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Abstract

Powder Bed Fusion (PBF) faces ongoing challenges in the areas of process monitoring and
control. Standard methods for alleviating these issues rely on machine learning, which requires
costly and time-consuming training data. Expense is compounded by the perceived necessity
of using sensors with extremely high resolutions. This research avoids this cost by employing
an Ensemble Kalman Filter (EnKF), which uses measured data to correct physics-based model
predictions of the process, to monitor part internal temperature fields during building. This
work tests EnKF performance, in simulation, for two model architectures, using simulated
cameras of varying resolution as our measuring instruments. Crucially, we show that increas-
ing camera resolution produces diminishing returns in EnKF accuracy, relative to the model
predictions, with up to 81% error reduction. This result shows that current AM quality con-
trol practices with expensive sensors may be inefficient; with appropriate algorithms, cheaper
setups may be used with little additional error.

1 Introduction

Powder Bed Fusion (PBF) is a type of additive manufacturing (AM) process that builds parts
out of successive layers of metal powder in a layer-by-layer fashion. The process, Fig. 1, has
three stages. First, a layer of powder is swept over the machine base plate or a previous layer of
powder. Second, the machine heat source, either an electron beam (E-PBF, Fig. 1a) or a laser
beam (L-PBF, Fig. 1), traces a 2D pattern on top of the powder. The heat source welds the powder,
creating a region of fused material within the powder layer. Third, the base plate is indexed in the
−z direction, allowing a new layer of powder to be swept atop the old, and beginning the cycle
anew.
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Figure 1: System schematic of Powder bed fusion
(PBF) additive manufacturing. Reproduced from
[1] with permission from IEEE. (a) Input and out-
put channels for E-PBF. Measurement 2 screenshot
reproduced from [2] with permission from The Miner-
als, Metals, and Materials Society. (b) Input and out-
put channels for L-PBF and E-PBF with a slow raster
speed.

AM has demonstrated rapid adoption by in-
dustry [3], and is projected to induce broad
changes to supply chains and product design
in the near future [4] as it rapidly expands its’
market size [5]. PBF shares the features of
AM that drive this impact. These include pro-
ducing parts with unparalleled geometric com-
plexity, moving increasing amounts of produc-
tion on-site, and removing barriers to frequent
changes in product design (“customization for
free”) [3]. Despite these advantages, applying
PBF to applications that demand strict qual-
ity control (QC) remains a challenge, due to
PBF-produced parts commonly exhibiting de-
fects. These flaws include anisotropic material
properties ( [6, 7]), arising from irregular mi-
crostructures ( [8–10]), large residual stresses
( [11–13]), and porosity ( [14–18]). Histori-
cally, PBF QC has struggled with detecting and
mitigating these defects.

Industry-standard PBF QC techniques in-
volve identifying an appropriate range for the
relevant process parameters, and then check-
ing the part for defects after building is com-
plete. Historically, parameter ranges have been
identified with extensive design of experiments
(DOE) studies [19–21]. Prototype QC ap-
proaches use machine learning to help identify
these ranges [22, 23], as well as to detect cer-
tain process defects in-situ [24, 25]. Both these
approaches are time-consuming and expensive,
either because of running the DOE studies or
training the data-driven algorithms. Furthermore, they are inflexible. The parameter ranges and/or
algorithms must be reset for any nontrivial change in processing environment, such as changing
the part geometry, part material, or even the machine being used. This inflexibility could be mit-
igated by factoring physics-based models into the algorithms being trained, wherein changes in
the processing environment are modeled easily in software [24,26,27]. Although computationally
efficient strategies are being developed [28,29], historically these physics-based models have been
far too computationally expensive to run in-situ [23, 30]. A new paradigm is needed, which com-
bines the accuracy of data-driven algorithms with the flexibility of physics-based models, without
needing exhaustive datasets and without sacrificing computational efficiency.

