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Abstract 

Herein, we propose a new lattice generation strategy that is computationally cheaper and produces high-

quality geometric definition based on Machine Learning (ML) when compared to traditional methods. To 

achieve the design of high-performance unit cells, firstly, the optimal mechanical property for each cell region 

is derived according to the loading condition and the reference density obtained utilising a 

conventional topology optimisation result. Next, a Neural Network (NN) is employed as an inverse generator 

which is responsible for predicting the cell pattern for the optimal mechanical property. Training data (~ 500) 

were collected from Finite Element (FE) analysis with varied cell parameters and then fed to the NN. With the 

help of ML, the time spent in building the inverse generator is significantly reduced. Furthermore, the ML-

based inverse generator can handle different cell types rather than one specific type which facilitates the 

diversity and optimality of lattices. 

Introduction 

Lattice structure, as a non-stochastic category of cellular materials[1], has been an attractive topic in 

structural design due to its ease of geometric control and ability to achieve a high strength-to-weight ratio[2], 

high robustness, and multi-functions[3][4]. Lattice structure has been employed for the realisation of various 

functions, like energy absorption[5], heat exchange, thermal insulation, sound attenuation, and vibration 

isolation, and applied to various applications, especially Aerospace[6], where weight reduction is essential. 

The development of Additive Manufacturing (AM) has provided manufacturing process with large 

flexibility that has facilitated the complex design of lattice structures to be fabricated[7]. different AM 

processes[8][9] might be chosen for lattice fabrication. Although AM processes extend the design domain to 

nearly any shape and geometry. But support structure[10], powder removal[11], and other AM-related 

constraints still needs consideration during the structural design. 

To make full use of the extended design space offered by AM, the establishment of lattice generation 

strategies for design optimisation of lattice structures is essential.  The development of this field has produced 

various lattice design methods. For example, the ground truss structure method[12] is one of the earliest design 

methods for truss structures, where the geometry and topology of trusses can be formulated as a standard sizing 

problem. Topology Optimisation (TO) is also a powerful tool applicable to lattice structural design. Several 

approaches utilised the density distribution from TO result to map the lattices[13][14]. Multi-scale TO[15][16], 

where the macro and micro scales are optimised simultaneously during the structural optimisation process, is 

capable of generating high-performance structures with optimised micro lattices. 

To further improve the performance of the designed lattice structures and accelerate the design process, 

Machine Learning (ML) has been applied to lattice design in several attempts. For example, the use of 

clustering[17] algorithm helps to cluster the elements into different cell clusters. The employment of Neural 

Network (NN) accelerates the property prediction of lattice unit cells[18], [19], enables the inverse design of 

spinodoid metamaterial[20], and even helps with the sensitivity analysis of TO[21]. 

In this work, the 2D lattice unit cell is parameterised by the nodal parameters (4 parameters), and its 

mechanical properties are represented using the elasticity compliance matrix (6 independent components). a 

Neural Network (NN) is employed as an inverse generator which can output the representative parameters of 

lattice unit cells with the input elasticity properties. A training dataset with a size of 500 is collected from FE 

analysis of voxelised cells with varied cell parameters and then fed to the NN. To implement the lattice 
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generation strategy, firstly, optimal density distribution is obtained from TO result as the reference elemental 

densities. Secondly, the optimal elasticity properties are determined based on the reference elemental density 

and the elemental stress condition. Finally, the NN-based inverse lattice generator is used to generate 

corresponding lattice unit cells from the optimal elasticity properties. A workflow illustrating the whole work is 

shown as Figure 1. 

 

 
 

Figure 1: Illustration of the work 

 

  

 The outline of the paper is as follows. First, the main methodology of the proposed strategy is explained, 

including details on the training of the inverse lattice generator and how the lattice generation strategy operates. 

Subsequently, an example of the MBB-beam is introduced and the results are discussions about the influences 

of key factors are provided. 

