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Abstract 
 

Advanced thermal imaging is increasingly invested in direct energy deposition (DED) additive 
manufacturing (AM) to cope with information visibility of melt pool and tackle process 
inconsistency. However, there are key challenges regarding the feasibility of current image-guided 
monitoring methodologies in the DED process. First, high-resolution thermal images consist of 
millions of pixels captured by hundreds of frames lead to the curse of dimensionality in analysis. 
Second, the presence of various exogenous noise, ill-structured data, and significant cluster 
imbalance limit the capability of the current methodologies to perform real-time monitoring. The 
objective of this research is to advance the frontier of melt pool monitoring in DED process by 
designing an automated and unsupervised anomaly detection on high-dimensional thermal image 
data. Specifically, we develop a variational autoencoder to generate a low-dimensional 
representation of each input thermal image data. A Gaussian mixture model and K-Mean clustering 
are integrated with the generative model to split latent space into homogenous regions and detect 
anomalies. Experimental results show that the proposed methodology is highly effective in 
detecting defective melt pools with accuracy up to 94.52% and a false alarm rate of less than 2.1%.   
 

Introduction 
 

The ability of metallic additive manufacturing (AM) to produce intricate geometry parts (e.g., 
lattice structures and internal channels) from hard-to-process materials (e.g., Ti-6Al-4V and 17-
4PH alloys) manifests their potential to revolutionize fabrication. This popularity is further driven 
by virtue of higher design flexibility, shorter development time, lower tooling cost, and less 
production waste. The manufacturing flexibility offered by AM is valuable in a variety of strategic 
applications ranging from aerospace to biomedical. For instance, using AM to make components 
for the Cessna Denali aircraft engine reduced the number of components from 855 to 12, and 
improved the fuel efficiency of the engine, as well as its power by over 10 percent [1]. However, 
the significant challenge of metal AM is the occurrence of various defects such as cracks, 
delamination, distortion, rough surface, lack of fusion, porosity, foreign inclusions, process 
instability (keyhole and balling), which in turn, deteriorate the builds strength, residual stress, 
hardness, and fatigue life [2-4]. As a result, the quality and reliability issues seen in many metals 
AM hamper further proliferation of this technology in mission-critical applications [5]. 

  
Porosity is the prominent type of defect in AM. The occurrence can be traced back to rapid 

solidification of AM parts, entrapped gas, incomplete powder melting, and lack of fusion [6]. The 
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thermal distribution of melt pool has received significant attention as a quality indicator since it 
provides underlying information about the complex physical and metallurgical processes, 
including heating, melting, Marangoni convection, evaporation, solidification, and morphology. 
In particular, the abnormal behavior of melt pool can be directly correlated to the formation of 
porosity, the most common type of defect in metallic AM. 

Current defect detection methodologies are (1) offline (X-ray computed tomography (XCT) 
and ultra-sonic scanning) or (2) lumped-mass formulations, which are time-consuming, costly, and 
less effective with large-size builds [7]. Advancement in in-situ sensing technology provides an 
unprecedented opportunity for on-the-fly melt pool monitoring in various AM processes such as 
powder bed fusion (PBF) and direct energy deposition (DED). Significantly, the DED process 
offers the capability to produce and repair high-value and large-size components using Laser 
Engineered Net Shaping (LENS) and Direct Metal Deposition (DMD) systems. However, they 
suffer from a lack of part consistency and quality.  

Images of the melt pool capture key thermal activities during the DED process, thus providing 
the most direct evidence of microstructural anomalies. For example, the small melt pool 
connecting to adjacent melt pools may cause porosity defects due to the presence of unmelted 
powder. Also, a large melt pool may develop remelting and overheating problems. The current 
image-guided monitoring focuses on analyzing the morphological features (e.g., length, depth, 
area, and size) or thermal distribution (average and maximum temperature) of melt pool. Therefore, 
the detection capability significantly relies on the quality of handcrafted features used in 
unsupervised learning models such as K-means [8], Gaussian mixture model (GMM) [9], and 
spectral clustering [10]. Recently, deep neural networks (DNNs) have shown remarkable ability 
in image-guided learning and autonomous feature extraction [11-13]. DNNs are less dependent on 
domain knowledge and simultaneously learn morphological features and thermal distribution 
through backpropagation by utilizing various building blocks (e.g., fully connected, convolutional, 
and pooling layers). However, there are fundamental challenges to the-state-of-the-art monitoring 
methods using thermal image streams:  

1. High dimensionality and velocity: high-resolution images are comprised of thousands and
millions of pixels. A standard video camera collects 24 frames per second, whereas a high-
speed camera may acquire thousands of frames per second, which is a hurdle for real-time and
image-guided monitoring.