This paper examines state estimation as a candidate for this new paradigm. State estimators
are a class of control theory algorithms that take physics-based models of the process, and correct
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the model estimations with in-situ process measurements. The estimator algorithm we implement
in this work is an Ensemble Kalman Filter (EnKF) [31], which supplies approximately 2-norm
optimal estimations of the process without needing a priori knowledge like machine learning al-
gorithms. The process we model is a 3D representation of PBF thermal physics, for certain E-PBF
and L-PBF configurations. These are simplified, linear models, to maximize computational effi-
ciency of the algorithm. Our “in-situ” measurements are a set of simulated thermal cameras that
have a varying amount of pixels, which we denote as p. The camera architectures differ for the
E-PBF and L-PBf configurations, and “image” the temperature fields of a more accurate, nonlinear
model of the same thermal physics. We simulate inaccurate knowledge of the process environment
by constructing the nonlinear model with different material properties than the linear models. We
test the ability of the EnKF to remove the errors caused by inaccurately-known material properties,
and model linearization, as a function of the model configuration and of p. By testing in simula-
tion, we limit the number of uncontrolled variables, and enable the use of error metrics that would
be impossible to implement with a physical test. In doing so, we build on the work of [1,32], where
we derive our process models and some of their control theory properties, and test the performance
of the EnKF on 2D instances of these models, respectively.

The rest of this paper is organized as follows. In Section 2, we derive our physics-based models
and present our EnKF algorithm, Algorithm 1. In Section 3, we detail the setup parameters and
procedures of our tests. Section 4 analyzes the results of these tests. We conclude our discussion
with Section 5, and supply directions of future work in this area.

2 Algorithm details

Ω, Neumann boundary 1

Γ, Neumann boundary 2

Λ, Dirichlet boundary 1

Figure 2: Description of PBF boundary conditions for
a simple part.

In this section we detail the operation of our
EnKF algorithm. Section 2.1 lists the assump-
tions that underlie our PBF thermal model. In
Section 2.2, we construct the (nonlinear) ther-
mal model, and produce two linear models
from it. Sections 2.1-2.2 summarize our work
in [32]; interested readers should consult this
publication for more detail. In Section 2.3, we
apply the EnKF to these models to correct for
inaccuracies in the linear model estimations.

2.1 Model assumptions

We describe the part geometry as a volume V ⊂R3, with the 3D spatial coordinate represented
by ξ = [x,y,z]′. As demonstrated in Fig. 2, we divide the boundary of V into three parts, S =

{Λ,Γ,Ω}. Surfaces Λ =
{

¯
ξ : z = 0

}
are the bottom faces of V . Surfaces Ω =

{
ξ̄ : z = zmax

}
are

the top faces of V . Surfaces Γ represent all other bounding faces of V . Within V , we model PBF
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heat transfer according to the flux balance (1). Here, T (ξ , t) is the temperature at ξ ∈ V , at time
t ≥ 0. In (1), the flux from the heat source, u(ξ̄ , t), (2), only takes nonzero values for ξ ∈Ω, which
we denote as ξ̄ . In (2), P(t) is the source power, rb(t) is the source beam radius, and xc(t) and
yc(t) are the coordinates of the heat source centerpoint.

ρc
∂T (ξ , t)

∂ t
= u(ξ̄ , t)−qcond−qconv−qrad, (1)

u(ξ̄ , t) =
P(t)
r2

b(t)
exp

(
−
(x

ξ̄
− xc(t))2 +(y

ξ̄
− yc(t))2

2r2
b(t)

)
. (2)

We apply the following assumptions to (1):

A1. Convection from the part into the ambient air, qconv., and radiative heat transfer between the
part and environment, qrad., are neglected because the Biot number for PBF is approximately
Bi = 0.01 [33].

A2. The loosely packed powder that surrounds the part is a poor conductor [34], therefore, con-
duction between the part and powder is negligible. This constructs a Neumann boundary
condition at surfaces Γ, ∇T · n̂ = 0 ∀ v ∈ Γ, as shown in Fig. 2, where ∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂ z

)
, · is

the vector dot product, and n̂ is the direction normal to the surface Γ.

A3. We assume that the machine base plate is an ideal heat sink. Therefore, surfaces Λ have
constant temperature T0, setting up the Dirichlet boundary condition T = T0 ∀ v ∈ Λ and t
(Fig. 2).

A4. The top layer is composed of fully-fused metal with a thermal conductivity equal to the
bulk conductivity. This represents the assumption that new material added to the part is
negligible in comparison to the volume of V , within the timescale of analysis. We invoke
this assumption to better predict the controls-theoretic properties of our linear systems [32].

These assumptions sacrifice model accuracy to construct computationally efficient linear mod-
els, which we discuss in the next section. Incorporating the EnKF corrects for errors induced by
these assumptions.

