematics of the USB-driven microfluidic device on a PCB (U-
Chip), (b) Fabricated U-chip on a PCB with a standard USB interface, (c) Important factors should be taken into account if the parts 

are directly printed on the PCB; reproduced from [15]

However, no matter the EMIS manufacturing method is used for fabricating chip cooler or LOC, several 
essential factors that should be taken into account when the parts are directly printed on the substrate (PCB and 
wafer) or Cu layer (Fig. 1. (c)). First, an advanced 3D printing technology is needed to print some spans and 
cavities without supports, because it is hard to remove these supports after printing without the separation of the 
part from the substrate(Fig. 1. (c)-(1)). Second, to ensure the integrity of the part together with the substrate, a 
strong bonding force is necessary at the interface between printed parts and substrate(Fig. 1. (c)-(2)). Finally,
because of the mismatch in material between the printed parts and substrate, when the whole system was 
operating, the mismatch of thermal expansion coefficient (CTE) will lead to crack and leakage at the interface. 
Searching a good CTE compatibility material for the part is a challenge as well.

To solve these issues, we find some solutions both on the AM technology and materials preparation. The 
bottom-up LCD-based SLA technology was applied to fabricate the cavities (no supports needed). A mixture of 
resin with silica was applied as the printing feedstock to reduce the mismatch in CTE between the part and the 
PCB substrate. Adhesion forces and thermal reliability were tested after the printing to evaluate the part-substrate 
integrity and thermal shock resistance, respectively.
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Experimental Details
Material preparation

As mentioned above, to reduce the CTE mismatch between different materials, the photopolymerizable 
suspension was prepared by adding ceramic powder into a solution of resin. Silica powder, as the most common 
filler for the microelectronic packaging industry, was selected, due to its optimum combination of properties[19-
22]. For example, it exhibits a low CTE ( 0.55 ppm/℃) and a low enough abrasiveness to provide a relatively 
long-running lifetime. Besides, fused silica is transparent to UV light, and is therefore appropriate for UV curing. 
The silica filler used in this study is electronic grade spherical silica powder (Spheroidization rate 95%, SS1402, 
Industrial Powder, US) with a specific surface area of 4m2/g and a density of 2.2 x 103kg/m3. The mean particle 
size(D50) of the silica powder is 2μm. The commercial resin mixture(GP001-JC, Shenzhen Esun Industrial Co., 
Ltd., China) was a blend of acrylic oligomers(Bisphenol A epoxy diacrylate), monomer (HDDA) and 
photoinitiator (Irgacure 184). Working together with an alkylammonium salt dispersant (BYK-9076, BYK-
Chemie GmbH, Germany), a stable dispersion of the silica in the resin was prepared.

According to the simple rule-of-mixture[23-25], the CTE of a two-phase composite is dependent linearly 
on the volume fraction of the filler. The most common equation for predicting the CTE of a two-phase composite 
is expressed as follows:

(1)
where , and are the CTE of the composite, resin and silica, respectively; is the volume fraction of resin.

From the above equation (1), with the increase of the silica loading, the CTE of composite decreases;
while the viscosity of the slurry increase, which makes the slurry too viscous to print. Therefore, we must achieve 
a compromise between the printability and the CTE. The CTE for the used photosensitive resin and the PCB 
substrate are 60 ppm/℃ (below glass transition temperature) and 20ppm/℃, respectively. Substituting 
0.55ppm/°C as the CTE of silica, we can initially estimate the volume fraction of silica. Thus, in order to eliminate 
the mismatch of CTE between the composite and the PCB substrate, ideally, we should achieve 20ppm/°C for the 
CTE of composite, in which 32 vol.% of resin and 68 vol.% of silica are needed. However, the viscosity of such 
resin mixture with 68 vol.% silica is too high. Hence, we adopted a suitable ceramic-resin slurry which consists 
of 60 vol.% silica powder and 40 vol.% resin mixtures, stabilized to create a fluid suspension using the BYK-
9076 dispersant.

In order to achieve a uniform distribution of ceramics within the mixture, silica powder and dispersant 
were gradually mixed into the resin mixtures; then the suspension was homogenized in a high-speed mixer for 10 
min and an ultrasonic cleaner with 30℃ for 2 hours.