2. Data structure: The low signal-to-noise ratio due to the DED by products (e.g., spatters,
splashes, and fumes) significantly challenges the meaningful extraction of information.
Furthermore, ill-structured data (e.g., different melt pools varying in sizes) and significant
cluster imbalance (i.e., low number of defective images compared to the entire data) introduce
uncertainty into the analysis. Hence, there is a dire need for robust methodologies that account
for this uncertainty and realize real-time melt pool monitoring in DED.

The present research investigation is aimed at filling these gaps by developing an integrated
deep generative model and unsupervised learning to automatically encode and discriminate 
meaningful patterns of variation in morphology and thermal distribution of images with significant 
cluster imbalance. Specifically, we design a variational autoencoder (VAE) model consists of an 
encoder (i.e., a recognition network) that converts the input to a latent representation and a decoder 
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(i.e., a generative network) that transforms the internal latent representation to the outputs. The 
VAE forms an information bottleneck, compresses high-dimensional image data into a low-
dimensional latent space, and forces the encoder to extract the most critical features of defects into 
a continuous and meaningful embedding. Then, the GMM and K-mean clustering as unsupervised 
models are integrated with the variational information bottleneck to disentangle melt pool image 
data through useful discriminative features.  

 
We evaluate and validate the proposed methodology with a real-world case study on thermal 

images captured from an OPTOMEC LENS 750 machine equipped with 1-kW Nd:YAG laser, 
pyrometer, and in-chamber thermal camera, which is used to build single track Ti-6A1-4V thin 
walls in Mississippi State University. Also, XCT of specimens are utilized to compare the 
predicted locations of pores based on the proposed methodology with their actual locations. The in-
situ sensing and process monitoring and control are the next vertical steps to mitigate scrap and 
rework rates and further ensure the economic viability of AM. This project will eventually lead to 
the minimization of porosity during manufacturing as well as the maximization of final part 
strength and fatigue resistance.  

 
The remainder of this paper is organized as follows: We first provide a literature review on the 

relevant methods of sensor-based flaw detection and melt pool characterization. Then the proposed 
deep generative model and unsupervised learning methodology are provided. Experimental design 
and materials along with experimental results on thin-wall structures are given in the next two 
sections. In the end, we conclude this paper by highlighting gaps in existing characterization 
methodologies for defect monitoring, then provide an overview of the proposed methodology. 
 

Research Background 
 
Sensor-based flaw detection: 

Although empirical process mapping approaches have been utilized to avoid porosity, the 
occurrence of arbitrary defects is prevalent due to the dynamic condition of the DED process. Such 
random defects demand expensive and time-consuming post-build characterization. The XCT 
scanning and ultrasonic signal are among the most common offline sensing methods for defect 
characterization. The ultrasonic analysis is primarily investigated to quantify the mechanical 
strength and porous structure and find internal defects such as cracks, voids, delamination, to name 
a few [14]. However, it is sensitive to the selective layers of samples and ineffectual to capture 
pores between layers [15]. XCT has been extensively utilized not only to characterize the porosity 
level of build but also to link the variation in process parameters to the quality of final build [16, 
17]. The limitations of the offline characterization methods are associated with cost and required 
time for analysis and the time restraint to leverage the unique layer-by-layer building mechanism 
of AM for in-process correction/control of defects before the next layer is built.  