2.2 Model construction

The assumptions of Section 2.1 reduce (1) to (3), which is the well-known Fourier’s Law of
Conduction applied to V .
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∂T (ξ , t)
∂ t

=
k

ρc
∇

2T (ξ , t)∀ξ ∈V

T (
¯
ξ , t) = T0 ∀

¯
ξ ∈ Λ

∇ ·T (ξ , t) = 0∀ξ ∈ Γ

∇ ·T (ξ̄ , t) = u(ξ̄ , t)∀ ξ̄ ∈Ω.

(3)

We seek a numerical solution to (3), which begins by discretizing V into a collection of n nodes,
ξ 1, ξ 2, . . . , ξ n, connected by edges and grouped into E elements. We define the state vector, x(t),
as the temperature at all nodes, (4), and leverage the FEM theory of [35] to solve for these temper-
atures. The FEM solution to x(t) is governed by (5), where M stores heat capacitance information,
and K stores thermal conductivity information. The FEM heat input function, r(t,u(ξ̄ , t)), (6),
depends on a set of shape functions, Ne [35]. These distribute u(ξ̄ , t) among the associated nodes
of the element surface Se.

x(t) = [T (ξ 1, t),T (ξ 2, t), . . . ,T (ξ n, t)]
′ ∈ Rn, (4)

ẋ(t) = Ax(t)︸ ︷︷ ︸
A=−M−1K

+r(t,u(ξ̄ , t)), (5)

r(t,u(ξ̄ , t)) = M−1
E

∑
e=1

∫
Se

u(ξ̄ , t)Ne(t)′dSe. (6)

Constructing linear models from (5) is complex, and detailed in [32]. This process depends
on whether we consider E-PBF (Fig. 1a) or L-PBF (Fig. 1b), because different input modes and
measurement modes are available for each. The input modes govern the input-to-state relationship
of the system, which models heat application. Mathematically, this is represented by replacing
r(t,u(ξ̄ , t)) with B(t)u(t), where B(t) and u(t) are to be defined. The measurement modes govern
the state-to-output relationship of the system, which models IR cameras measuring temperatures
on Ω. Mathematically, this is represented by constructing an output equation, y(t) = C(t)x(t),
where y(t) and C(t) are to be defined.

2.2.1 Input modes

The E-PBF electron beam is capable of rastering atop the part so fast that it produces an ar-
bitrary heat flux on Ω, as shown in Input 1 of Fig. 1a. The engineer may apply an arbitrary
(non-negative) flux to any subset of regions in Ω at any time by moving the beam sufficiently
quickly. In reflection of this ability, we let u(t) ∈ Rm be the values of u(ξ̄ , t) at the centroids of all
m FEM elements with faces on Ω. All components of u(t) can change independently of the others,
which models the arbitrary flux on Ω. This constructs a linear, time-invariant (LTI) input-to-state
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relationship, r(t,u(ξ̄ , t)) ≈ Bu(t), where B distributes the fluxes of u(t) among the nodes of their
respective elements.

The L-PBF laser cannot generate an arbitrary heat flux like the E-PBF electron beam. Instead,
we must linearize r(t,u(ξ̄ , t)) with respect to any selection of Inputs 1-4, as shown in Fig. 1b.
In this work, as in [32], we select Inputs 1 and 2, denoting this input as u1(t) = [P(t),r2

b(t)]
′. In

this scheme, the laser moves along a predefined trajectory and the engineer only controls the laser
characteristics as it moves. xc(t) and yc(t) are treated as time-varying parameters of r(t,u1(t)). We
choose an operating point, u0 = [P0,r2

b,0]
′, and linearize r(t,u1(t)) to obtain r(t,u1(t))≈ r(t,u0)+

B(t)δu(t), where δu(t) = [δP(t),δ r2
b(t)] = u(t)−u0. We show in [32] that r(t,u0) = B(t)[P0,0]′,

therefore r(t,u1(t)) ≈ B(t)u(t), where B(t) follows from the linearization procedure and u(t) =
[P(t),δ r2

b(t)]
′.

2.2.2 Measurement modes

We model E-PBF machines that have an infrared (IR) camera measuring temperatures on Ω as
the system output (Measurement 2, Fig. 1a). This camera is assumed to have P pixels, arranged in
a grid, which all record T (ξ̄ , t) at fixed locations in Ω, each denoted by a coordinate pair, (xi,yi).
y(t) ∈ Rp collects the measured temperature signals at a set of p pixels from the P-pixel grid,
using methodologies explained in Section 3.2. We interpolate the signal at each component of
y(t), yi(t), from the nodes of x(t) on Ω. For such a node on Ω with coordinates (x j,x,y j,x), the
weighting coefficient is Ci j = exp

(
−((xi− x j,x)

2 +(yi− y j,x)
2)/σ2), where σ is the pixel spacing

in the grid. For all nodes not on Ω, Ci j = 0. C collects all such weights, with all entries being
divided by the sum of their respective rows, to form the state-to-output relationship y(t) = Cx(t).

