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Abstract 
Compressive properties optimization of a bio-inspired lightweight structure is 

developed by Response Surface Methodology (RSM) and Non-dominated Sorting 
Genetic Algorithm II (NSGA-II). Multi-layered bio-inspired structures of a Ti6Al4V 
alloy are designed and fabricated by Selective Laser Melting. The results show that 
the optimized structure parameters of bio-inspired structures can be obtained by RSM 
and NSGA-II. The relative error rate of experimental results and response values is 
less than 10%. Moreover, increasing the number of layers cannot effectively improve 
energy absorption (EA) and specific energy absorption (SEA) for multi-layered 
bio-inspired structures. The damage process of bio-inspired structures with different 
core-arranged configurations fails layer by layer. The load-displacement curves and 
damage process of FE simulations are consistent with the experimental results.  
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Introduction 
Owing to their high specific strength, anti-vibration, energy absorption, and 

excellent buffering capacity lightweight sandwich structures are widely used in 
aerospace, automobile and military applications [1-5]. However, higher requirements 
for excellent mechanical properties and lightweight structures are put forward with 
the rapid development of the aerospace and aviation fields [6]. However, nature has 
developed a mass of perfect performance structures and materials by evolving for 
thousands of years [7-9].  

Among them, the beetle elytra are considered as a better bio-inspired prototype 
owing to its particular microstructure and excellent mechanical properties [10]. Thus, 
inspired by the beetle elytra, a large number of lightweight structures have been 
designed, fabricated and analyzed [2, 11-12]. However, those investigations also 
indicated that bio-inspired structures were generally designed according to the shape 
or profile features of biological prototypes [13-15]. Excellent mechanical properties 
of bio-inspired structures are closely related to those structural parameters and their 
interactions though it is difficult to analyze [16]. Thus, the structural optimization 
plays an essential role in understanding the relationship between structural parameters 
and mechanical properties. However, traditional optimization methods such as 
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orthogonal design, homogeneous design, and factorial analysis methods not only take 
a number of experiments but also cannot explain the interactions between structural 
parameters well [17]. Comparatively, response surface methodology (RSM) [18] is 
considered as the most relevantly utilized method for optimization analysis, and it is 
also known for building empirical models and analyzing the influence of independent 
variables to several dependent variables [19]. Most importantly, RSM can obtain a 
specific mathematical equation which considers the influence of interactions between 
structural parameters on optimization variables. Moreover, the multi-objective 
optimization is very necessary in order to design a multi-functional bio-inspired 
lightweight structure. Genetic algorithm (GA) is a promising tool for solving 
multi-objective optimization problems [20], which has a good global search ability, 
fast process speed and high optimization precision when objective functions have 
specific equations. Thus, an important method is developed on the multi-objective 
optimization of bio-inspired structures by combining RSM with GA. The 
multi-objective optimization functions in GA are obtained by RSM, and there are few 
investigations on the multi-objective optimization of bio-inspired sandwich structures 
[21-24].   

In addition to the structural parameters, the layer numbers of cores may have a 
great influence on the mechanical properties. A few references indicated that 
multilayer structures can improve the compressive performances of sandwich 
structures under out-of-plane loading [25-26]. However, most studies were mainly 
focused on single-layered sandwich structures [27-30]. The main reason is that the 
multilayer bio-inspired sandwich structures are difficult to fabricate by conventional 
processing methods due to their complex geometric features [21]. Selective Laser 
Melting (SLM) is a typical powder additive manufacturing process, which has higher 
dimensional precision and the capability to build any complex shapes of metal parts 
that would otherwise be difficult or impossible to be produced by using conventional 
manufacturing processes [31-32]. Thus, SLM is a practical method to manufacture the 
multilayered bio-inspired sandwich structures. 

In this paper, based on the bio-inspired sandwich structure designed by Meng 
[28], response surface methodology (RSM) and non-dominated sorting genetic 
algorithm II (NSGA-II) are used for multi-objective optimization in order to obtain 
lightweight structures with excellent comprehensive performances. Moreover, 
bio-inspired lightweight structures fabricated by SLM using optimal structural 
parameters are adapted to identify the accuracy of optimization models. Considering 
the influences of the layer number, multilayer bio-inspired sandwich structures are 
designed, fabricated by SLM and analyzed in detail under out-of-plane loading. 
Moreover, the damage process of bio-inspired structures is also investigated by 
experiments and FEM.  

