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Abstract 

Additively manufactured nitinol enables the design and rapid prototyping of the shape 
memory alloy with great flexibility and cost-effectiveness in various applications. To achieve high-
density fabrication of nitinol, we utilize a Gaussian process-based Bayesian optimization method 
to efficiently optimize process parameters of the laser beam-powder bed fusion (LB-PBF) process 
in this work. Specifically, Gaussian process regression is applied to formulate a surrogate model 
between the critical process parameters (i.e., laser power, scanning speed) and the residual porosity 
of the nitinol samples. Then Bayesian optimization is integrated to successively explore the design 
space to search for the optimal process parameters. These two methods are integrated to find the 
global optimum iteratively. Compared with the traditional trial-and-error methods, the proposed 
method can quickly find the optimal process parameter for the high-quality nitinol samples, 
especially with many process parameters, and accelerate the innovations with nitinol in additive 
manufacturing.   
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1 Introduction 

Nitinol (nickel-titanium alloy) typifies a generic class of shape memory alloys ranging in 
composition from 52 to 56 weight percent nickel and balance titanium [1]. They could undergo a 
large deformation (10-30 times as much as ordinary metal), remain in the deformed shapes when 
external forces being removed, and instantaneously restore to original shapes after being heated 
over transformation temperatures (known as “pseudoelasticity”) [1-5]. Moreover, nitinol has good 
biocompatibility to the human body [6-8] and has wide applications in medical devices, ranging 
from orthodontic, archwires, endoscopic instruments to endovascular stents [9]. Concurrently, the 
global nitinol medical devices market, evaluated at $14.52 billion in 2018, is projected to expand 
at a compound annual growth rate of 8.5% from 2019 to 2027 due to increasing demands for 
minimally invasive procedures [10].  

The laser beam-powder bed fusion (LB-PBF) process is a promising additive 
manufacturing (AM) technology to provide customized nitinol medical products with reduced 
production ramp-up time and design customization [11]. This process has the following 
advantages: (1) No additional tool is needed when prototyping different products; (2) Unused 
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material could be recycled to reduce the overall material costs; (3) The product design is 
customizable through the computer-aided design.  

However, researchers found that inappropriate fabrication conditions lowered the quality 
of nitinol products, which obstructed the applications of the LB-PBF process on nitinol [12-18]. 
More specifically, improper process parameters caused defects, cracks, and inferior surface quality 
of the LB-PBF fabricated nitinol products. An energy density 𝐸𝐸  (J/mm3) has been defined in 
Equation (1) with multiple process parameters in conjunction [19]:  

𝐸𝐸 =
𝑃𝑃

𝑣𝑣 × ℎ × 𝑡𝑡
 (1) 

where 𝑃𝑃 is laser power (W), 𝑣𝑣 is scanning speed (mm/s), ℎ is hatch distancing (mm), and 𝑡𝑡 is layer 
thickness (mm). Mahmoudi et al. [12] observed high porosity experimental samples with visible 
cracks when the energy density was lower than 30J/mm3. Walker et al. [17] detected an increased 
number of defects on samples produced with constant laser power and rising scanning speed due 
to the low energy density. Contrarily, they observed that the high energy density, comprised of 
high laser power and low scanning speed, increased melt pool dynamics to negatively affect the 
powder deposition in successive layers, leading to low-density samples. Wang et al. [16] found 
large amounts of keyholes and gas pores in the sample fabricated with 120W laser power and 
400mm/s scanning speed. The numbers of keyholes were reduced remarkably with a 900mm/s 
scanning speed in their follow-up experiments, indicating the high energy density was the primary 
reason. These defects, pores, and surface cracks due to unsuitable process parameters could be the 
main sites for crack initiation, which negatively affected the fatigue behavior of the nitinol 
products [20, 21]. 

Moreover, some inappropriate fabrication conditions could cause the chemical impurities 
of the nitinol products. Since nickel is more volatile than titanium at elevated temperatures, several 
works [16-18, 22] pointed out that nickel evaporated during the LB-PBF process when the energy 
density reached a higher value above 200J/mm3. Biffi et al. [18] found that the nickel component 
decreased from 51% to 50.4% when the energy density increased from 63J/mm3 to 300J/mm3. 
Some research [22-24] indicated that a reduction of 0.85% of nickel content led to a 30ºC increase 
in the transformation temperature of nitinol. Therefore, the nickel evaporation during the LB-PBF 
process due to high energy density could handicap the pseudoelasticity property of the nitinol and 
their applications of thermal-activated products. 