L-PBF machines can be equipped with two IR cameras: an IR camera that images all of Ω

similarly to E-PBF machines (Measurement 2, Fig. 1b), and a coaxial IR camera that images the
melt pool with very high resolution (Measurement 3, Fig. 1b). For L-PBF, We consider Mea-
surement 3 to be the system output, y(t) ∈ Rp, with p being the number of selected pixels in
the camera field of view (FOV) (Section 3.2). We construct the L-PBF state-to-output relation-
ship with the same interpolation scheme as E-PBF. However, for Measurement 3, the location of
each pixel, (xi(t),yi(t)), is time-varying as the camera FOV moves with the laser. The resulting
non-zero weights, Ci j(t), become time-varying, which produces the time-varying state-to-output
relationship y(t) = C(t)x(t). An additional concern of Measurement 3 is laser turnaround. As
elaborated in Section 3.1, our simulated laser (and e-beam) trajectories incorporate skywriting, a
common industry practice where the heat source turns around while outside the part domain. We
preserve simulated image quality during skywriting as follows: If the pixel coordinate (xi(t),yi(t))
is within Ω, we divide all entries of the row Ci by the row sum. If not, no division is performed.

We generate two linear systems from these constructions, which are shown below.
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E-PBF:
ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t),

(7)

L-PBF:
ẋ(t) = Ax(t)+B(t)u(t)
y(t) = C(t)x(t).

(8)

Equations (5), (7), and (8) are expressed in discrete time by letting ẋ(tk+1) = ∆t−1(x(tk+1)−
x(tk)), where tk = k∆t for k = 0,1,2, . . . , and ∆t > 0 is the simulation time step.

2.3 EnKF algorithm

The estimations of models (7)-(8) are corrected with Algorithm 1, which we adapt from the
EnKF algorithm of [31]. In Algorithm 1, Bk and Ck denote B(tk) and C(tk), as applicable. Al-
gorithm 1 implements N Kalman filters in parallel, which generate N state estimate signals and
sensor measurements, which we group into Xk (the ensemble) and Yk, respectively. Using Xk and
Yk, we generate sample estimates of the estimation error and measurement noise covariances.

Wk in Algorithm 1 simulates process noise being injected into each of the N systems of the
algorithm. This noise captures random perturbations to the PBF thermal dynamics like turbulent
flow in the melt pool or spatter ejection. In Algorithm 1, we let Wk = [w1

k ,w
2
k , . . . ,w

N
k ], where all

wi
k ∼N (0,I) are independent, identically-distributed (IID) Gaussian random vectors. This con-

struction lets us simulate the random effects of N PBF processes simultaneously, without needing
N physical machines.

The EnKF requires N measurements of the system. In place of collecting data from N physical
sensors, as is typically done in EnKF literature, we take a singular measurement, yFEM(tk), and
copy it N times, yFEM(tk)11×N . We then corrupt these copies with independent instances of white
noise, Vk. Similarly to Wk, Vk represents yFEM(tk) being collected synchronously by multiple
identical sensors, with each reading being corrupted by random perturbances like electronic noise.
We model Vk as Vk = [v1

k ,v
2
k , . . . ,v

N
k ], where all vi

k ∼N (0,I) are IID Gaussian random vectors.

Algorithm 1 requires no a priori knowledge of the true process and measurement noise dis-
tributions to function. If the true distributions differ from those used to construct Wk and Vk,
Algorithm 1 generates P̄k|k−1 and R̄k|k−1 that represents the combination of the true and assumed
distributions. The closer the assumed distributions match reality, the smaller N can be without
sacrificing filter accuracy.