Multi-objective optimization method 
Based on the microstructure of Cybister elytra [28], the lightweight sandwich 

structure is designed, as shown in Fig. 1. Response surface methodology (RSM) is 
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processed in the Design Expert software which is used to optimize the structural 
parameters in this paper. RSM consists of a set of mathematical and statistical 
techniques to develop a functional relationship between a response of interest, y, and a 
number of associated control variables, , ,…, [33]. Three structural variables 
consist of the core height h, the thickness of the core  and thickness of panel  in 
this paper.  

Fig. 1. The geometric model of (a) bio-inspired structure (b) a unit 
The response value y1 is Energy Absorption (EA), the dependency of response with 
process variables, h, t, t0, is illustrated in Eq. (1).  

= ( , , )                                                                          (1) 
In our work, the relationship between the values of the explanatory variables and the 
levels of parameterization considered is shown in Table 1. Moreover, the 
Box-Behnken Design method [34] is used in the software and a third order 
polynomial is adopted to obtain the appropriate model. Thus, the software will 
automatically present the 17 structural parameters because of the design method using 
three factors and three levels, and a matrix of structural parameters is shown in Table 
2. 

Table 1 Levels of independent variables according to RSM 

Factors 
levels 

-1 0 1 
Core height (mm) 2 6 10 

The thickness of cores (mm) 0.2 0.50 0.80 
The thickness of panel (mm) 0.2 0.50 0.80 

Table 2 Variable values of structural parameters 
Test Order Core height (mm) The thickness of cores (mm) The thickness of panel (mm) 

1 11 6 0.20 0.80 

2 3 2 0.80 0.50 

3 16 6 0.50 0.50 

4 17 6 0.50 0.50 

5 5 2 0.50 0.20 

6 15 6 0.50 0.50 

7 13 6 0.50 0.50 
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8 6 10 0.50 0.20 

9 14 6 0.50 0.50 

10 1 2 0.20 0.50 

11 7 2 0.50 0.80 

12 10 6 0.80 0.20 

13 2 10 0.20 0.50 

14 8 10 0.50 0.80 

15 4 10 0.80 0.50 

16 12 6 0.80 0.80 

17 9 6 0.20 0.20 

According to structural parameters listed in Table 2, the bio-inspired sandwich 
structures are fabricated by SLM and the energy absorption of sandwich structures is 
obtained by compressive tests. Thus, the model for response value is indicated by 
following Eq. (2) according to RSM.   

y=f1(h,t,t0)=158.81-50.51×h-134.37×t0-241.18×t+63.28×h×t0+58.89×h×t+ 

272.40×t×t0+3.79×h2-127.52×t2-4.37×h2×t0-  4.66×h2×t  (2) 

In this model, the major statistical [35] measures can be deduced as follows, 

= 1  (3) 

= 1 ( )×( ) (4) 

= ( )  (5) 

= ( )  (6) 
Where p is the number of inconstant terms in standard deviation; m is the selected 
sample design points;  represents the result of mean or standard deviation;  is 
the mean value of .  

The statistical measures are applied to evaluate the accuracy of the model in this 
paper. The R-squared (0.9787) and adj R-squared (0.9431) values show the goodness 
of fitting. The experimental results, theoretical values of energy absorption and 
relative errors are listed in Table 3. It can be seen that the relative errors of most tests 
are less than 10%, which also indicates that the predicted values are well consistent 
with the experimental values and the optimization model can explain the relationship 
between the variables and the response well.  