 

Methodology 

Building Inverse Lattice Generator 

 This work focuses on 2D lattice structures composed of the X-shape lattice cell with a resolution of 

15×15 pixels. A cell resolution of 15×15 can provide the lowest cell volume fraction (represented using symbol 

𝑣𝑓) of 0.129 for the X-shaped cell (see Figure 2). The lowest possible cell volume fraction is sufficient to 

capture the low-density features in the TO grey structural design. 

 

 
Figure 2: lowest cell 𝒗𝒇 for different cell types X-shape cell with 𝒗𝒇 = 𝟎. 𝟏𝟐𝟗 
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 The cell representation method adopted in this study is the nodal parameter (see Figure 3). For X-shape 

cells, 4 nodal parameters are sufficient to represent an X-shape cell exactly. 

 
Figure 3: Illustration of nodal parameters for X-shape cell 

 

 The elasticity property of the lattice cell is an important factor considered in a compliance minimisation 

problem. The elasticity compliance matrix 𝒁 is adopted here to represent the lattice cell’s anisotropic elasticity 

property. The elasticity compliance matrix 𝒁 is defined as: 

 𝜺 = 𝒁𝝈 

[

𝜀1

𝜀2

𝜀3

] = [

𝑧11 𝑧12 𝑧13

𝑧21 𝑧22 𝑧23

𝑧31 𝑧32 𝑧33

] [

𝜎1

𝜎2

𝜎3

] 
(1) 

  

where 𝜺 is the strain, 𝝈 is the stress. 

  

 For 2D anisotropic material, because of the symmetry of the 𝒁 matrix, there are 6 independent variables 

in 𝒁. These 6 independent variables are represented using 𝒛𝟏𝟏, 𝒛𝟏𝟐, 𝒛𝟏𝟑, 𝒛𝟐𝟐, 𝒛𝟐𝟑, 𝒛𝟑𝟑 in this paper, where 𝒛𝒊𝒋 

refers to the component in the i-th row and j-th column. 

  

 To calculate the six independent components of the elasticity compliance matrix 𝒁, 2D Finite Element 

(FE) method is adopted. For each lattice unit cell, the cell pattern is mapped 6×6 times, which means 6 times in 

x-direction and 6 times in y-direction (see Figure 4). Uni-axial loads and pure shear load are applied to the 

tessellated lattice cells respectively.  

 

 
Figure 4: Illustration of the tessellation of lattice unit cells for FE analysis 

  

 500 sample X-shape cells are generated randomly with integer nodal parameters and FE analysis is run 

for each sample cell with the Poisson’s ratio of the material to be 0.3. Instead of the elasticity compliance 𝒁, the 

elasticity tensor 𝑪 is adopted here to show the relationship between cell strength and cell density. The elasticity 

tensor 𝑪 is defined as: 

 𝝈 = 𝑪𝜺 (2) 
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 From the elasticity properties collected for the sample X-shape, a series of 𝐶𝑖𝑗 − 𝑣𝑓 curves are plotted in 

Figure 5. The power-law curves with different penalty exponents (the power of 𝑣𝑓) are also plotted in Figure 4 

as references. 

 

  

a) b) 

Figure 5: Elasticity tensors vs cell 𝒗𝒇 (X-shape cell) (a) for 𝒄𝟏𝟏  (b) for 𝒄𝟑𝟑 

  

 From the figure above, it can be concluded that: a) The grading of lattice unit cell enables the diversity 

of anisotropic properties under the same cell 𝑣𝑓. b) The X-shape cell tends to have a higher value of 𝑐33 but 

performs worse when resisting normal stress. 

  

 The training data size is 500 for X-shape cells as mentioned above. To capture the nonlinearity of the 

mechanical model, NN is adopted here for a fast and accurate unit cell output. The NN structure in this paper 

consists of 1 input layer, 3 hidden layers, and 1 output layer. The dimension of input is 6 (the 6 independent 

components for 𝒁), while the dimension of output is 4 (the 4 nodal parameters for cell representation). 

  

 To evaluate the performance of the trained inverse generator, the accuracy of the trained inverse 

generator is checked by comparing the reconstructed lattice cell with the corresponding original lattice cell. 