As shown in Algorithm 1, we apply localization to the estimated state covariance, P̄k|k−1.
Localization mitigates the tendency for P̄k|k−1 to produce overly-aggressive correlations between
the thermal responses of nodes that are far apart. This error is an artifact of a finite sample size,
N. Standard localization techniques, [36], reduce these artificially-high components of P̄k|k−1,

P̄i j, via the construction P̄k|k−1← F◦ P̄k|k−1, where Fi j = exp
(
− l2

i j
L2

)
. l2

i j is the Cartesian distance

325



Initialization
X̂0 ∈ R, initial state ensemble
x̂0|0, initial state estimate
while Not end of runtime do

Predict
·Xk = AX̂k−1 +Bkuk11×N +Wk, propagate state ensemble
·Yk = yFEM(tk)11×N +Vk, generate measurement ensemble
·x̄ = N−1Xk1N×1, ȳ = N−1Y1N×1 compute ensemble averages
·P̄k|k−1 = (N−1)−1(Xk− x̄11×N)(Xk− x̄11×N)

′,
R̄k|k−1 = (N−1)−1(Yk− ȳ11×N)(Yk− ȳ11×N)

′, compute ensemble covariances
·P̄k|k−1← F◦ P̄k|k−1, Apply localization
Update
·Ỹk = Yk−CkXk, compute ensemble innovation
·S̄k|k−1 = CkP̄k|k−1C′k + R̄k|k−1, compute ensemble innovation covariance
·Kk = P̄k|k−1C′kS̄†

k|k−1, compute Kalman gain

·X̂k = Xk +KkỸk, compute updated ensemble
·x̂k|k = N−1X̂k1N×1, compute EnKF estimate
·ŷk|k = Ckx̂k|k, compute Kalman output estimate

end
Algorithm 1: Ensemble Kalman Filter. † denotes pseudoinversion. ◦ denotes the Schur prod-
uct.

between nodes i and j, and L is an arbitrary hyperparameter that represents the characteristic length
of the system. We adapt this approach in two ways. First, as shown in (9), we let L = 2

√
α∆t,

the thermal diffusion length of the system [37]. Second, we do not consider li j when penalizing
distance between nodes i and j. As shown in Fig. 3, using the Cartesian distance could construct
a thermal path that leads through the powder, which we model as insulation (Assumption A.2).
Instead, we compute the exponential argument of (9), ds, for all edges in the mesh. ls is the
Cartesian length of a given edge in the mesh, and αs for each edge is averaged from the α of all
elements containing that edge. Treating all ds as edge weights, we compute the shortest weighted
distance between nodes i and j, as shown in Fig. 3, and use it to calculate Fi j, (9).

Fi j = exp

− ∑
shortest path

l2
s

4αs∆t︸ ︷︷ ︸
ds

 (9)

3 Test procedures
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Node i

Node j

d1

d2 d3

lij

Figure 3: Demonstration of computing the exponential argument of (9). The red line shows the shortest
thermal path between nodes i and j, consisting of three edges. The white space represents powder. The
dotted black line represents the cartesian distance between nodes i and j, li j.

Table 1: Material properties sets

System K [W1m−1K−1] c [J1kg−1K−1] ρ [kg1m−3]

(5) 16 500 7920

(7)-(8) 24 640 8070

3.1 Test parameters

For all tests, we generate (5), (7), and (8) from the mesh geometry of Fig. 4 and the material
properties listed in Table 1. The material properties of System (5) represent 304 stainless steel (SS)
at low temperature, and those of Systems (7)-(8) represent 304 SS at elevated temperature [38]. In
doing so, we test the ability of Algorithm 1 to compensate for systemic uncertainty in the system
structure. All tests last 5514 time steps, with ∆t = 0.0001 s.

For all tests, the heat source, (2), moved according to the following trajectory, with xc(t) and
yc(t) in meters

xc(t) = 0.01t
yc(t) = 0.0075sin(253.33︸ ︷︷ ︸

f

t)+0.0025. (10)

yc(t) in (10) corresponds to a laser that oscillates in the y-direction to a maximum of 5 mm be-
yond the part boundary in either direction. The oscillation frequency is defined as f = 2vy/0.0075,
where vy = 0.95 m/s represents the nominal speed. We let P(t) of (2) be P(t) = Pnom = 250 W
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when the heat source is overtop Ω (0≤ yc(t)≤ 0.005 m), and 0 W otherwise. For all tests involv-
ing System (7), we let rb(t) = 40 µm ∀ t ≥ 0 when constructing Systems (5) and (7). For all tests
involving System (8), we let rb,0 = 40 µm when constructing System (8) and P0 = Pnom, but let
rb(t) = 50 µm ∀ t ≥ 0 when constructing System (5). We do this because System (8) anticipates
that there is uncertainty between the nominal and actual values of rb(t).

