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Abstract 
 

 In this study, experimental based investigation was carried out with various cellular 
structure designs realized using a developmental thermoplastic polyurethane (TPU) fabricated by 
powder bed fusion process, in the attempt to evaluate the effectiveness of impact energy absorption 
design with cellular structures when combined with favorable materials. Various cellular designs 
including the re-entrant auxetic, double-arrow auxetic, octet-truss, BCC, octahedral, diamond and 
double bow-tie were designed and evaluated. Pendulum-rebound resilience testing and drop-
weight impact testing were carried out with each designs, and the effective energy absorption 
capabilities of these designs were compared. The results from this study provide some initial 
insights into the design of TPU-based cellular structures for energy absorption applications that 
could benefit the establishment of more comprehensive knowledge base in this area. 
 

Introduction 
 

One of the technically important application areas of the cellular structures is the energy 
absorption applications, in which the cellular structures typically act as structural buffers and 
absorb energy via elastic and plastic deformation, and even fracture. Considering that in many of 
the energy absorption applications the energy incidents occur as energy spikes, such as the small 
object impact on an aircraft structures, or the collision and drop impact on a small hand-held 
equipment, the dynamic energy absorption characteristics of the cellular structures should be the 
focus of performance designs and evaluations. Typically the dynamic energy absorption event is 
characterized by the high strain rate of deformation of the structures resulted from either large 
force or acceleration/deceleration. Due to the increased significance of factors such as inertia force, 
strain rate sensitivity and adiabatic heating [1], the dynamic responses of the cellular structures 
could be significantly different from their quasi-static and low-strain rate characteristics. There 
exist an extensive amount of literature that investigate different aspects of the dynamic energy 
absorption of cellular structures. Traditionally, stochastic cellular structures, often referred to as 
foams, of different manufacturing technologies and base materials have been investigated for their 
energy absorption behaviors under various dynamic compressive strain rates [2-8]. These 
structures typically exhibit distinct three-stage compressive stress-strain characteristics, including 
the initial elastic stage, the plateau stage where the average stress levels of the structures vary 
relatively little as the strain accumulates, and the final densification stage, where the structures are 
compressive sufficiently and begin to behave like solid materials [9, 10]. Under higher strain-rate 
dynamic compression, the stochastic cellular structures often exhibit significantly increased 
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plateau stress levels, which is attributed to various factors such as entrapped gas/fluid phase [11], 
the microstructural characteristics [11, 12], and intrinsic material strain rate sensitivity [11]. On 
the other hand, due to the general lack of control of the microscopic cellular topology, the dynamic 
characteristics of the stochastic cellular structures are primarily dominated by the specific 
manufacturing process and the relative densities.  

Introducing cellular topology design has been considered as a promising approach to 
overcome the limitation of the designability of the stochastic cellular structures. Various literatures 
have explored the dynamic energy absorption characteristics of various cellular topology designs 
[13-19]. Compared to the stochastic cellular structures, the local topology-induced effects, such as 
microinertia, stress concentration and heterogeneous deformation mode becomes much more 
significant in the dynamic characteristics with the non-stochastic cellular designs. For examples, 
Lee et al. investigated the dynamic and ballistic impact responses of a 304 stainless steel pyramidal 
truss structure, and noted that the local microinertia kinetic effect of the strut members, as well as 
the intrinsic material strain rate hardening play dominant roles in the early failure stage of the 
structures and the total energy absorption [15]. Numerous works have suggested that auxetic 
designs with negative Poisson’s ratios exhibit significantly higher energy absorption capabilities 
compared to the regular cellular structures [13, 14]. Harris et al. investigated multiple 316L 
stainless steel cellular-thin wall hybrid cellular structures fabricated by laser powder bed fusion 
additive manufacturing (PBF-AM), and suggested that the hybrid designs exhibit the most 
significant energy absorption design potentials in the intermedium strain rate ranges where the 
dynamic local buckling effect is dominant [19]. Xiao et al. studied the dynamic energy absorption 
of Ti6Al4V rhombic dodecahedron cellular structures fabricated by electron beam PBF-AM, and 
noted the feasibility of unit cell-size based impact energy absorption design [17]. In the design of 
the energy absorption cellular structures, the multi-functionality requirements often require highly 
controlled cellular topology designs that are infeasible to most traditional manufacturing 
processes, which necessitates the use of additive manufacturing (AM) for design realization. 
Extensive amount of literature have demonstrated AM cellular structures for impact energy-
absorbing purpose, and the results and discussions clearly suggested the importance of considering 
both the cellular geometry and the material properties [17-19].  