Figure 6 shows some of the reconstructed lattice cells and their corresponding original cells. In most cases, the 

inverse generator is able to generate exactly the same cells as the original ones. Only a few cases show slight 

differences. 

 

  

 
Figure 6: the reconstructed cells and the corresponding original cells 
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 Lattice Generation Strategy 

 The overall main objective function of the lattice structural optimisation problem is to minimise 

structural compliance (a measure of the inverse of stiffness). Structural compliance is defined as: 

 
𝑪𝒑 =

𝟏

𝟐
𝑼𝑻𝑲𝑼 

(3) 

 where 𝑪𝒑 is the compliance, 𝑲 is the global stiffness matrix and 𝑼 is the global displacement vector.  

  

 Solid Isotropic Material Penalisation (SIMP)[22] method is a density-based TO approach, which 

optimises the structure through optimising the densities of the element within the design domain. In this paper, 

the result from a low-resolution SIMP is utilised as the start point of the proposed lattice generation strategy. 

Every element in the low-resolution structure will be mapped by a lattice cell and those lattice cells will form a 

new high-resolution structure. 

  

 The overall objective function, which is the structural compliance, also equals the total structural strain 

energy. To divide the overall optimisation problem into subproblems, the overall structural strain energy is 

divided into elemental strain energies: 

 𝑺𝑬𝒕𝒐𝒕𝒂𝒍 = ∑ 𝑺𝑬𝒆

𝒆𝒍𝒆𝒎𝒆𝒏𝒕

 
(4) 

 where 𝑆𝐸𝑡𝑜𝑡𝑎𝑙 is the total structural strain energy, and 𝑆𝐸𝑒 is the elemental strain energy. 

  

 Hence, the sub-problem can be defined as the following equation for the i-th cell region: 

 𝐦𝐢𝐧
𝒁𝒊

: 𝑺𝑬𝒆 

𝐬𝐮𝐛𝐣𝐜𝐭 𝐭𝐨: 𝒗𝒇𝒊 ≤ 𝝆𝒊(𝑺𝑰𝑴𝑷) + 𝜺 

(5) 

 where the objective function is set as the elemental strain energy, subject to a volume fraction control. 

The optimisation variables are the elasticity compliance matrix of the i-th cell region (𝒁𝒊). Cell volume fraction 

𝒗𝒇𝒊 is constraint by the relative density 𝝆𝒊 from SIMP, allowing slight differences between these two values.  

  

 Through a series of sub-problems, the anisotropic properties for each element can be optimised. Based 

on the optimised anisotropic elasticity properties, lattice cells will be predicted through the developed inverse 

generator. To conclude, the lattice generation strategy consists of three steps (shown in Figure 7): i) produce the 

greyscale structure using SIMP; ii) generate anisotropic properties for each cell region based on the greyscale 

SIMP result; iii) use the inverse lattice generator to output lattice unit cells from the anisotropic properties and 

form the final lattice structure. 

 

 
 

Figure 7: Illustration of the proposed lattice generation strategy 
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Results and Discussions 

Most studies concerning structural optimisation methods consider the classic MBB-beam (in 2D) and 

therefore this work also utilised such a structure (see Figure 8). To define the design domains, the low-

resolution greyscale TO structure consisted of 20×10 elements, while the high-resolution final lattice structure 

consisted of 300×150 voxels. 

Figure 8: The MBB-beam problem 

Total Strain Energy (𝑆𝐸𝑡𝑜𝑡𝑎𝑙), which is the objective function of the overall optimisation problem, was 

set as the performance measure. A lower value of 𝑆𝐸𝑡𝑜𝑡𝑎𝑙 means a stiffer structure. FE analysis was adopted to 

calculate the values of 𝑆𝐸𝑡𝑜𝑡𝑎𝑙 for the structures. 