11 mm

5 mm

5 mm

2.08 mm
R0.66 mm (x2)

Surface Ω 

Surfaces Γ 

Surface Λ
(underside) 

x

yz

Figure 4: FEM mesh used to conduct all tests, with all
geometric features dimensioned. The mesh consists
of 33,882 nodes and 186,400 elements.

To construct y(t) of Systems (7)-(8), we de-
fine two virtual IR cameras, mimicking Mea-
surements 2-3 of Fig. 1. We simulate the cam-
era of Measurement 2 with a 75 x 34 grid of
pixels, with a FOV that covers all of Ω. 75
pixels span the x-axis of Ω of Fig. 4, and 34
pixels span the y-axis. We simulate the camera
of Measurement 3 with a 50 x 50 grid of pix-
els that surround the laser centerpoint, compris-
ing a 0.324 mm x 0.324 mm FOV. We simulate
collecting data with these cameras by interpo-
lating temperatures on Ω onto the pixel grids,
as explained in Section 2.2.2. Measurements 2
and 3 are constructed from these cameras by se-
lecting pixels at random to be part of the mea-
surement (system output), as explained in the
next section. For all tests, the state-to-output
relationship of System (5) is the same as the
corresponding linear system, System (7) or (8), as applicable.

3.2 Testing schedule

Table 2 summarizes the tests we conduct in this work. Each numbered test of Table 2 has three
parts: part a (test 1a, test 2a, etc.), which runs the test on System (7), and parts b and c (test 1b,
test 2b, test 1c, etc.), which run the tests on System (8). For each triplet of tests, a portion of the
pixels from the cameras comprising Measurements 2 and 3, as applicable, are selected at random.
Table 2 lists the amount of selected pixels for each test, p, and the distribution the pixels were
drawn from. Figs. 5-6 show the selected pixels. This test schedule represents measuring Ω with
IR cameras that are increasingly inexpensive and feature lesser computational burden, but measure
increasingly less information.

The pixels for tests a and tests b are selected with Poisson disk sampling (PDS), [39], to help
ensure they are distributed evenly throughout the camera FOV as p decreases, as shown in Figs.
5-6. Our procedure for doing so is shown in Fig. 8. PDS returns a set of points within the
specified FOV, required to be mutually distant by at least a selected magnitude, but otherwise
chosen at random. These points need not be coincident with the locations of the camera pixels.
For each successive PDS point, we associate with it the closest pixel in the camera FOV that
has not yet been associated with a previous point. These pixels define our output signal, y(t) =
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Table 2: Schedule of tests. “PDS” denotes Poisson disc sampling [39].

System
Test number

Pixel count, p, and pixel distribution

Test letter 1 2 3 4 5

(7)
211 29 27 25 23

a PDS PDS PDS PDS PDS

(8)
211 29 27 25 23

b PDS PDS PDS PDS PDS

c Gauss Gauss Gauss Gauss Gauss

[y1(t),y2(t), . . . ,yp(t)]′, as described in Section 2.2.2.

By prioritizing an even distribution of selected pixels, we avoid bias in our results that would
appear if we attempted optimizing the pixel locations with respect to filter accuracy. We assess
the impact of this bias in tests c, where we select p pixels about the FOV center of Measurement
3 via the Gaussian distribution (Fig. 6). This distribution has a variance of 70 µm. We hypoth-
esize that concentrating our measurements about the hottest region of the melt pool, the center of
Measurement 3, will yield more accurate results than selecting pixels evenly about the FOV.

For each test, performance is quantified with the following set of error signals

Error 2-norms:

{
x̃2,EnKF(tk) = ||xFEM(tk)− x̂k|k||2
x̃2,OL(tk) = ||xFEM(tk)−xOL(tk)||2

Error ∞-norms:

{
x̃∞,EnKF(tk) = ||xFEM(tk)− x̂k|k||∞
x̃∞,OL(tk) = ||xFEM(tk)−xOL(tk)||∞.

Here, xFEM(tk) is the solution to System (5), xOL(tk) is the solution to Systems (7)-(8), and x̂k|k
is the solution returned by Algorithm 1. To compare the relative magnitude of these error signals,
we take the norms of these norms:

2-norms of 2-norms:

{
||x̃2,EnKF(tk)||2
||x̃∞,OL(tk)||∞

∞-norms of ∞-norms:

{
||x̃∞,EnKF(tk)||∞
||x̃∞,OL(tk)||∞.
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Figure 5: Location of selected pixels for y(t) of System (7), based on Measurement 2 of Fig. 1a, as described
in Table 2.