 
In-situ detection of defects using sensor signatures suggests the promise of reduced inspection 

cost and increased confidence in part quality. Five main types of signals are usually collected 
during the fabrication process; namely, visible lights and ultraviolet (UV) emitted from the plasma, 
IR emitted from the melt pool, ultrasonic waves from solid structure, audible sounds from air, and 
electric signals from plasma [18]. These signals can be captured with the photodiode, high-speed 
charge-coupled device (CCD) camera, complementary metal oxide semiconductor (CMOS) 
camera, and acoustic transducer [19, 20]. 
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Acoustic signals are collected from the plasma that is generated at the powder bed surface. 
Using underheating or overheating of metal powder, the surface temperature of parts varies and 
causes a change in plasma density. Fluctuation of atmospheric pressure along with variation of 
plasma density impact the acoustic intensity and can be exploited as a process signature [21]. 
Although acoustic signals can also provide a high temporal resolution for tracking the location of 
defects more accurately, the background noise is noticeable for many AM processes, particularly 
for the laser metal AM processes that leverage inert gas in their chambers [22]. Optical-based 
techniques are the most widely adopted in-process monitoring methods in the DED community. 
Digital cameras, high-speed cameras, and infrared (IR) thermal cameras are commonly used to 
capture optical signals. In some cases, photodiodes and pyrometers can provide supplementary 
information [23]. Note that CCD or CMOS cameras fitted with near infrared (NIR) filters or 
infrared pyrometers are implemented to measure the shape, size, or temperature of the melt pool 
[24]. Photodiodes are integrated with the tube or nozzle to quantify the powder flow rates [25]. A 
camera is employed to ascertain the clad height in DED [26]. In addition, optical emission 
spectroscopy has been applied to monitor the optical emission above the melt pool that is created 
by a high-energy vapor plume [27]. 

Melt pool monitoring and characterization: 
Melt pool images are the most informative process signatures for in-situ monitoring, as the 

shape and temperature of melt pools determine the occurrence of defects and dimensional accuracy. 
Therefore, various researchers have been designed statistical and machine learning methods to 
leverage sensing data from the melt pool for defect detection [28]. Khanzadeh et al. [29] 
investigated the effect of the heated zone on the emergence of flaws in DED. They demonstrated 
that by monitoring the features of melt pool images obtained from functional principal component 
analysis (FPCA) of dual-wavelength imaging pyrometer data, the onset of lack-of-fusion defects 
could be predicted through machine learning. Grasso et al. [30] integrated the plume images from 
an IR camera with a sampling frequency of 50 Hz and a spatial resolution of 320 × 240 pixels. The 
grayscale normalization was performed, and the regions of interest were extracted by image 
thresholding and segmentation. As such only the relevant portion of the image was used to 
effectively reduce computational cost and processing time of monitoring. 

Supervised ML methods, including multilayer perceptron (MLP) and support vector machine 
(SVM), were applied to differentiate the distinctive thermal signatures of melt pools of overhang 
sections from bulk sections [31]. Kwon et al. [32] utilized the high-speed camera to simultaneously 
collect melt pool images and location information under different laser powers. DNNs were 
applied to accurately classify melt pool images concerning different laser powers, as it resulted in 
different levels of porosity. Although SVMs and DNNs may detect anomalies through melt pool 
images in DED, the lack of label in real-time sensing limit the ability of these supervised learning 
methods. To tackle this problem, K-means clustering was employed to detect and locate such 
defects in an unsupervised manner. The K-mean disentangled data since intensity profiles of melt 
pool images pixels of overheated regions significantly differ from the normal melting state [33]. 
Self-organizing map (SOM) is also applied to thermal profiles of melt pools to identify abnormal 
melt pools and predict porosity [5].  

Although unsupervised learning is capable of differentiation of melt pool images based on the 
inherent structure in data, the lack of feature representation from ill-structured and noisy data limits 
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the capability to form a continuous and meaningful latent space. On the other hand, variational 
autoencoders have shown remarkable performance in unsupervised generative modeling of high-
dimensional noisy data caused by complex distributions. VAEs as neural network-based models 
include two steps: encoding and decoding. The encoding step extracts nonlinear features 
automatically from original images to a low dimension matrix, which is called latent space. Then, 
extracted features could be converted to reconstructed images [34]. However, little has been done 
to leverage the sparse representation using VAEs for real-time defect detection in the DED process. 

 
Research Methodology 

 
This section presents the proposed methodology of sparse representation and unsupervised 

learning for defect monitoring using melt pool images in DED. As shown in Figure 1, our 
methodology is divided into the following steps: (1) melt pool image data acquisition, (2) synthetic 
data generation, (3) deep generative modeling, and (4) unsupervised learning of defects.  