Thermoplastic polyurethane (TPU) is a class of material that is utilized broadly for the 
manufacturing of stochastic cellular structures for energy absorption [20], and is a potentially 
promising material for AM energy absorption structure realization. Cellular TPU structures 
fabricated via material extrusion have been explored for their various mechanical properties 
including energy absorption, strain rate sensitivity and quasi-static mechanical strength [21-23]. 
In comparison, works that based on powder bed fusion AM (PBF-AM) are limited, which might 
be partly due to the immaturity of the powder-based AM TPU feedstock. On the other hand, due 
to the use of preheating and the powder feedstock, PBF-AM tends to exhibit higher geometry 
flexibility compared to the material extrusion based AM, which is potentially advantageous for the 
design of multi-objective energy absorption structures. One of such application areas is the sports 
helmet, which requires not only energy absorption capabilities, but also other performance criteria 
such as breathability, rigidity and shock buffering. Much additional works are needed to 
systematically understand the correlations between the cellular geometry design, the material 
properties and the energy absorption characteristics of TPU cellular structures fabricated via PBF-
AM. Therefore, in the current work, experimental based investigation was carried out with TPU 
cellular structures of various cellular designs fabricated via a laser BPBF-AM process. The results 
were compared to each other in order to identify potential interactions between geometry and 
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materials, in the attempt to provide preliminary design selection guidelines for TPU cellular 
structures.  

Cellular Design and Sample Preparation 
 

As in theory there exist unlimited possibilities of cellular geometry designs, it is infeasible 
to exhaust the design variations. Therefore, a perhaps more feasible to investigate a small subset 
of cellular designs that represent a variety of different design scenarios. However, there are 
currently limited literature about the guidance of the cellular design scenarios. A few of the general 
design rules for the cellular structures that have been discussed include the primary structural 
deformation mode, which is determined via Maxwell stability criterion [24, 25], the Poisson’s ratio 
of the structure [26, 27], the directional isotropy [28-30], and the presence of local strut buckling 
[31]. For example, generally a stretch-dominated cellular structures that have Maxwell stability 
criterion value M≥0 tend to exhibit higher elastic modulus and initial yield strength compared to 
the bending-dominated cellular structures (M<0) at the same relative density levels [24]. Auxetic 
cellular structures with negative Poison’s ratios exhibit some unusual characteristics compared to 
the ones with regular positive Poisson’s ratios, such as high shear modulus, high indentation 
resistance, and high energy absorption [32-34]. In addition, directional anisotropy of cellular 
structures have been considered to establish the elastic performance bounds for the designs [29, 
30]. Finally, the presence of buckling deformation failure mode within the cellular structure 
implies potentially catastrophic local failure [31]. Inspired by these design rules, various cellular 
geometries were designed and investigated in this study. 7 different types of cellular structures 
were designed, as listed in Table 1, which include the re-entrant auxetic (RA) and the double-
arrow auxetic (DA) structures that exhibit negative Poisson’s ratios but different presence of local 
buckling mode, the octet-truss (OT) and octahedral (OCT) structures that exhibit stretch-
dominated deformation but different directional anisotropy, the BCC, diamond (D) and double 
bow-tie (DB) structures that exhibit bending dominated deformation but different direction 
anisotropy and presence of local buckling mode. Table 1 also lists the geometry design parameters 
for the cellular structures, with the corresponding variable designation shown in Fig.1. Considering 
the fact that relative density exerts dominant effects on the overall properties of cellular structures, 
for each cellular topology design, it was originally intended that 2 levels of relative densities were 
designed, which was realized by scaling the lengths of the struts while keeping the strut cross 
sectional dimension consistent (1mm). However, due to the thickness of the struts, the high density 
design variations for both the D and DB structures were not physically feasible and were therefore 
excluded from further investigation. In addition, it was later found that the high density design 
variation of the DA structure (DA2) resulted in un-cleanable samples, therefore the DA2 was also 
excluded from the experimental impact studies. 