We find it convenient to normalize these norms-of-norms values, and introduce additional no-
tation to denote the normalized values:

||ê||2 = ||x̃2,EnKF(tk)||2/||x̃2,OL(tk)||2
||ê||∞ = ||x̃∞,EnKF(tk)||∞/||x̃∞,OL(tk)||∞

4 Results

The results of Tests 1-5 are summarized in Fig. 7. Our points of discussion are as follows: Fig.
7 reveals a lesser magnitude of ||ê||2 System (8) than (8) for all p. Even more critically, System
(8) features diminishing returns in filter accuracy (reduction of ||ê||2) with respect to increasing p,
and System (7) does not. Finally, tests c produces inferior results (larger ||ê||2 and ||ê||∞) than test
b. The remainder of this section discusses these points in detail.
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Figure 6: Location of selected pixels for y(t) of System (8), based on Measurement 3 of Fig. 1b, as described
in Table 2.

4.1 Analysis of x̃2(tk), ||ê||2, tests a and b

We begin by analyzing the filter 2-norm error, which the EnKF minimizes [31], as a func-
tion of p. We first consider tests a and b. We observe from 7 that ||ê||2 for tests b is uniformly
higher than that of tests a, up to a 3x improvement. We attribute this improvement to the fact that
Measurement 3 is much more detailed near the melt pool than Measurement 2. As explained in
Section 3.1, the pixel resolution of Measurement 2 is approximately 133 µm, and that of Measure-
ment 3 is approximately 6.48 µm. Thus, Measurement 3 collects much more detailed information
about T (ξ̄ , t) near the heat source than Measurement 2, where T (ξ , t) displays the most extreme

331



3 4 5 6 7 8 9 10 11

10-1

100

Figure 7: Norms of error norms vs pixel count, p, for all tests.

gradients. Detailed measurements of these gradients are more important than the more extensive
far-afield measurements provided by Measurement 2, and thus yield better filter performance. The
discrepancy grows as p decreases, which increases the effective pixel spacing for both tests, which
produces the increasing relative improvement of tests b shown in Fig. 7.
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selected pixels

Figure 8: Selection of pixels corresponding to the
points returned by the PDS algorithm, using the con-
figuration of Test 2b (Table 2) as an example.

Crucially, we observe that ||ê||2 decays in
magnitude as p increases for tests b. This
means that System (8) exhibits diminishing re-
turns in filter accuracy as camera resolution in-
creases, as measured by the diminishing reduc-
tion in ||ê||2. Increasingly-dense (and expen-
sive) camera measurements do not necessar-
ily translate into meaningful performance im-
provements. However, unlike ||ê||2 of tests b,
||ê||∞ of tests a does not reach an asymptote.
This is because the coaxial camera of tests b
captures no information far afield of the melt
pool. Even with an infinitely-dense pixel array
within the camera FOV, not having this infor-
mation constrains the filter’s accuracy. Since
the global camera of tests a images all of Ω,
performance always improves as p increases.

As demonstrated in Fig. 9, spikes in x̃2(tk)
are a large contributor to ||ê||2. This is particularly true for tests b. Fig. 9 shows x̃2(tk) displays
a relatively constant error floor, with improvements in ||ê||2 deriving chiefly from reducing the
magnitude of spikes above this floor. We attribute the asymptote of ||ê||2 for tests b to the invariance
of the error floor magnitude. Identifying the cause of these error spikes, to more effectively reduce
their magnitude, is a matter of ongoing research.
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Figure 9: x̃2(tk) and x̃∞(tk) for selected tests: (a) Test 1a, (b) Test 5a, (c) Test 1b, (d) Test 5b

4.2 Comparison of performance of tests b and c

As shown in Fig. 7, ||ê||2 and ||ê||∞ for tests c is comparable to those of tests b for p ≥ 128,
after which the relative performance degrades. This refutes our earlier hypothesis that tests c would
exhibit superior performance than tests b. We believe this is because the clustered measurements
do not adequately capture temperature gradients from the melt pool peak to the peripheral of the
heat affected zone (HAZ). Letting the variance of the Gaussian distribution approximate the beam
diameter (Section 3) means the majority of selected pixels measure near-peak temperatures. Espe-
cially for small p, few pixels are selected at far enough distances from the laser center to measure
temperatures within the greater HAZ. Under these conditions, the filter struggles to estimate tem-
perature gradients within the HAZ, and therefore exhibits inferior accuracy. As p increases, the
number of pixels within the greater HAZ increases, and Fig. 7 reflects the enhanced performance
of the filter. Beyond this discrepancy, the overall behavior of tests c is similar to that of tests b,
and the conclusions drawn about the behavior of tests b apply similarly. We conjecture that truly
optimal pixel distributions for extremely low p would resemble cross-shaped patterns that span the
entirety of the FOV.
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5 Conclusions