 Since the relative density could reflect porosity levels and chemical impurities, many 
researchers searched for the process parameters of the LB-PBF process that produced high-density 
nitinol samples. In many works, experiments comprising different process parameters were 
conducted to find the optimal process parameters. Biffi et al. [18] ran 42 experiments involving 
seven unevenly distributed levels of laser power ranging from 30W to 175W and six levels of 
scanning speed from 500mm/s to 3000mm/s. The sample fabricated with 125W laser power and 
1250mm/s scanning speed reached the highest relative density above 99%. Walker et al. [17] 
conducted 48 experiments to study the relationship between process parameters (i.e., laser power 
and scanning speed) and relative density of LB-PBF fabricated nitinol samples. Their experiments 
covered ranges of laser power (50W to 300W) and scanning speed (250mm/s to 2000mm/s). They 
used 250W laser power and 1250mm/s to fabricate the sample with the highest relative density (> 
98%). Wang et al. [16] studied the effect of varying single process parameter on the relative density 
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of their nitinol samples. They set different levels for scanning speed, hatch distancing, and laser 
power and conducted 22 experiments in total to fabricate high-density samples (>99%) with an 
energy density of 41J/mm3. Zhu et al. [15] fabricated nine nitinol samples under different 
conditions to build an analytical model based on the Eagle-Tsai simulation model. They used the 
analytical model to find an area of fabrication conditions free of defects such as keyholes, lack of 
fusion, and balling. They produced fully dense nitinol sample (>99%) with the process parameters 
in the defect-free area. 

Besides experiments and simulations, several machine learning methods have been applied 
to improve the quality of LB-PBF fabricated nitinol products. Mehrpouya et al. [25, 26] used the 
artificial neural network (ANN) algorithm to predict functional properties of nitinol samples such 
as strain recovery ratio and transformation temperatures based on process parameters (i.e., laser 
power, scanning speed, and hatch distancing). Their ANN models achieved high accuracy (R2 
values above 0.97) on the test data. Mahmoudi et al. [12] utilized the linear discriminant analysis 
to predict the occurrences of surface cracks depending on the linear energy density (laser 
power/scanning speed) values. The accuracy of their model was above 90%. These models could 
accurately predict the functional properties of LB-PBF fabricated nitinol samples based on the 
process parameters, but they lack the capability to identify the optimal process parameters. 

In summary, there are two primary limitations among the state-of-the-art fabrication of the 
nitinol products via the LB-PBF process: (1) Inappropriate process parameters result in the low 
relative density of the nitinol products, which cripples their functions and future applications; (2) 
The related studies conducted time-consuming and costly experiments to test the effects of 
different process parameters on the relative density. In this case, we propose a nonparametric 
Bayesian framework to address these limitations by systematically combining the fabrication of 
nitinol samples through the LB-PBF process with the machine learning and optimization procedure 
in a physical-based data-driven manner. The framework enables an efficient exploration within the 
design space of process parameters to find the optimal one that leads to the fabrication of high-
density nitinol samples. Therefore, it could further unleash the potential of the LB-PBF process in 
nitinol applications. 

2 Methodology 

The objective of the Bayesian framework in the present work is to efficiently find the 
optimal process parameters (i.e., laser power and scanning speed) to fabricate high-density nitinol 
samples through the LB-PBF process. As shown in Figure 1, the proposed Bayesian framework 
encompasses developing the initial input-output dataset, applying the iterative process, and 
acquiring the optimal process parameters. The residual porosity (100% - relative density) values 
are used as the output in the initial dataset. These data enter the iterative process, which consists 
of the following steps: (1) A Gaussian process (GP)-based surrogate model builds a relationship 
between process parameters and relative residual porosity through prediction; (2) The Bayesian 
optimization explores the surrogate model to search for the optimal process parameters; (3) The 
Bayesian update adds data from new fabrications to the dataset and iterates from the first step. The 
iterative process ends when the Bayesian optimization results converge, which leads to the 
acquisition of the optimal process parameter. 
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Figure 1. The steps of the proposed Bayesian framework to find the optimal process parameter for LB-PBF fabricated nitinol 
samples. The iterative process (red arrow) will be ceased when the Bayesian optimization results converge. 