Table 3 Comparison of experimental and predicted values of energy absorption. 
Test Experimental value (J) Theoretical values (J) Relative error (%) 

1 4.34 3.92 9.67 
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2 6.29 9.03 30.34 

3 42.00 44.67 5.97 
4 41.00 44.67 8.27 
5 30.00 27.26 7.76 
6 49.12 44.67 9.06 
7 36.16 44.67 19.05 
8 33.48 35.38 5.37 
9 53.36 44.67 16.28 

10 16.28 19.02 14.40 
11 26.49 23.75 9.81 
12 13.85 13.43 3.03 
13 10.32 8.43 18.31 
14 44.12 46.01 4.28 
15 51.90 50.01 3.64 
16 111.20 110.78 0.37 
17 5.06 4.64 8.30 

Considering the lightweight and crashworthiness of bio-inspired structures, 
non-dominated sorting genetic algorithm II (NSGA-II) is used to achieve the 
multi-objective optimization [36]. The equation obtained by RSM is used as one of 
the objective functions in NSGA-II. It should be noted that the bio-inspired structures 
in our work have extremely lower energy absorption capacity when the core height is 
higher than 10 mm or lower than 2 mm [28]. As a typical thin-walled structure [28], 
the thickness is (t or t0) about 1/10 of the length (h). However, the whole structure 
may become an entity structure when the thickness reaches to 1 mm. Thus, h is set 
from 2 mm to 10 mm and t (t0) is set from 0.20 mm to 0.80 mm. 

The related multi-objective optimization question is expressed as Eq. (7): 
 [ ( , , ), ( , , )] 

. .

2.0 10.0 

0.20 0.80 

 0.20  0.80 

 (7) 

Where ( , , )  represents the energy absorption; ( , , )  represents the 
density of bio-inspired structures, which is summarized as follows: 

( , , ) =
[2 × ( + ) + ( 2) × × ]

× (2 + ) ×   (8) 

Where  is the density of Ti-6Al-4V alloy (4.43 g/cm3). 
Parameters for NSGA-II are set as follows in this paper: Pareto fraction 0.30, 

population size 150, generations 1000 and TolFun 1e-100. The Pareto optimal front of 
multi-objective optimization is shown in Fig. 2(a). Every Pareto point in the optimal 
Pareto fronts is the optimal parameter. However, decision must be made for the most 
satisfactory (termed as “knee point”) from the Pareto-set finally. In this paper, The 
Minimum Distance Selection Method (TMDSM) [35] is applied to solve this issue, 
which is given as below mathematically, 

 2284



= ( ( min ( ( ))) )  (9) 

Where K is the number of the objective components;  is the  objective value 
in the  Pareto solution; n = 2, 4, 6,…; D is the distance from the knee point to the 
“utopia point” that is given by the optimal values of each individual objective (as 
shown in Fig. 3(b)). The knee point can be obtained by using TMDSM from the 
Pareto fronts. The structural parameters optimized by NSGA-II and the knee point are 
listed in Table 3. 

Fig. 2. The Pareto optimal front of multi-optimization (a) and the knee point on the Pareto front 
having the shortest distance from the utopia point (b). 

Table 3 structural parameters of the knee point 

Parameters h, mm t, mm , mm ,J , g/cm3

Value 9.00 0.77 0.67 81.56 1.46 

In order to understand the influences of the layer number and core configurations 
on compressive properties, multilayer bio-inspired sandwich structures with different 
configurations are designed based on the optimized bio-inspired structures, as shown 
in Fig. 3.  

Fig. 3.  Multi-layered bio-inspired structures model 
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Experimental procedures 
Gas atomized Ti-6Al-4V powders were used as the raw material in SLM 

experiments. Bio-inspired structures were fabricated in a self-developed SLM system 
(LSNF-1) [37]. In order to ensure the fabrication quality of bio-inspired structures, the 
optimal processing parameters were used to build the sandwich structures [28].  

Bio-inspired structures used for response surface analysis are shown in Fig. 4(a). 
Fig. 4(b) shows the multi-layered bio-inspired structures fabricated by SLM. It should 
be noted that the single layer sandwich structure was used to verify the 
multi-objective optimization model. The electronic universal testing machine 
(Shimadzu AG-100KN) was used for the flatwise compression tests. The indenter 
impacted the multi-layered bio-inspired structures at a velocity of v=1 mm/min during 
flatwise compressive tests and a camera recorded the entire process. 

EA and SEA [38, 39] are used to judge energy absorption capacity, and they are 
calculated as follows.  