 
Here, the VAE consists of an encoder (i.e., a recognition network) that converts the input to a 

latent representation and a decoder (i.e., a generative network) that transforms the internal latent 
representation to the outputs. 
 
Part 1: Deep generative model for sparse representation: 

The essence of VAE is to learn a stochastic mapping between the input space 𝒙𝒙 with complex 
empirical distribution and latent space 𝒛𝒛 with simpler distribution. The latent space 𝒛𝒛 could be 
considered as a generated model with a joint distribution 𝑝𝑝𝜽𝜽(𝒙𝒙,𝒛𝒛). 

Figure 1. The flowchart of the proposed methodology for space representation and unsupervised 
learning of melt pool images in DED process. 

381



𝑝𝑝𝜃𝜃(𝒙𝒙,𝒛𝒛) = 𝑝𝑝𝜽𝜽(𝑧𝑧)𝑝𝑝𝜽𝜽(𝒙𝒙|𝒛𝒛) (1) 
where 𝜽𝜽 is a vector of the model’s parameter,  𝑥𝑥  and 𝑧𝑧  represent each thermal image and the 
expression of 𝒙𝒙 on latent space. The 𝑝𝑝𝜽𝜽(𝒛𝒛) is a prior distribution over latent space and 𝑝𝑝𝜽𝜽(𝒙𝒙|𝒛𝒛) is 
a stochastic decoder, a new distribution of 𝒙𝒙 which is close to the original one conditioned on  𝒛𝒛.   

 
For VAE, the encoder and decoder are two neural networks and the likelihood function for 

training can be represented as Evidence Lower Bound (ELBO) [5]. The ELBO is the objective 
function of VAE and optimize the distribution 𝑞𝑞 over latent space 𝑧𝑧 as an approximation to the 
true posterior, 𝑝𝑝𝜽𝜽(𝒛𝒛|𝒙𝒙).  In the following equations 𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙) represents the stochastic encoder: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜽𝜽(𝒙𝒙) = 𝐸𝐸𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜽𝜽(𝒙𝒙)] = 𝔼𝔼𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙) �log �
𝑝𝑝𝜽𝜽(𝒙𝒙,𝒛𝒛)
𝑝𝑝𝜽𝜽(𝒛𝒛|𝒙𝒙)�� (2) 

                                     = 𝔼𝔼𝑞𝑞𝜙𝜙(𝒛𝒛|𝒙𝒙) �log �𝑞𝑞𝝓𝝓
(𝒛𝒛|𝑥𝑥)

𝑝𝑝𝜽𝜽(𝒛𝒛|𝒙𝒙)�� + 𝔼𝔼𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙) �log � 𝑝𝑝𝜽𝜽(𝒙𝒙,𝒛𝒛)
𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)�� (3) 

 The first part of Eq. (3) denotes Kullback-Leibler (KL) divergence between 𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙) and 
𝑝𝑝𝜽𝜽(𝒛𝒛|𝒙𝒙): 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)||𝑝𝑝𝜽𝜽(𝒛𝒛|𝒙𝒙)) = 𝔼𝔼𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)[log[𝑝𝑝𝜽𝜽(𝒛𝒛|𝒙𝒙)]]− 𝔼𝔼𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)�log�𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)�� ≥ 0 (4) 

If and only if 𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙) equivalents to the true posterior distribution, the above Equation has a 
value of zero. The second part of Equation (3) denotes ELBO: 

                                     ℒ𝜽𝜽,𝝓𝝓(𝑥𝑥) = 𝔼𝔼𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙) �log �
𝑝𝑝𝜽𝜽(𝒙𝒙,𝒛𝒛)
𝑞𝑞𝝓𝝓(𝒛𝒛|𝑥𝑥)�� (5) 

                                             = 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜽𝜽(𝒙𝒙)− 𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)||𝑝𝑝𝜽𝜽(𝒛𝒛|𝒙𝒙)) (6) 

                                                    ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜽𝜽(𝒙𝒙) (7) 