2.1 Gaussian process (GP)-based surrogate model 

For the iterative process, we first utilize Gaussian process regression (GPR) to construct 
the surrogate model for mapping the nonlinear relationship between the process parameters and 
the residual porosity based on the initial input-output dataset. The GPR has been widely used to 
build computationally inexpensive (cost less than 1 minute) and high-accuracy (low mean absolute 
prediction error) surrogate models for process optimization in additive manufacturing [27-29]. 
Hence, we use the GPR to build the surrogate model for the Bayesian optimization to search for 
the optimal fabrication condition. 

The GPR predefines a prior Gaussian distribution with mean μ and covariance C over the 
regression function 𝑓𝑓 without a parametric form: 

𝑓𝑓 ~ 𝐺𝐺𝑃𝑃(𝜇𝜇,𝐶𝐶) (1) 
Our task is to utilize the function 𝑓𝑓 to build the relationship between the process parameters 

𝒙𝒙 and residual porosity 𝑌𝑌: 

𝑌𝑌 = 𝑓𝑓(𝒙𝒙) +  𝜖𝜖            (2) 

In the present work, we assign the predictors 𝒙𝒙 as the fabrication conditions of the nitinol 
samples, which consist of the laser power and scanning speed. 𝜖𝜖 is the random noise [27]. As a 
prior, 𝐺𝐺𝑃𝑃 furnishes a notion of similarity between the fabrication conditions using its covariance 
function 𝐶𝐶(·,·) (e.g., exponential kernel function). Therefore, closer fabrication conditions lead to 
more similar residual porosity values, enhancing the predictive power of the GP-based surrogate 
model. 
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For modeling the fabrication conditions and residual porosity values, we establish training 
data comprising of various fabrication conditions (𝒙𝒙1,  𝒙𝒙2,  … ,  𝒙𝒙𝑛𝑛)  and the random variables 
𝒇𝒇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 of residual porosity values following a multivariate Gaussian distribution:  

 𝒇𝒇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 ~ 𝒩𝒩�𝝁𝝁,𝜮𝜮𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡�  (3)  

where mean 𝝁𝝁 is the expected porosity of the nitinol samples; the covariance function 𝜮𝜮𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 =
 𝑪𝑪(∙,∙) encodes the correlations among the porosity variables 𝒇𝒇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡  based on the similarity 
among their fabrication conditions (𝒙𝒙1,  𝒙𝒙2,  … ,  𝒙𝒙𝑛𝑛). For instance, one of the commonly used 
covariance functions is the exponential kernel function 𝐶𝐶�𝒙𝒙𝑡𝑡,𝒙𝒙𝑗𝑗� = 𝜎𝜎𝑓𝑓2𝑒𝑒𝑒𝑒𝑒𝑒 (− 𝑡𝑡

𝜎𝜎𝑙𝑙
), where 𝜎𝜎𝑓𝑓2 is 

the signal standard deviation, and 𝜎𝜎𝑙𝑙 is characteristic length scale and 𝑟𝑟 = �(𝒙𝒙𝑡𝑡 − 𝒙𝒙𝑗𝑗)𝑇𝑇(𝒙𝒙𝑡𝑡 − 𝒙𝒙𝑗𝑗) 
as the Euclidean distance between conditions 𝒙𝒙𝑡𝑡 and 𝒙𝒙𝑗𝑗. It is usually assumed that more similar 
fabrication conditions result in a higher correlation among porosity via the kernel function.  

The residual porosity as 𝒇𝒇′ of test data at new fabrication conditions (𝒙𝒙1′,  𝒙𝒙2′,  … ,  𝒙𝒙𝑛𝑛′) 
could be predicted by the GPR from the joint multivariate Gaussian distribution with the random 
variables 𝒇𝒇 at fabrication conditions in training data [30].  

 � 𝒇𝒇𝒇𝒇′�~𝒩𝒩 ��𝝁𝝁𝝁𝝁′� , �
𝜮𝜮 𝜮𝜮∗
𝜮𝜮∗𝚻𝚻 𝜮𝜮∗∗

��       (4) 

where the 𝜮𝜮∗  is the training-test covariance; 𝜮𝜮∗∗  is the test data covariance. The conditional 
distribution of 𝒇𝒇′ at new fabrication conditions can be written in terms of  𝒇𝒇 as:  

      𝒇𝒇′| 𝒇𝒇  ~  𝒩𝒩(𝝁𝝁,𝜮𝜮 �  )      (5) 

where the mean function 𝝁𝝁 = 𝝁𝝁 + 𝜮𝜮∗𝜮𝜮∗∗−1(𝒇𝒇′ − 𝝁𝝁′)  and the covariance matrix 𝜮𝜮� = 𝜮𝜮 − 𝜮𝜮∗𝜮𝜮∗∗−1𝜮𝜮∗T. 