Two levels of relative densities, 0.15 and 0.25, were selected arbitrarily for the study. For 
each type of cellular topologies, the strut length and strut angles θ (when available) were also 
arbitrarily selected in that these geometry parameters might not result in the optimal impact energy 
absorption performance of that type of cellular topology. The resulting design variations exhibit 
relative densities within 10% of the intended values, which were expected to be insignificant for 
the intended comparisons.  

  

Design Type L1/H 
(mm) 

L2 
(mm) 

L3 
(mm) 

θ 
(Deg) 

t 
(mm) RD 
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RA1 Re-entrant 
auxetic 4.3 5.344  75 1 0.156 

RA2 Re-entrant 
auxetic 3.5 3.807  75 1 0.243 

DA1 Double-arrow 
auxetic 8.5 5.45  75 1 0.140 

DA2 Double-arrow 
auxetic 7 5.4  75 1 0.243 

OT1 Octet-truss 7.3    1 0.147 
OT2 Octet-truss 5.2    1 0.250 

OCT1 Octahedral 6    1 0.152 
OCT2 Octahedral 4.5    1 0.243 

D1 Diamond 5.4   120 2 0.166 
DB1 Double bow-tie 7.5   75 1 0.111 

BCC1 BCC 8.2 8.2  125 1 0.145 
BCC2 BCC 6 6  128 1 0.264 

Table 1 Cellular structure design variations 
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Fig.1 Unit cell designs and design parameters 

The cellular unit cell designs were modeled in SolidWorks, then patterned orthogonally 
into a cylindrical volume using Materialise Magics. The overall geometry of the sample is shown 
in Fig.2a. The cylindrical sandwich panel skins have thickness of 1mm and diameter of 48mm, 
and the overall height is 15mm. Therefore, the overall dimensions of the cellular core are 
Φ48mmx13mm. The design geometry parameters were determined based on the DIN53512 
standard for pendulum rebound testing. The samples were fabricated by an EOS P800 system using 
a developmental thermoplastic polyurethane (TPU) material at BASF 3D Printing Solutions 
headquarter, Heidelberg, Germany. The fabricated samples were cleaned using the typical 
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compressed air blowing method for laser sintering powder bed fusion parts. Some of the fabricated 
samples are shown in Fig.2b. Multiple samples (4-5) of each design variation were fabricated, 
which were intended for various types of mechanical testing. The samples were each measured by 
digital scope and caliper for weight and dimensional information. The relative densities of each 
samples were consequently calculated based on the reference solid material density value of 
1g/cm3 provided by the company. The dimensions and weights of each types of samples are shown 
in Table 2. In general, all the fabricated samples exhibit generally good dimensional accuracy and 
consistency, but significantly higher relative densities compared to the designed ones as shown in 
Table 1. This is largely attributed by the significant surface sintering that occurred on the surfaces 
of the cellular struts in the sandwich cores, as well as the incomplete post-fabrication cleaning, 
which could be noticed obviously as loose powder kept falling off from the samples during the 
experimental studies. Although due to the proprietary nature of the developmental material no 
specific process parameters were disclosed, it is expected that such excessive surface partial 
sintering effect is introduced by the high preheating temperature.   