The LCD-based apparatus and samples manufacturing
Comparing with other AM technologies for polymer-matrix composites, such as fused deposition

modeling and inkjet printing, stereolithography system has competitive edges due to its precision, efficiency, low 
cost, and easy processability [26-28]. A Liquid Crystal Display(LCD) SLA system (isun3d Tech., UV light resin 
LCD photocurable 3d printer, Shenzhen) was used to print the part at the KU Leuven Additive Manufacturing 
Lab. As shown in Fig. 2, the LCD-based SLA machine, uses an LCD screen as a photomask– like a filter with 
many small windows above the Light Emitting Diode (LED) light source. The “windows” on the LCD screen 
will selectively open/close, to traverse/block off the UV light. The UV light, which passes through the LCD 
screen, cures the liquid slurry in the tank to form the object. After one layer is finished, the platform is lifted to 
separate the cured part from the film. The machine solidifies the part layer after layer in this repeating mode. 
Since LCD screens are inexpensive and can ensure a relatively high printing resolution, this technology has made 
resin 3D printing much more affordable than before and is becoming more popular than the laser-based SLA and 
DLP-based SLA.

To fabricate the parts directly on the PCB substrate, first, the PCB should be fixed on the printer platform. 
A vacuum suction system (shown in Fig. 2) seems to be a good solution to provide a suction strong enough to the 
PCB during printing. Besides, this system also benefits from easy removing of the PCB from the platform after 
printing. In addition to manufacturing the 3D parts, some simple samples were fabricated for the CTE test under 
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the same process parameters. The printing parameters for all samples and 3D parts were as following; UV light 
wavelength: 405nm, thickness: 0.1mm, bottom layers: 5 layers. The first five layers (denoted ‘bottom layers’) 
were exposed to the UV light for 45 seconds each, and the other layers were exposed for 8 seconds per layer.

Fig. 2. The bottom-up LCD-based stereolithography machine with a vacuum suction system (includes the vacuum chamber, the 
protective bottle, and the pump)

Measurement methods
(1) Viscosity

The viscosity of the slurries was measured in the temperatures ranging from 20°C to 30°C using a 
Brookfield DV-II+Pro viscometer (Brookfield engineering laboratories, INC., USA). The process of selecting a 
spindle and speed for an unknown fluid usually is trial and error. The spindle type and speed combinations will 
produce satisfactory results when the applied torque is between 10 and 100% of the maximum permissible torque. 
Finally, the LV3-63# spindle and spinning rate of 20 rpm are selected in such a way that the torque values lie in 
this prescribed range.
(2) Microstructure

The resin/silica composite specimens were fractured and then sputter-coated with a gold layer(thickness 
3nm). The fracture morphologies of the composite were examined by a PHILIPS scanning electron microscope 
(XL30 FEG) with an accelerating voltage of 10 kV.
(3) CTE

Thermo-mechanical analyzer (TMA) is the most common method used to measure the CTE of the resin 
related composites. This method measures the through-thickness expansion of the sample with temperature. Based 
on the standard ASTM E831, the dimensions of the samples for the CTE measurement were 8mm 8mm 10mm.
The CTE below glass transition ( ) and CTE above glass transition ( ) were both measured using a Q400 TMA 
(T.A. Instruments, USA). The samples were heated from -40°C to 200°C at a constant rate of 5°C/min. The 
change in the sample thickness during heating was recorded with the change of temperature.
(4) Adhesion

To characterize adherence between microelectronic substrates and 3D printed part, the shear test and pull-
off test was chosen(shown in Fig. 3 (a) and (b)). The contact area of the test samples can be calculated from the 
part size ( , shown in Fig. 3 (c)).

Four samples per adherence measurement were tested on the Instron 5567 machine. The same parameters 
and conditions (speed of testing: 2 mm/min, temperature: 20°C) were reproduced when tested the different 
samples.
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Fig. 3. The adhesion test. (a) Shear test device and setup, (b) Pull-off test device and setup, (c) Nominal contact area of the samples

(5) Thermal reliability
Specimens without visible defects were used for a thermal shock test only. The thermal shock test is 

performed utilizing a temperature shock chamber (tested in IMEC), the temperature in the shock chamber changes 
as shown in Fig.4. The specimens have been inspected visually and by pressure test (only 1 bar) after 100 cycles. 
Any leakage between the part/PCB or crack on the sample is regarded as a failure.

Fig. 4. The thermal shock test device and temperature change profile

Results and Discussion
Suspension viscosity and particle dispersion

The resin-powder suspensions for SLA applications have to satisfy the following requirements: the slurry 
should own good flowability to ensure satisfactorily recoating, the particles should be uniformly dispersed in the 
resin matrix to ensure the printing resolution and the quality of the printing parts. Some reports showed that the 
photoinitiator does not affect the suspension viscosity, but adding some dispersant could decrease the viscosity
[29, 30]. After a series of experiments, based on the silica powder we used, the optimal concentration of dispersant 
is around 1.5 wt% to the powder. With this concentration of dispersant, the influence of the temperature on the 
viscosity of the suspensions containing 60 vol% of silica was studied.