2.2 Bayesian optimization 

We conduct the Bayesian optimization in a sequential design strategy to find the lowest 
predicted residual porosity value and its corresponding fabrication condition. This optimization 
algorithm attempts to find the global optimum in bounded design space with a minimum number 
of iterations and reduces the costly LB-PBF fabrications.  

The objective function of the Bayesian optimization is to minimize the regression function 
𝒇𝒇 in Eq. (2) of the GPR. Bayesian optimization incorporates prior belief about 𝒇𝒇 in a Gaussian 
process 𝐺𝐺𝑃𝑃(𝜇𝜇,𝐶𝐶)  and updates the prior with observations to get a posterior that better 
approximates 𝒇𝒇. An acquisition function is used to direct sampling to areas where an improvement 
over the current best observation is likely to occur. 

Bayesian optimization maximizes acquisition function values based on the surrogate model 
to find the next sampling point 𝒙𝒙′. The expected improvement (EI) is adopted as the acquisition 
function in this work, which is defined as the following equations: 

𝒙𝒙′ = argmax
𝒙𝒙

 𝐸𝐸𝐸𝐸(𝒙𝒙) 
   (6) 
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EI(𝒙𝒙) = 𝔼𝔼 max(𝑓𝑓(𝒙𝒙+) − 𝑓𝑓(𝒙𝒙), 0) 

where 𝑓𝑓(𝒙𝒙+)  is the lowest residual porosity values of the nitinol samples so far under the 
fabrication condition 𝒙𝒙+. According to its definition, the EI acquisition function evaluates the 
expected amount of improvement in the objective function. It is often maximized with the 
implementation of Newton’s Method.  

A high exploration ratio 𝑡𝑡𝜎𝜎 has been incorporated into Bayesian optimization to prevent 
premature convergence by overexploiting an area. To illustrate the overexploiting, we assume 
𝜎𝜎𝐹𝐹(𝒙𝒙) is the standard deviation of the posterior objective function at condition 𝒙𝒙. Let 𝜎𝜎 be the 
posterior standard deviation of the additive noise. The Bayesian optimization, after each iteration 
of the acquisition function, evaluates whether the next condition 𝒙𝒙′  satisfies the following 
equation: 

𝜎𝜎𝐹𝐹(𝒙𝒙′) < 𝑡𝑡𝜎𝜎𝜎𝜎    (7) 

In consequence, the algorithm declares that area near condition 𝒙𝒙′  is overexploiting. 
Correspondingly, the acquisition function modifies the kernel function by multiplying kernel 
parameters (𝜎𝜎𝑓𝑓 and 𝜎𝜎𝑙𝑙) with iteration numbers [31]. This adjustment enhances the correlation and 
similarity of nearby conditions, enabling the algorithm to exploit farther areas. In this work, we 
set a high 𝑡𝑡𝜎𝜎 value to encourage the algorithm to search for the potential optimal condition in the 
unexplored areas. 

2.3 Bayesian update procedure 

The Bayesian update procedure is iteratively integrated into the proposed framework to 
search for the global optimal fabrication condition. This procedure includes fabricating new 
samples based on predicted optimal conditions from the Bayesian optimization and collecting new 
data to update the surrogate model. The predicted optimal from an unexplored area tends to have 
a high variance, indicating high uncertainties. Hence, we fabricate new samples using the predicted 
optimal fabrication condition and collect new data to reduce the uncertainties of these unexplored 
areas in the surrogate model. The Bayesian optimization algorithm will explore the updated 
surrogate model to search for the optimal conditions for further new fabrications. This process is 
iterated until the optimization results converge, which indicates that the global optimum has been 
found.   