48mm

15
m

m 1mm

a. Sandwich design b. Typical samples
Fig.2 Sandwich structure sample designs 

Design Diameter (mm) Height (mm) Weight (g) RD 
RA1 48.188±0.036 15.022±0.051 11.589±0.603 0.423±0.021 
RA2 48.238±0.014 15.090±0.090 15.860±0.295 0.575±0.012 
DA1 48.182±0.054 14.896±0.074 10.465±1.063 0.385±0.038 
DB1 48.233±0.036 14.976±0.067 9.929±0.623 0.363±0.022 
D1 48.216±0.017 14.880±0.061 9.550±0.427 0.351±0.016 

OCT1 48.212±0.048 15.026±0.078 11.244±1.307 0.410±0.046 
OCT2 48.185±0.052 15.052±0.046 15.795±0.793 0.575±0.028 
OT1 48.193±0.034 14.994±0.055 10.586±0.859 0.387±0.030 
OT2 48.164±0.022 15.032±0.104 14.949±0.827 0.546±0.030 

BCC1 48.161±0.023 14.690±0.115 7.661±0.536 0.286±0.020 
BCC2 48.177±0.019 14.846±0.122 10.078±0.623 0.372±0.021 

Table 2 Weight and dimensional measurement results for fabricated samples 

Mechanical testing experimentation 

The fabricated samples were subjected to quasi-static compressive testing, pendulum 
impact testing, and drop-weight impact testing. The quasi-static compressive testing was carried 
out on an Instron 5569A universal testing system. A 5kN load cell was used for the testing, and 
the strain was calculated from the displacement of the crosshead. Each sample was compressed to 
50% of the total strain before the test terminated. Only 1 arbitrarily selected sample from each type 
of design was tested, which aims to establish the baseline mechanical property knowledge with 
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the structures. The pendulum impact testing was carried out on a Zwick 5109 pendulum resilience 
rebound tester following the DIN53512 testing standard. 2 samples of each design were tested. 
With each sample, 10 automatically controlled pendulum impacts of 0.5J incident energy and 
1.98m/s incident velocity were applied through the pendulum hammer of 15mm diameter. As the 
pendulum impact test utilizes the rebound of the pendulum for the evaluation of the elastic energy 
dissipation characteristic of the structures, and therefore also serves to provide a comparative basis 
for the dynamic energy absorption investigation of the structures that involve plastic deformation 
and fracture damage. The drop-weight impact testing was carried out on an Instron/Dynatup 8250 
impact tester. Fig.3 shows the drop-weight impact system setup. The system was equipped with 
accelerometer (PCM 350B04) and dynamic force transducer (PCM 200C20), which allows for the 
measurement and calculation of the acceleration, velocity, location and force during the impact. 1 
sample from each type of design was subjected to the drop weight impact. Each sample was 
secured on a solid substrate by double-side tapes and subjected to up to 5 free-drop impact strikes 
with fixed energy level of 6.17J. For each impact strike, the energy absorption/dissipation window 
was defined to occur between the initiation of the impact contact and the time when the impactor 
speed reduced to zero, i.e. the impactor stopped moving downwards, as illustrated in Fig.3b. The 
total amount of energy absorption (E) during this period was calculated from the force and 
displacement of each step as: 

1

1 2

stepn
i i

i
step

F FE x   (1) 

where Fi is the recorded reaction force at step i, and xi is the corresponding displacement 
at step i. As the data acquisition rate of both the accelerometer and the force transducer were set 
at 10.24kHz, each time step corresponds to 9.765625×10-5s.  

Accelerometer

Force sensor

Sample

Drop weight impact assembly

 

Impactor

Sandwich

Impact distance

Impactor speed =0

 

a. Instrumented drop weight testing setup b. calculation of the impact distance 
Fig.3 Drop-weight impact testing  

Results and discussions 

The quasi-static compressive testing stress-strain curves for different types of cellular 
sandwich structures are shown in Fig.4. All the structures exhibit the typical three-stage cellular 
structure compression characteristics, including the initial elastic compression stage, the plateau 
stage, and the final densification stage. On the other hand, it was observed that the elastic stages 
of all the structures are rather insignificant. Considering the typical low elastic modulus of the 
TPU materials, it was speculated that the use of crosshead displacement for the evaluation of 
deformation strain might not be adequately sensitive for this particular study.   
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Fig.4 Stress-strain curves of different cellular structures under quasi-static compression 