In this work, we apply an Ensemble Kalman Filter (EnKF) [31] to the problem of estimating
internal temperature distributions within parts being built by the Powder Bed Fusion (PBF) pro-
cess. The algorithm synthesizes models of the problem physics and in-situ process measurements
to correct for modeling inaccuracies without needing extensive training data. We adapt the EnKF
algorithm to make it more applicable to PBF thermal domains, and test the algorithm efficacy in
simulation. Our simulation tests consider linear 3D part models of two different configurations,
which model electron beam PBF (E-PBF) and laser PBF (L-PBF) heat transfer with the finite ele-
ment method. Our “in-situ” process measurements are simulated thermal cameras with a varying
amount of pixels, denoted p. Each model configuration uses a different simulated camera type,
in reflection of the differing hardware constraints on L-PBF and E-PBF. The simulated cameras
take measurements from a more accurate, nonlinear, process model than those used to construct
the EnKF, which also is constructed using different material properties. We compare algorithm
efficacy for both model configurations as a function of p.

Our most important result is that the EnKF, applied to the L-PBF model configuration, fea-
tures diminishing returns in 2-norm accuracy improvement as p increases, reaching a horizontal
asymptote of roughly 81% error reduction. The L-PBF configuration utilizes a coaxial infrared
camera, as is standard in PBF process monitoring. Diminishing accuracy improvements with re-
spect to increasing p means coaxial cameras with high pixel densities do not yield correspondingly
superior results relative to coaxial cameras with coarser resolutions. Process engineers seeking to
employ coaxial cameras in their quality control strategies need not incur the expense and compu-
tational difficulties of high-resolution cameras. Appropriately-designed algorithms allow coaxial
cameras with coarser resolutions, which are cheaper and feature easier-to-process data streams, to
achieve equivalent results. Our tests show that 2-norm accuracy for E-PBF configurations, which
use off-axis cameras, does not reach an asymptote. However, the poor resolution of these cameras
means resolving the melt pool would require extremely high p, which would be computationally
impractical.

We show that filter accuracy is better when measurements are taken from pixels scattered uni-
formly throughout the camera field of view (FOV), instead of measuring from pixels clustered
about the FOV center, when testing with the L-PBF configuration. This result indicates that process
engineers who are interested in optimal PBF temperature estimation should take measurements at
the peripheral of the heat affected zone in addition to measurements of the melt pool center.

Our tests also show that the L-PBF model configuration yields more accurate EnKF estimations
than the E-PBF configuration, relative to their respective model predictions in the absence of the
filter, for all p. We believe this is because the camera available to L-PBF is trained on the melt pool
with very high resolution, whereas the E-PBF camera primarily captures far-afield temperatures
and lacks the resolution to image the melt pool clearly. The melt pool provides the most useful
information about PBF thermal dynamics, which results in the EnKF providing superior results
when using data from the L-PBF camera. We believe this difference explains why the ∞-norm
accuracy of the filter for the E-PBF configuration is relatively invariant to p when p is small.
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Critically, this performance is obtained in the absence of the extensive libraries of training data
that are usually required for PBF temperature field estimation algorithms. We do not believe that
this algorithm will completely eliminate the need for training, but we anticipate that continuing to
refine our approach will greatly reduce this burden while still offering good results.

Several avenues of research follow from this work. First, we are planning to collect experi-
mental data so that we can test EnKF accuracy outside of simulation. We also intend to assess
the improvements in filter accuracy if we synthesize data from multiple cameras into our measure-
ments. The model configurations presented in this work incur large computational expense, which
could be eliminated with the incorporation of adaptive meshing techniques. Estimation algorithms
like the EnKF are necessary to apply control theory-based feedback control algorithms, the effi-
cacy of which must be tested. Ultimately, this research represents progress towards making PBF
quality control as independent of expensive training data as possible, which we believe delivers
significant value to the industry.
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