There are several benefits for applying the developed Bayesian framework to the process 
optimization of LB-PBF fabricated nitinol samples. First, it reduces the number of experiments in 
finding optimal fabrication conditions. Compared to the full factorial design, which runs all 
combinations of process parameters, this Bayesian framework could work with fewer fabrications. 
For instance, a full factorial design with five levels of laser power and scanning speed requires 
twenty-five experiments in total. The full factorial design could result in exponentially increased 
experiments if new factors are added. In contrast, in the case study, the Bayesian framework starts 
with nine fabrications and needs approximately five iterations to find the optimal fabrication 
conditions, significantly improving the efficiency and reducing the experimental cost. As the 
framework concentrates on the areas which possibly include the optimal condition based on the 
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Bayesian optimization algorithm, there is no need to cover all combinations of process parameters 
through costly experiments. More importantly, the global optimal fabrication condition could be 
found through this framework. In contrast to finding the lowest residual porosity values from the 
surrogate model through interpolation, the EI acquisition function with a high exploration ratio 𝑡𝑡𝜎𝜎 
could systematically explore the design space and prevent premature convergence of the 
optimization results. 

In summary, the proposed Bayesian framework could find the optimal fabrication 
conditions for the LB-PBF process to produce high-density nitinol samples with a reduced number 
of fabrications. It could be easily extended to process parameter optimization in the LB-PBF 
process based on other required properties (i.e., transformation temperatures, elongation, tensile 
strength) for various applications, which entitles the proposed Bayesian framework great potential 
to improve the functional properties of the LB-PBF fabricated nitinol.  

3 Case study 

The proposed Bayesian framework is applied to a real-world case study to find the optimal 
process parameter of the LB-PBF process that fabricates high-density nitinol samples. In the case 
study, the nitinol samples are fabricated as cubic blocks. We fabricate these blocks through the 
LB-PBF process with different process parameters and correspondingly extract the residual 
porosity values to build the initial input-output dataset. Afterward, we conduct the iterative process 
of the proposed Bayesian framework with two more fabrications based on the Bayesian 
optimization result at each iteration. The case study result demonstrates the feasibility and 
effectiveness of the proposed Bayesian framework. 

3.1 Data collection 

An initial batch of 9 nitinol blocks (12.7mm×12.7mm×20mm) has been fabricated through 
the LB-PBF process with different fabrication conditions. These conditions cover a range of 100W 
to 200W of laser power and 1000mm/s to 1400mm/s of scanning speed. Since this work focus on 
the effects of the laser power and scanning speed on the residual porosity, the hatch distancing, 
and layer thickness are kept as 120 µm and 30 µm, respectively, throughout the whole process.  

Figure 2 and Figure 3 display the finished nitinol blocks and their corresponding 
microstructure images. The microstructure images in Figure 3 demonstrate the effects of process 
parameters on the microstructure of the nitinol blocks. The blocks fabricated with an energy 
density lower than 30J/mm3 (e.g., blocks 1.1, 1.4, 1.7, and 1.8) have inferior qualities with a large 
number of defects shown as the dark regions. 
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Figure 2. Images showing the finished nitinol blocks through LB-PBF under different fabrication conditions. 

Figure 3. Microstructures as sectional views at X-Y direction of the nitinol blocks in the ascending order of energy density. The 
images show that blocks 1.7, 1.4, 1.1, and 1.8, fabricated with lower energy density values, have large amounts of defects shown 
as black regions. 

The proportions of the defect region are quantified as the residual porosity values. These 
values are extracted from the microstructure images, binarized to separate the defects from normal 
printings. The observed residual porosity values of the nitinol samples and their fabrication 
conditions are summarized in Table 1. Several blocks (e.g., blocks 1.3, 1.5, and 1.6) have more 
values since they obtain more microstructure images. 

Table 1. The fabrication conditions and corresponding residual porosity of the nitinol blocks. The bold number is the lowest 
residual porosity value detected from this batch of nitinol blocks. 

Condition 
numbers 

Process parameters Response 

Laser power 
(W) 

Scan speed 
(mm/s) 

Energy density 
(J/mm3) 

Observed residual porosity 
(%) 
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1.1 100 1000 27.78 28.12 24.02 - - - 
1.2 150 1000 41.67 2.88 5.60 - - - 
1.3 200 1000 55.56 3.81 6.80 4.11 8.14 3.42 
1.4 100 1200 23.15 28.29 19.33 - - - 
1.5 150 1200 34.72 4.37 7.99 7.55 8.18 - 
1.6 200 1200 46.30 4.12 5.04 3.27 7.26 - 
1.7 100 1400 19.84 21.52 - - - - 
1.8 150 1400 29.76 38.48 23.52 - - - 
1.9 200 1400 39.68 4.39 9.29 6.25 - - 

 

 