In order to overcome such issue, the stress-strain curve analysis method proposed by 
Christensen [35] was adopted. The schematics of the treatment is shown in Fig.5. Firstly, the stress-
strain curve of a structure was fitted by a 6-order polynomial function, which was then taken to 
calulation the 1st and 2nd order derivatives for the stress-strain functions. The yield point was 
identified as the first local minimum of the 2nd derivative of stress-strain functions, as marked out 
in red arrow in Fig.5c. Utilizing the yield point, the elastic modulus was then calculated by 
manually selecting the original stress-strain curve segments prior to the yield point and calculate 
the linear fitting functions. In addition, the total energy absorption of each structure was also 
calculated from the force-displacement relationships of the compressive testing up to the total 
strain level of 0.5. After completely unloaded, none of the samples exhibited discernable 
permanent deformation and visible damage. 

 
  

a. Stress-strain curve b. 1st-order derivative c. 2nd-order derivative 
Fig.5 Analysis of the quasi-static stress-strain curves 

Table 3 shows the elastic modulus, yield strength and energy absorption performance of 
each types of cellular sandwich structures. Both stretch-dominated designs, the OCT and OT 
structures, exhibit high mechanical properties at both relative density levels, as well as total energy 
absorption capabilities. The RA auxetic design also exhibit high mechanical properties and energy 
absorption capabilities, which appears to be in good agreement with previous studies on PA12 
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sandwich structures fabricated by laser sintering PBF-AM [36]. Other structures generally exhibit 
comparatively low mechanical properties as well as energy absorption characteristics. The BCC 
structure in particular exhibit extremely low performance at low relative density level (BCC1-1), 
which was also previously observed [36]. It is also worth noting that the BCC structures were 
among the most easily cleanable structures, as is evident from the relative density results as shown 
in Table 2. Therefore, it was speculated that the loose powder that were not completely removed 
from the interior of some of the cellular sandwich samples might contributed to some of the energy 
absorption capabilities. Fig.6 shows the comparison of energy absorption capabilities among 
different designs.  

Design Elastic modulus 
(MPa) Yield strength (MPa) Energy absorption 

(J) 
RA1 0.8595 0.0877 1.7760 
RA2 3.1828 0.4115 9.5118 
DA1 0.2839 0.0590 0.8580 
DB1 0.8514 0.0909 1.4567 
D1 0.4857 0.0478 0.8138 

OCT1 0.9927 0.0611 2.0738 
OCT2 2.1019 0.1588 6.0683 
OT1 0.5989 0.0294 0.7256 
OT2 1.6645 0.1352 6.3644 

BCC1 0.0578 0.0041 0.0819 
BCC2 0.1631 0.1352 0.6750 

Table 3 Quasi-static mechanical properties of different TPU cellular structures 

Fig.6 Comparison of quasi-static energy absorption capabilities among different 
designs 