A greyscale structure of size 20×10 with a total volume fraction (𝑣𝑓) of 0.5 was generated using SIMP 

with a penalty exponent selected as 𝑝 = 3 as the start point of the proposed lattice generation strategy (see 

Figure 9). 

Figure 9: Greyscale SIMP result 

Then the anisotropic properties of the 20×10 cell regions were optimised and used to map lattice unit 

cells through the inverse lattice generator. Figure 10 shows the final lattice structures produced from this new 

strategy. 

Figure 10: Lattice structure generated by the new strategy 
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FE analysis with a fine mesh (300×15) was adopted to calculate the value of 𝑆𝐸𝑡𝑜𝑡𝑎𝑙 for the generated 

lattice structures: 

𝑆𝐸𝑡𝑜𝑡𝑎𝑙 = 94.47 

A benchmark from SIMP with penalisation of 3 gives a clear black and white structure with 𝑆𝐸𝑡𝑜𝑡𝑎𝑙 =
80. But the computational time would be 10 times longer than this ML-based strategy.

Conclusion 

Lattice structures, which have the instinct of lightweight[23] and robustness, can contribute to 

the improvement of structural performance. Developments of lattice generation strategies are quite important 

for achieving the target functions and the acceleration of structural optimisation time. In this work, a novel 

lattice generation strategy with low time consumption and high-performance output is proposed with the 

assistance of Machine Learning (ML). The main assistance from ML would be the modelling of the relationship 

between lattice topologies and lattice properties. An inverse generator which output lattice unit cell with the 

input target elasticity property is trained based on NN. The proposed strategy starts from density distributions of 

TO results, then search for the optimal elasticity property for each element, and finally map the elements with 

lattice cells output from the inverse generator. The presented example lattice structures demonstrate the 

promising of the proposed lattice generation strategy in generating lattice structures efficiently. Although the 

compliance increases slightly compared with black and white SIMP result, this strategy is able to give a 

satisfactory high-resolution design 10 times faster. 

Traditional lattice generation strategies are usually based only on density distributions, without 

considering grading within lattice unit cell. The new method proposed in this work considers anisotropic lattice 

cells together with uniform lattice cells, which can lead to better utilisation of materials.  

The presented lattice generation strategy can be extended in several ways: (a) developing post-

processing method to trim extra useless trusses. (b) involving multiple cell types; (c) applying to 3D lattice 

structures. 

Reference 

[1] W. Tao and M. C. Leu, “Design of lattice structure for additive manufacturing,” 2016. doi:

10.1109/ISFA.2016.7790182.

[2] T. Maconachie et al., “SLM lattice structures: Properties, performance, applications and challenges,”

Materials and Design, vol. 183. 2019. doi: 10.1016/j.matdes.2019.108137.

[3] C. Lee, E. S. Greenhalgh, M. S. P. Shaffer, and A. Panesar, “Optimized microstructures for

multifunctional structural electrolytes,” Multifunctional Materials, vol. 2, no. 4, 2019, doi: 10.1088/2399-

7532/ab47ed.

[4] H. N. G. Wadley, “Multifunctional periodic cellular metals,” Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, vol. 364, no. 1838, 2006, doi:

10.1098/rsta.2005.1697.

[5] J. Plocher and A. Panesar, “Effect of density and unit cell size grading on the stiffness and energy

absorption of short fibre-reinforced functionally graded lattice structures,” Additive Manufacturing, vol.

33, 2020, doi: 10.1016/j.addma.2020.101171.

[6] E. del Olmo et al., “Lattice structures for aerospace applications,” in European Space Agency, (Special

Publication) ESA SP, 2012, vol. 691 SP.

[7] J. Plocher and A. Panesar, “Review on design and structural optimisation in additive manufacturing:

Towards next-generation lightweight structures,” Materials and Design, vol. 183. 2019. doi:

10.1016/j.matdes.2019.108164.

51



[8] L. E Murr, S. M Gaytan, and E. Martinez, “Fabricating Functional Ti-Alloy Biomedical Implants by

Additive Manufacturing Using Electron Beam Melting,” Journal of Biotechnology & Biomaterials, vol.