The total energy absorption (EA) is the area under the load-displacement curve: 

 = ( )      (10) 

Where d is the displacement. It is generally believed that energy is absorbed before 
the structure is crushed, and F(x) is the magnitude of the load. 

The specific energy absorption is the absorbed energy per unit mass (SEA): 

 =                                                                                                (11) 

Where w is the weight of whole bio-inspired structures. 

Fig.4. The bio-inspired structure samples of multi-objective optimization (a), multilayer 
bio-inspired structures fabricated by SLM (b)  

Results and discussion 
4.1. Verification of the multi-objective optimization model 

Comparisons between experiment values of parameters and multi-objective 
optimization results are summarized in Table 4. Results reveal that the experiment 
value of EA (87.12 J) and density (1.52g/cm3) are slightly higher than the 
multi-objective optimization value of EA (81.56 J) and density (1.46g/cm3). The 
reason is that a certain manufacturing error exists in structural dimensions during 
SLM [40]. It can be seen that the relative errors of all parameters are less than 10%, 
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which also indicates that the multi-objective optimization model has a high predictive 
ability.   

Table 4 Comparisons between the experiment value of parameters and multi-objective 
optimization results 

Parameters Multi-objective optimization value Experiment 
values Relative errors 

EA, J 81.56 87.12 6.81% 
Density, g/cm3 1.46 1.52 4.11% 

h, mm 9.00 9.08 0.88% 
t, mm 0.77 0.80 3.75% 

, mm 0.67 0.74 9.46% 

4.2. The influence of structural parameters on the compressive performance 
Response surfaces of EA depending on structural parameters are shown in Fig. 5. 

It shows the influences of the core height, thickness of panel and core on the energy 
absorption. It can be seen that the high thickness of core and panel will favor the high 
EA (Fig. 5(a) and (c)). Additionally, it seems that a proper core height, around 6 mm, 
can absorb more energy (Fig. 5(b)). Results also indicate that the interactions of 
structural parameters have a great impact on the compressive performances. 
Compared with core height, the interaction of the thickness of the panel and core has 
the greatest influence on the compressive properties.  

Fig. 5. Response surface with the core height and thickness of core (a), core height and the 
thickness of panel (b), the thickness of panel and core (c). 

4.3. Compressive properties of multi-layered bio-inspired sandwich structures 
Force-displacement curves of multi-layered structures with parallel-arranged 

configurations are shown in Fig. 6. Generally, the compressive force-displacement 
curves for sandwich structures consist of three zones: elastic, buffer and crushing 
zone. Bio-inspired structures are not damaged in the elastic zone, and most energy is 
absorbed in the buffer zone. In addition, it is summarized that bio-inspired structures 
will fail when the force-displacement curves fall in the crushing zone [28]. From 
Fig.6, it should be noted that the sharp drop in force indicates that the multi-layered 
structures have been fractured. Many peaks appear in the force-displacement curves, 
which means that several areas of bio-inspired structures have been damaged under 
the crushing loading. It can be seen that core breaking is the main damage mode 
during the compression. However, much literature [41-43] showed that the core 
buckling was the main damage mode for sandwich structures and the 
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force-displacement 

Fig. 6. Force-displacement experimental curves of bio-inspired structure with parallel-arranged 
configurations: (a) single layer, (b) two layers, (c) three layers and four layers (d). 

curves almost had no peaks. The reason may be related to the intrinsic properties of 
materials. It should be noted that core breaking is the core material occurs to be yield 
and fractured when the material stress reaches to maximum stress, which belongs to 
material failure. Comparatively, the core buckling is the structures occur to be 
instability before the material stress reaches to maximum stress, which belongs to 
structural failure. Thus, the compressive force of core breaking is greater than that of 
core buckling. It also seems that the first peak forces are all about 20 kN with the 
increase of layer numbers, which indicates that increasing the layer number will have 
no influence on the first peak force. However, the maximum peak force firstly 
decreases to the first peak force and then keeps constant. It is because that the stability 
of whole bio-inspired structures decreases when the layer number increases. The 
maximum peak force is equal to the first peak force in the curves when the layer 
number is two. With the further increase of the layer number, the maximum peak 
force will keep constant and be equal to the first peak force.  