The rebound resilience testing results are summarized in Table 4 and Fig.7. Due to the 
scheduling limitation with the samples during the rebound resilience testing, the result from RA2 
design was unavailable. For the rebound resilience testing, higher rebound percentage indicates 
less energy dissipation during the elastic deformation of the sample. From Table 7, all the low-
relative density variants of each cellular design exhibit higher energy absorption capabilities. The 
BCC cellular designs appear to exhibit the highest energy absorption capabilities among all the 
structures. There does not appear to exist a correlation between the rebound resilience and quasi-
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static energy absorption. Instead, the overall resilience performance appear to be primarily driven 
by relative densities of the structures. As shown in Fig.7a, it appears that there exist a linear 
relationship between the relative density and the rebound resilience across the entire design 
spectrum. Such behavior appears to suggest that for the elastic rebound energy dissipation 
performance, the intrinsic material property plays a more dominant role, whereas the cellular 
topology design might be less significant. However, such speculation should be subjected to 
further investigation, potentially at broader range of energy levels and impact velocities. 
In addition, it was also noted that there exist noticeable energy absorption capability degradation 
for all the cellular designs, although such trend tend to be smaller with low-relative density 
variations. As shown in Table 7 and Fig.7b, for all the samples of different cellular designs, the 
energy absorption capability degradation appear to be most significant at the first 2-3 impact 
strikes. Afterwards, the degradation appears to be much less obvious. The degradation rate appears 
to be significantly impacted by the cellular topology design as well, although more design 
variations are likely needed to verify such hypothesis. Furthermore, one sample (DA1) was 
arbitrarily selected to undergo further impacts in order to verify the presence of performance 
degradation. As shown in Fig.7c, the structures continue to exhibit rebound resilience degradation 
throughout the entire 180-impact strike process. Such behavior was again attributed to the material 
characteristics of the TPU material used in this study, although no further data is currently available 
to further investigate such phenomenon. 

Design Rebound % % different 1st-10th 
rebound  

Avg. % energy 
absorption 

RA1 33.633±1.105 -11.79 66.367 
DA1 55.704±4.051 -29.40 44.296 
DB1 50.748±1.312 -8.78 49.252 
D1 57.154±1.560 -9.58 42.846 

OT1 34.478±1.239 -13.22 63.522 
OT2 49.108±0.585 -3.78 50.892 

OCT1 40.781±1.237 -10.59 59.219 
OCT2 61.073±1.861 -10.59 38.927 
BCC1 29.267±1.388 -16.67 70.737 
BCC2 37.523±1.167 -11.04 62.477 

Table 7 Rebound resilience testing results for different cellular sandwich structures 

R%=125.8RD0.9662

0.6

80

a. Rebound percentage vs. relative densities b. Rebound resilience over multiple impacts
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Fig.7 Rebound resilience characteristics of different designs 

The drop-weight impact testing of all the samples resulted in impact strain rates of ~50-
65/s. Due to the use of solid substrate as well as the lack of differentiation method between the 
impacts on the cellular sandwich samples and the impacts on the substrate, the results were 
subjected to scrutiny during the consequent analysis. Fig.8 shows the accelerations and response 
forces of the 1st impact for each types of samples. Since no measure was available for the 
synchronization of drop triggering time at each drop impact, the time stamps for each impact event 
differ from each other, which can be clearly observed from the different occurrence time of the 
largest impact peaks in Fig.8, which correspond to the first impacts of each type of structures. In 
addition, as there is no catching mechanism in the system for secondary impacts from rebounded 
impactor, multiple impact peaks can be observed for each sample. For the analysis of the energy 
absorption characteristics, only the first and largest impact event of each structure was further 
investigated. It is also noted that for the BCC structures the samples at both relative density levels 
appear to exhibit significantly lower impact deformation resistance, and it was clearly observed 
during the impact testing that the impactor compressed the BCC sandwich samples to such a degree 
that the substrate become a significant energy absorber. It was suspected that similar phenomenon 
was also present with the other designs, although from both the experimental visual observation 
and the emitted impact sound it was clear that substrate energy absorbing of the other structures 
are less significant. From the results from quasi-static testing, all the TPU cellular sandwich 
structures exhibit rather low elastic modulus, which implies that during the initial elastic 
deformation stages of the drop-weight impact the energy absorption and deceleration processes 
likely to have only limited contributions to the overall energy absorption behavior. As a result, the 
effective energy absorbing thickness/distance of the structures is reduced, with the extreme case 
of the BCC structures where significant amount of energy is absorbed by the substrates.  
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Fig.8 Drop-weight impact measurements of different designs 