       KL-divergence shows the magnitude of distinction between two distributions. The less the 
KL-divergence is, the much similar the distributions of encoder and decoder are. The goal of VAE 
is to maximize 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜽𝜽(𝒙𝒙) and to minimize the difference between 𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙) and 𝑝𝑝𝜽𝜽(𝒛𝒛|𝒙𝒙) . One of 
the most important properties of ELBO is that it allows us to use stochastic gradient descent (SGD) 
or Adam (i.e., an algorithm that combines properties of AdaGrad and RMSProp algorithms to 
handle sparse gradients on noisy problems) for joint optimization of encoder and decoder  [35]. 
We random assign initial values of parameters (𝝓𝝓 and 𝜽𝜽), and they will be stochastically optimized 
until convergence. To make the formulation tractable in VAE, we usually assume that 𝑞𝑞𝝓𝝓(𝒛𝒛|𝑥𝑥) 
follows Gaussian distribution: 

𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙) = 𝑁𝑁(𝝁𝝁,𝝈𝝈2) (8) 
where 𝝁𝝁,𝝈𝝈  are mean and standard deviation of latent space obtained from the encoder. Setting 
𝒛𝒛 = 𝝁𝝁 + 𝝈𝝈⊙ 𝝐𝝐, where 𝝐𝝐~𝑁𝑁(0, 𝑰𝑰) and ⊙ is the element-wise product. Then the ELBO’s Monte 
Carlo estimator could be reduced to: 

                                     ℒ𝜽𝜽,𝝓𝝓(𝒙𝒙) = 𝔼𝔼𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙) �log �
𝑝𝑝𝜽𝜽(𝒙𝒙,𝒛𝒛)
𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)�� (9) 
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= 𝔼𝔼𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)[𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝𝜽𝜽(𝒙𝒙|𝒛𝒛))]− 𝐷𝐷𝐾𝐾𝐾𝐾[𝑞𝑞𝝓𝝓(𝒛𝒛|𝒙𝒙)||𝑝𝑝𝜽𝜽(𝒛𝒛)] (10) 

=
1
𝑁𝑁
� 𝑙𝑙𝑙𝑙�𝑝𝑝𝜽𝜽(𝒙𝒙|𝒛𝒛)� −

𝑁𝑁

𝑛𝑛

1
2
� (1 + 𝑙𝑙𝑙𝑙(𝜎𝜎𝑙𝑙2) − 𝜎𝜎𝑙𝑙2 − 𝜇𝜇𝑙𝑙2)

𝐾𝐾

𝑙𝑙
 (11) 

where 𝐿𝐿 is the dimension of latent space and N is the number of thermal images. There are no 
shared latent vectors among all data points for VAE, which means the ELBO loss of each data 
point is independent. Therefore, the ELBO objective is the sum of each data point’s ELBO could 
be represented as Eq (8). For training VAE, we would like to minimize ℒ𝜽𝜽,𝝓𝝓(𝔇𝔇).  

ℒ𝜽𝜽,𝝓𝝓(𝔇𝔇) = �ℒ𝜽𝜽,𝝓𝝓(𝒙𝒙)
𝒙𝒙∈𝒟𝒟

 (12) 

We design our neural networks in a way that both encoder and decoder contain 4 layers. The 
constructions of these two neural networks are set to be different. The architecture of encoder and 
decoder neural networks are represented in Figure 2. A rectified linear activation function (ReLu) 
is applied for activation functions of all hidden layers. Our model is optimized by Adam optimizer 
to obtain a better weight for the neural network using noisy manufacturing images. 

Part 2: Synthetic minority over-sampling technique 
The unbalanced data in AM setting (i.e., low number of images representing defective regions 

compared to the whole number of images) prevents the VAE model from learning the decision 
boundary effectively. Synthetic Minority Over-sampling Technique (SMOTE), as one of the 
common methods, could generate minority cluster data to make the dataset balanced by 
oversampling the original dataset  [36]. Therefore, we leverage SVM-SMOTE to generate some 
abnormal melt pool images. For SVM-SMOTE, the borderline area is identical to the support 
vectors, which are achieved by training traditional Support Vector Machine (SVM) on the original 
datasets [33].  New data could be created by order of the first nearest neighbor to the kth nearest 
neighbor instead of choosing the neighbors randomly. In general, minority cluster (i.e., a group of 
images portraying defective region in a build) is considered as positive and majority cluster (i.e., 
non-defective) is treated as negative. SVM-SMOTE trains the SVM on the inputs firstly to get the 
set of positive support vectors 𝑺𝑺𝑺𝑺+ and distribute input among them evenly. Combine 𝑘𝑘 positive 
nearest neighbors of each 𝑺𝑺𝑺𝑺+ to get an array as 𝒏𝒏𝒏𝒏. After that, if half of 𝑚𝑚 nearest neighbors 