The damage photographic images of two-layered bio-inspired structures with 
parallel-arranged configurations are shown in Fig. 7. Under the compressive loading, 
the bottom layer of multilayer bio-inspired structures is firstly damaged and crushed. 
Then, the middle panel occurs to be fractured. Next, the upper layer of multilayer 
bio-inspired structures also occurs to be crushed owing to that the core has been 
fractured in several regions. Finally, the whole bio-inspired structure is compacted 
completely. During compression, all cores and panels have been damaged. It is 
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summarized that the core fracture is the main failure mode of bio-inspired structures 
under the compressive loading. The damage pictures also showed that several areas of 
core structures have been fractured, which also explains why the force-displacement 
curves have many peak forces. 

Energy absorption properties of multi-layered structures are shown in Fig. 8. It 
can be seen that with the increase of the layer number, the bio-inspired structures can 
absorb the same amount of energy (~ 80 J). The reason is that the force has dropped 
drastically even though the displacement increases. The SEA decreases gradually due 
to the weight of bio-inspired structures increases. It is also demonstrated that 
increasing the layer number cannot improve the structural crashworthiness for 
multi-layered bio-inspired structures with parallel-arranged configurations. 

Fig.7. Damage photographic images of two-layered bio-inspired sandwich structures 

Fig. 8. Energy absorption and specific energy absorption of multi-layered structures with 
parallel-arranged configurations 

4.4. The simulation results of multi-layered sandwich structures 
The ABAQUS software was used to simulate compression tests of bio-inspired 

sandwich structures, and the C3D8R element is selected. And the CAD model is 
the 
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same as that of the bio-inspired structure. And the simulation model is shown in Fig. 
9(a). The pressing plate is set as a rigid body. The contacts between the rigid body and 
structure are set as the surface to surface contact. Ti6Al4V alloy acts as the simulation 
material, whose physical parameters are given in Table 4 and the stress-strain curve is 
shown in Fig. 9(b). 

Fig. 9. The simulation model of compressive tests (a) and the stress-strain curve of Ti6Al4V (b) 

Table 4  The physical parameters of Ti6Al4V alloy 
Parameters Density (g/cm3) Elastic modulus (MPa) Poisson’s ratio 

Value 1.52 110000 0.34 

The FEM and experimental results of multi-layered bio-inspired sandwich 
structures are shown in Fig. 10. It can be seen that the load-displacement curves of 
FEM result are consistent with that of experimental results basically. The difference is 
that the load-displacement curves of compression experiments have many zones 
which their load is close to zero. The reason is that the Ti6Al4V alloy was brittle 
fractured on the compressive tests and the velocity of the compressive head is 
1mm/min. Therefore, the load will decrease rapidly to zero when the sandwich 
structures break. However, in the FE simulation, the whole compressive time is set as 
0.1s, and the time is so short that the load cannot decrease to zero. The damage 
process of two-layered sandwich structures is shown in Fig. 11, and the results 
indicated that the FEM is consistent with the experiments. Moreover, the fracture 
zones and stress concentration locations in FEM also are consistent with the 
experimental results, which declare that the finite element model is accurate.
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Fig. 10. The FEM and experimental results of sandwich structures with a single layer (a), 
two-layered (b), three-layered (c) and four-layered (d) core.  

Fig. 11. The damage process of two-layered sandwich structures: D=0mm (a), D=1mm (b), 
D=1.50mm (c) and D=8.50mm (d). 

Conclusions 
The compressive properties optimization of bio-inspired structures via RSM and 

NSGA-II has been carried out in this work. Moreover, multi-layered bio-inspired 
structures of Ti–6Al–4V alloy are designed, fabricated by SLM and analyzed in detail. 
The conclusions are as follows: 

(1) Response surface methodology (RSM) and non-dominated sorting genetic
algorithm II (NSGA-II) can be applied to better optimize the compressive properties 
of bio-inspired structures fabricated by SLM.  
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(2) Increasing the layer number cannot improve the EA and SEA of
multi-layered bio-inspired structures with parallel-arranged configurations. The 
damage process of bio-inspired structures with different core-arranged configurations 
fails layer by layer. 

(3) The load-displacement curves and damage process of FE simulations are
consistent with the experimental results. 
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