The suspensions could work on our machine when the viscosity is less than 3000 mPa s (Brookfield DV-
II+Pro viscometer, LV3-63# spindle, and 20 RPM), which means the suspensions can work well in the 
environment with temperature from 20°C to 30°C. The suspension viscosity decreases with the increasing of the 
temperature, e.g., the viscosity is reduced by nearly 800mPa s from 20°C to 30°C(shown in Fig. 5), which means 
the flowability of the suspension was improved as well. The temperature of the suspension will decrease during 
the printing process, especially for large parts that need a relatively long time, the temperature may drop from 
30°C to 20°C or even lower. Therefore, we must ensure the suspension has a low viscosity and good flowability. 
A heating system and a mixer were used during the experiments.

The microstructures (shown in Fig. 6) also prove that the silica particles were uniformly dispersed in the 
resin matrix; this sample was fabricated at the temperature of 25°C.
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Thermal properties
As mentioned above, CTE is an essential parameter in semiconductor industry because a significant CTE 

mismatch between the fabrication parts and PCB substrate material can lead to the build-up of internal stresses 
during electronic device running and could lead to cracking of the interface. Therefore, if we want to print parts
directly on the PCB, the CTE of the printing feedstock should be analyzed firstly. In this case, the linear CTE of 
the composites was analyzed. The linear CTE is defined as the ratio of the sample dimension change to the change 
in temperature per unit length (as the function shown in Fig. 7). From the curves in Fig. 7, the thermal expansion 
increases with the increase in temperature, and the CTEs were calculated from the slope. The change in the slope 
of the expansion curve indicates a transition of the material from one state to another (as a temperature range from 
50°C to 90°C shown in Fig. 7). Therefore, (the CTE in the glassy state below the Tg) was taken from -40°C 
to 40°C and (the CTE above the Tg) was taken from 120°C to 200°C, the calculation results shown in Fig. 7.

The results show that the silica indeed works to reduce the composite CTE. Especially, is close to the 
CTE of commercial PCB, indicating the printed part can bond well on the PCB when the IC runs at a temperature 
below 90°C. Of course, this prediction should be proven by the below thermal cycling test.

Fig. 5. Variation of the suspension viscosity with temperature
(Silica: Resin=60 vol%: 40 vol%, 1.5 wt% dispersant)

Fig. 6. The microstructure of 
resin-silica composite (printed at 25°C)

Fig. 7. Dimensional change with temperature of 3 samples
(Manufactured under the same conditions with the SEM samples)

Fig. 8. The influence of surface roughness on adhesion forces
Black line: shear test, red line : pull-off test
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Adhesion properties
Commonly, the pull-off test (normal to the contact surface) and the shear test (parallel to the contact 

surface) were used to characterize the behavior of adhesion[10, 12, 31-34]. As we can see from Fig. 8, both the 
shear strength and the pull-off strength increased as the increase of the PCB surface roughness, which indicates 
that the adhesion on the part-PCB interface depends on their surface interactions. Based on the definition of 
surface roughness, the larger the roughness, the larger the actual contact area. It means that an uneven surface
provides a higher interaction force than its smooth/flat counterpart.

Besides, we can also find that the rough surface has a greater effect on shear strength than pull-off strength.
The microscale attachment mechanism for this type of adhesion is complex, which will be investigated in the 
future.

Thermal shock resistance
Ten samples were tested in the temperature shock chamber. After 100 cycles, only one sample failed

during the test. It means 90% of the samples can survive after 100 cycles from -40°C to 80°C. This result indicates 
the prepared materials owned good CTE compatibility with the PCB substrate.

Conclusion
The Electronic-Mechanical Integrated Systems (EMIS) can be fabricated through AM-based hybrid 

manufacturing; this method is capable of fabricating protective/functional bodies for electronics. Visually, we 
find that this technology can manufacture the complex structure and cavity competently (no support needed).

Regarding the printing material, the silica-resin suspension containing 60 vol.% silica is uniformly enough 
to ensure the flowability during printing; at the same time, it has a low CTE which is close to that of the PCB 
material. The thermal cycling test indicated the prepared materials owned good CTE compatibility with the PCB 
substrate.

Adhesion properties between different part/PCB substrate showed the adhesion on the part-PCB interface 
depends on their surface interactions. The larger the interface roughness, the higher the interaction forces on the 
contact surface. The pull-off test indicated that the bonding force between the part-PCB is strong enough to keep 
them as an integrity system.

Apart from the above considerations, the print materials should be resistant to electrolyte corrosion, which 
will be further studied in the future.
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