02, no. 03, 2012, doi: 10.4172/2155-952x.1000131.

[9] K. C. R. Kolan, M. C. Leu, G. E. Hilmas, and T. Comte, “Effect of architecture and porosity on

mechanical properties of borate glass scaffolds made by selective laser sintering,” 2013.

[10] J. Jiang, X. Xu, and J. Stringer, “Support Structures for Additive Manufacturing: A Review,” Journal of

Manufacturing and Materials Processing, vol. 2, no. 4, 2018, doi: 10.3390/jmmp2040064.

[11] W. Ameen, A. Al-ahmari, and H. Alkhalefah, “Design the support structures for easy removal of un-

melted powder in metal additive manufacturing,” International Journal of Advanced Manufacturing

Technology, vol. 29, no. 02, 2020.

[12] M. P. Bendsøe, A. Ben-Tal, and J. Zowe, “Optimization methods for truss geometry and topology

design,” Structural Optimization, vol. 7, no. 3. 1994. doi: 10.1007/BF01742459.

[13] A. Panesar, M. Abdi, D. Hickman, and I. Ashcroft, “Strategies for functionally graded lattice structures

derived using topology optimisation for Additive Manufacturing,” Additive Manufacturing, vol. 19,

2018, doi: 10.1016/j.addma.2017.11.008.

[14] D. Brackett, I. Ashcroft, and R. Hague, “Topology optimization for additive manufacturing,” 2011.

[15] J. Wu, O. Sigmund, and J. P. Groen, “Topology optimization of multi-scale structures: a review,”

Structural and Multidisciplinary Optimization, vol. 63, no. 3. 2021. doi: 10.1007/s00158-021-02881-8.

[16] Y. Wang, F. Chen, and M. Y. Wang, “Concurrent design with connectable graded microstructures,”

Computer Methods in Applied Mechanics and Engineering, vol. 317, 2017, doi:

10.1016/j.cma.2016.12.007.

[17] K. Liu, A. Tovar, E. Nutwell, and D. Detwiler, “Towards nonlinear multimaterial topology optimization

using unsupervised machine learning and metamodel-based optimization,” in Proceedings of the ASME

Design Engineering Technical Conference, 2015, vol. 2B-2015. doi: 10.1115/DETC201546534.

[18] R. Kulagin, Y. Beygelzimer, Y. Estrin, A. Schumilin, and P. Gumbsch, “Architectured Lattice Materials

with Tunable Anisotropy: Design and Analysis of the Material Property Space with the Aid of Machine

Learning,” Advanced Engineering Materials, vol. 22, no. 12, 2020, doi: 10.1002/adem.202001069.

[19] N. Després, E. Cyr, P. Setoodeh, and M. Mohammadi, “Deep Learning and Design for Additive

Manufacturing: A Framework for Microlattice Architecture,” JOM, vol. 72, no. 6, 2020, doi:

10.1007/s11837-020-04131-6.

[20] S. Kumar, S. Tan, L. Zheng, and D. M. Kochmann, “Inverse-designed spinodoid metamaterials,” npj

Computational Materials, vol. 6, no. 1, 2020, doi: 10.1038/s41524-020-0341-6.

[21] D. A. White, W. J. Arrighi, J. Kudo, and S. E. Watts, “Multiscale topology optimization using neural

network surrogate models,” Computer Methods in Applied Mechanics and Engineering, vol. 346, 2019,

doi: 10.1016/j.cma.2018.09.007.

[22] O. Sigmund and K. Maute, “Topology optimization approaches: A comparative review,” Structural and

Multidisciplinary Optimization, vol. 48, no. 6. 2013. doi: 10.1007/s00158-013-0978-6.

[23] M. Królikowski and D. Grzesiak, “Technological Restrictions of Lightweight Lattice Structures

Manufactured by Selective Laser Melting of Metals,” Advances in Manufacturing Science and

Technology, vol. 38, no. 2, 2014, doi: 10.2478/amst-2014-0012.

52