Such notion is further supported by the analysis of the characteristics of the impact 
characteristics. Fig.9a shows the average impact distances of each types of cellular designs, 
categorized by their relative density groups. Typically, it can be expected that higher relative 
densities of cellular structures result in smaller impact distances. However, it can be observed that 
for most cellular designs the impact distances are around 9-10mm, regardless of the relative density 
levels. The only exceptions are the low-density BCC (BCC1), which exhibits low impact distance 
likely due to its ineffective in deformation-induced energy absorption resulted from extremely low 
elastic modulus, and the RA structures, which consistently exhibit low impact distances of <8mm. 
It was therefore speculated that for most of the cellular sandwich structures, the thickness of the 
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structures are inadequate in absorbing the incident energy. The RA structure appears to be the only 
exception, underlying its exceptional deceleration capability. Fig.9b shows the average energy 
absorption of different cellular sandwich structures over 5 impact strikes. While it is clear that the 
high energy absorption of the low-relative density BCC (BCC1) structure was likely attributed to 
the substrate energy absorption and therefore lacks comparativity, the energy absorption of the 
other structures should also be subjected to extra scrutiny, mainly due to the likely presence of 
some substrate energy absorption. With that notion in mind, both stretch-dominated structures, the 
OCT and OT, exhibit higher energy absorption capabilities compared to the RA structures. Fig.9c 
shows the average reactive force of different cellular sandwich structures over 5 impact strikes. 
The significantly higher reactive forces occurred with the BCC structures again suggest that rather 
rigid substrate-impactor impaction took place. With the other structures, higher relative densities 
appear to significantly reduce the reaction force levels. This might again be attributed to the 
reduced substrate-impactor contact with high-relative density designs. The RA designs also exhibit 
significantly lower reactive force levels. Additionally, it was observed that while the energy 
absorption and impact distance of each type of cellular structure vary relatively small among the 
strikes, the reaction forces of the low-relative density cellular designs exhibit obvious increasing 
trend with increasing strike numbers, as shown in Fig.9d.  

  
a. Average impact distance b. Average impact energy absorption 

  
c. Average reaction force d. Reaction force at each strike 

Fig.9 Drop-weight impact characteristics of different TPU cellular sandwich designs 

Compared to the results from similar cellular sandwich structures made of PA12 nylon 
material [51], there exist some discrepancies in the performance of some of the structures. For the 
RA designs, the structures appear to perform consistently well regardless of the material. On the 
other hand, the OCT structure appears to exhibit enhanced total energy absorption capabilities 
when TPU is used as the material, albeit also exhibiting high impact reactive force levels that 
might be sometime undesirable for protection purpose. Such characteristic might be associated 
with the fact that the softer TPU material allowed for more local elastic deformation and buckling, 
which reduced the softening effect that typically occurs with this type of structures when more 
rigid material is used. However, such speculation requires further investigation. Finally, compared 
to the quasi-static energy absorption characteristics, a rough correlation can be observed. The three 
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cellular designs that exhibit the highest quasi-static energy absorption, RA, OCT and OT, also 
appear to exhibit the most desirable drop-weight impact characteristics, i.e. good compromise 
between energy absorptions and reactive force levels. 

Conclusions 

In this study, the dynamic impact energy absorption characteristics of various cellular 
structure designs made of TPU materials were evaluated. In general, the low elastic modulus and 
high ductility of the TPU materials introduced significant effect to the overall behaviors of the 
sandwich structures. Among the different cellular designs, the re-entrant auxetic (RA) design 
appears to exhibit the most prominent drop-weight energy absorption capabilities. On the other 
hand, the material enhancement effects from the TPU material appears to be most significant for 
the stretch-dominated designs, including the octet-truss (OT) and octahedral (OCT) structures. The 
BCC design appears to exhibit the lowest overall drop-weight energy absorption capabilities. It is 
hypothesized that the sparsity of the strut arrangement and the low elastic modulus of the BCC 
structure might be the primary contributing factors. On the other hand, the elastic impact energy 
absorption of the TPU cellular designs appear to be primarily dependent on the relative densities 
based on the observations of the current study. Such conclusion contradicts with the general notion 
about the effect of geometry designs, therefore further investigations is needed.  
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