3.2 GP-surrogate model and Bayesian optimization 
 

Figure 4 and Figure 5 illustrate the surrogate model and Bayesian optimization result at the 
first iteration of the framework. According to the prediction surface shown in Figure 4(a), the area 
where the laser power is from 140~200W and scanning speed from 1000~1200mm/s has the lowest 
predicted mean residual porosity values (<5%). However, it is noticeable that the predicted mean 
residual porosity values within this area have a standard deviation from 4~10% based on the 
estimated standard deviation shown in Figure 4(b). The lowest predicted mean residual porosity 
value of 0.78% is detected with a 4.3% standard deviation at the first iteration of the Bayesian 
optimization. The corresponding laser power is 150W, and the scanning speed is 1070mm/s.  

 

 
Figure 4. (a) The prediction surface of mean residual porosity from the surrogate model at different fabrication conditions. (b) 
The estimated standard deviation at different fabrication conditions from the surrogate model.  

 

 
Figure 5. The first iteration of the Bayesian optimization with 50 evaluations to find the optimal fabrication condition. The 
lowest predicted mean residual porosity is 0.78% with 150W laser power and 1070mm/s scanning speed. 
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The results of the Bayesian optimization in terms of predicted optimal residual porosity 
values and their corresponding process parameters at each iteration are summarized in Table 2, 
comparing to the observed residual porosity values extracted from new fabrications. It can be seen 
that after the third iteration, the optimal mean residual porosity is 1.93%, with a corresponding 
fabrication condition of 163W laser power and 985mm/s scanning speed. The standard deviation 
showing the uncertainty of the prediction has been reduced to 1.21%, which indicates a higher 
prediction accuracy.  

Table 2. The results for Bayesian optimization at each iteration. For each iteration, a predicted optimal mean residual porosity 
value and its standard deviation are given. New fabrications are conducted with these predicted optimal process parameters. The 
porosity values are observed from these newly fabricated parts and used to update the surrogate model in Bayesian optimization 
for the next iteration. 

Bayesian 
optimization 

iteration 

Predicted optimal process parameters Residual porosity 

Laser power 
(W) 

Scan speed 
(mm/s) 

Energy density 
(J/mm3) 

Predicted (Std.) 
(%) 

Observed 
(%) 

1 150 1070 38.94 0.78 (4.39) 2.43~7.63 
2 160 970 45.81 1.55 (3.21) 2.36~6.18 
3 163 985 45.96 1.93 (1.21) - 

Meanwhile, the observed residual porosity values have been reduced after the second 
iteration compared to the initial dataset, indicating that the quality of the nitinol block has been 
improved due to better fabrication conditions. Moreover, the optimal process parameters appear 
to converge after the second iteration with fewer changes than after the previous iteration. More 
iterations will be helpful to verify the convergence of process parameters. 

4 Conclusion and future work 

In this work, a nonparametric Bayesian framework incorporating prediction and 
optimization based on the GP and Bayesian optimization is proposed to discover the optimal laser 
power and scanning speed of the LB-PBF process for high-density nitinol manufacturing. The GP-
surrogate model establishes the initial fabrication, and the Bayesian optimization leads to an 
efficient acquisition of optimal process parameters to fabricate high-density nitinol samples. The 
optimal process parameter trends to the convergence after a few iterations of the Bayesian 
framework. The framework can reduce the number of experiments in a data-driven manner and 
advance the innovations with nitinol in additive manufacturing. 

The authors’ future research will focus on the three aspects of this work: 

(1) Additional iterations will be conducted to substantiate the convergence of optimization
results and obtain the global optimal parameters (i.e., laser power and scanning speed)
for LB-PBF fabricated nitinol samples.
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(2) More process parameters will be involved in the proposed Bayesian framework, such 
as hatch distancing and layer thickness, which also affect the relative density of the LB-
PBF fabricated nitinol samples. The proposed Bayesian framework could be expanded 
to more process parameters with a similar process. More importantly, including these 
process parameters could provide a more comprehensive understanding of the LB-PBF 
process to improve the reliability of the proposed Bayesian framework.  

(3) The Batch Bayesian optimization method will be incorporated in the iterative process 
of the framework. The batch Bayesian optimization could provide a batch of different 
fabrication conditions within an area that may contain the optimal one. Since the batch 
production at different fabrication conditions is feasible for the LB-PBF process and 
more cost-effective than fabricating a single block. Thus, the application of batch 
Bayesian optimization will greatly enhance process parameter optimization for the 
additively manufactured nitinol. 

 

References 

[1] W. B. Cross, A. H. Kariotis, and F. J. Stimler, Nitinol characterization study. NASA, 
Langley Research Center, 1969. 

[2] D. Stöckel, "Nitinol-A material with unusual properties," Endovascular Update, vol. 1, 
no. 1, pp. 1-8, 1998. 

[3] N. B. Morgan, "Medical shape memory alloy applications—the market and its products," 
Materials Science and Engineering: A, vol. 378, no. 1, pp. 16-23, 2004/07/25/ 2004, doi: 
https://doi.org/10.1016/j.msea.2003.10.326. 

[4] G. B. Kauffman and I. Mayo, "The Story of Nitinol: The Serendipitous Discovery of the 
Memory Metal and Its Applications," The Chemical Educator, vol. 2, no. 2, pp. 1-21, 
1997/06/01 1997, doi: 10.1007/s00897970111a. 

[5]  S. Daly, K. Bhattacharya, and G. Ravichandran, "Deformation Behavior of a Shape 
Memory Alloy: Nitinol," in Engineering Systems Design and Analysis, 2008, vol. 48357, 
pp. 553-553.  

[6] M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, "Assessing the biocompatibility of 
NiTi shape memory alloys used for medical applications," Analytical and bioanalytical 
chemistry, vol. 381, no. 3, pp. 557-567, 2005. 

[7] W. Haider and N. Munroe, "Assessment of Corrosion Resistance and Metal Ion Leaching 
of Nitinol Alloys," Journal of Materials Engineering and Performance, vol. 20, no. 4, pp. 
812-815, 2011/07/01 2011, doi: 10.1007/s11665-011-9892-5. 

[8] C. Trepanier, R. Venugopalan, and A. R. Pelton, "Corrosion resistance and 
biocompatibility of passivated NiTi," in Shape memory implants: Springer, 2000, pp. 35-
45. 

[9] J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, "A review of shape memory alloy 
research, applications and opportunities," Materials & Design (1980-2015), vol. 56, pp. 
1078-1113, 2014, doi: 10.1016/j.matdes.2013.11.084. 

[10] T. M. R. (TMR). "‘Nitinol Medical Devices Market - Global Industry Analysis, Size, 
Share, Growth, Trends, and Forecast, 2019–2027’." Transparency Market Research 
(TMR). (accessed May/30, 2021). 

294

https://doi.org/10.1016/j.msea.2003.10.326


[11] G. Savio, S. Rosso, R. Meneghello, and G. Concheri, "Geometric modeling of cellular
materials for additive manufacturing in biomedical field: a review," Applied bionics and
biomechanics, vol. 2018, 2018.

[12] M. Mahmoudi et al., "On the printability and transformation behavior of nickel-titanium
shape memory alloys fabricated using laser powder-bed fusion additive manufacturing,"
Journal of Manufacturing Processes, vol. 35, pp. 672-680, 2018.

[13] T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild,
"Microstructure of selective laser melted nickel–titanium," Materials characterization,
vol. 94, pp. 189-202, 2014.

[14] H. Meier and C. Haberland, "Experimental studies on selective laser melting of metallic
parts," Materialwissenschaft und Werkstofftechnik, vol. 39, no. 9, pp. 665-670, 2008.

[15] J.-N. Zhu, E. Borisov, X. Liang, E. Farber, M. J. M. Hermans, and V. A. Popovich,
"Predictive analytical modelling and experimental validation of processing maps in
additive manufacturing of nitinol alloys," Additive Manufacturing, vol. 38, 2021, doi:
10.1016/j.addma.2020.101802.

[16] X. Wang et al., "Effect of process parameters on the phase transformation behavior and
tensile properties of NiTi shape memory alloys fabricated by selective laser melting,"
Additive Manufacturing, vol. 36, 2020, doi: 10.1016/j.addma.2020.101545.

[17] J. M. Walker, C. Haberland, M. Taheri Andani, H. E. Karaca, D. Dean, and M. Elahinia,
"Process development and characterization of additively manufactured nickel–titanium
shape memory parts," Journal of Intelligent Material Systems and Structures, vol. 27, no.
19, pp. 2653-2660, 2016.

[18] C. A. Biffi, J. Fiocchi, F. Valenza, P. Bassani, and A. Tuissi, "Selective Laser Melting of
NiTi Shape Memory Alloy: Processability, Microstructure, and Superelasticity," Shape
Memory and Superelasticity, vol. 6, no. 3, pp. 342-353, 2020, doi: 10.1007/s40830-020-
00298-8.

[19] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, "Influences of Energy Density
on Porosity and Microstructure of Selective Laser Melted 17-4PH Stainless Steel," 2013.

[20] M. Frotscher, P. Nörtershäuser, C. Somsen, K. Neuking, R. Böckmann, and G. Eggeler,
"Microstructure and structural fatigue of ultra-fine grained NiTi-stents," Materials
Science and Engineering: A, vol. 503, no. 1, pp. 96-98, 2009/03/15/ 2009, doi:
https://doi.org/10.1016/j.msea.2008.02.059.

[21] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, "Structural and
functional fatigue of NiTi shape memory alloys," Materials Science and Engineering: A,
vol. 378, no. 1, pp. 24-33, 2004/07/25/ 2004, doi:
https://doi.org/10.1016/j.msea.2003.10.327.

[22] M. Nematollahi et al., "Laser Powder Bed Fusion of NiTiHf High-Temperature Shape
Memory Alloy: Effect of Process Parameters on the Thermomechanical Behavior,"
Metals, vol. 10, no. 11, 2020, doi: 10.3390/met10111522.

[23] Y. Kim, "Fatigue Properties of the Ti-Ni Base Shape Memory Alloy Wire," MATERIALS
TRANSACTIONS, vol. 43, no. 7, pp. 1703-1706, 2002, doi: 10.2320/matertrans.43.1703.

[24] J. Frenzel, E. P. George, A. Dlouhy, C. Somsen, M. F. X. Wagner, and G. Eggeler,
"Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,"
Acta Materialia, vol. 58, no. 9, pp. 3444-3458, 2010/05/01/ 2010, doi:
https://doi.org/10.1016/j.actamat.2010.02.019.

295

https://doi.org/10.1016/j.msea.2008.02.059
https://doi.org/10.1016/j.msea.2003.10.327
https://doi.org/10.1016/j.actamat.2010.02.019


[25] M. Mehrpouya, A. Gisario, A. Rahimzadeh, M. Nematollahi, K. S. Baghbaderani, and M. 
Elahinia, "A prediction model for finding the optimal laser parameters in additive 
manufacturing of NiTi shape memory alloy," The International Journal of Advanced 
Manufacturing Technology, vol. 105, no. 11, pp. 4691-4699, 2019/12/01 2019, doi: 
10.1007/s00170-019-04596-z. 

[26] M. Mehrpouya, A. Gisario, M. Nematollahi, A. Rahimzadeh, K. S. Baghbaderani, and M. 
Elahinia, "The prediction model for additively manufacturing of NiTiHf high-
temperature shape memory alloy," Materials Today Communications, vol. 26, p. 102022, 
2021/03/01/ 2021, doi: https://doi.org/10.1016/j.mtcomm.2021.102022. 

[27] G. Tapia, S. Khairallah, M. Matthews, W. E. King, and A. Elwany, "Gaussian process-
based surrogate modeling framework for process planning in laser powder-bed fusion 
additive manufacturing of 316L stainless steel," The International Journal of Advanced 
Manufacturing Technology, vol. 94, no. 9-12, pp. 3591-3603, 2017, doi: 10.1007/s00170-
017-1045-z. 

[28] G. Tapia, A. H. Elwany, and H. Sang, "Prediction of porosity in metal-based additive 
manufacturing using spatial Gaussian process models," Additive Manufacturing, vol. 12, 
pp. 282-290, 2016, doi: 10.1016/j.addma.2016.05.009. 

[29] A. Solomou et al., "Multi-objective Bayesian materials discovery: Application on the 
discovery of precipitation strengthened NiTi shape memory alloys through 
micromechanical modeling," Materials & Design, vol. 160, pp. 810-827, 2018, doi: 
10.1016/j.matdes.2018.10.014. 

[30] R. B. Gramacy, Surrogates: Gaussian process modeling, design, and optimization for the 
applied sciences. Chapman and Hall/CRC, 2020. 

[31] A. D. Bull, "Convergence rates of efficient global optimization algorithms," Journal of 
Machine Learning Research, vol. 12, no. 10, 2011. 

 

296

https://doi.org/10.1016/j.mtcomm.2021.102022