Figure 2. Neural networks architecture of variational autoencoder for thermal images. 
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come from negative cluster,  𝐴𝐴𝐴𝐴 = {𝑎𝑎𝑎𝑎𝑡𝑡}𝑡𝑡=1𝑇𝑇 , where 𝑇𝑇 is the number of positive support vectors, 
then is considered as an array contains the number of generated data corresponding to each positive 
𝑆𝑆𝑆𝑆. Next, we create 𝑎𝑎𝑎𝑎𝒊𝒊 new positive class data among the lines joining 𝒔𝒔𝒔𝒔𝑖𝑖+ with its k positive 
nearest neighbors. The generated melt pool images can be represented as 

𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛+ = 𝒔𝒔𝒔𝒔𝑖𝑖+ + 𝜌𝜌 × (𝒔𝒔𝒔𝒔𝑖𝑖+ − 𝒏𝒏𝒏𝒏𝑖𝑖,𝑗𝑗) (13) 

where 𝜌𝜌 ∈ [0,1] and 𝒏𝒏𝒏𝒏𝑖𝑖,𝑗𝑗 is the jth minority nearest neighbor of 𝒔𝒔𝒔𝒔𝑖𝑖+. On the contrary, the 
generated data can be expressed by 

𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛+ = 𝒔𝒔𝒔𝒔𝑖𝑖+ + 𝜌𝜌 × (𝒏𝒏𝒏𝒏𝑖𝑖,𝑗𝑗 − 𝒔𝒔𝒔𝒔𝑖𝑖+) (14) 

Finally, we could get balanced data by combining the original data and generated data. 

Part 3: T-distributed stochastic neighbor embedding dimension reduction 
T-distributed stochastic neighbor embedding (t-SNE) is one of the statistical models which

maps high-dimensional data to two or three dimensions for each data point [37]. It is a nonlinear 
dimensionality reduction algorithm, which is suitable for visualizing high-dimensional data by 
embedding it into lower dimensions. t-SNE converts the distance between the data points in the 
original space into a Gaussian distribution probability. The closer the distance in high-dimensional 
space is, the larger the probability. In our case, for vitalizing location of images after mapping 
them into latent space more clearly. t-SNE is used for reducing the dimension of latent variables 
from N to 2. It computes the proportional to the similarity of objects 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗: 

𝑝𝑝𝑗𝑗|𝑖𝑖 =
exp (−𝑑𝑑(𝒛𝒛𝑖𝑖, 𝒛𝒛𝑗𝑗)/2𝜎𝜎𝑖𝑖2)

∑ exp (−𝑑𝑑(𝒛𝒛𝑖𝑖, 𝒛𝒛𝑗𝑗)/2𝜎𝜎𝑖𝑖2)𝑘𝑘≠𝑖𝑖
,𝑝𝑝𝑖𝑖|𝑖𝑖 = 0 (15) 

where 𝒛𝒛𝑖𝑖 is the latent variables of a melt pool image, 𝑖𝑖, 𝑗𝑗 ∈ 𝐿𝐿, and 𝑖𝑖 ≠ 𝑗𝑗. After mapping 𝒛𝒛𝑖𝑖 into 
2D, we could get 𝑦𝑦𝑖𝑖, which corresponds to 𝑧𝑧𝑖𝑖. Eq. (16) leverages Student-t Distribution to 
represent the similarity of 𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗: 

𝑞𝑞𝑖𝑖𝑗𝑗 =
(1 + ||𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗||2)−1

∑ (1 + ||𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑙𝑙||2)−1𝑘𝑘≠𝑙𝑙
, 𝑞𝑞𝑖𝑖|𝑖𝑖 = 0 (16) 

where 𝑖𝑖 ≠ 𝑗𝑗. Then the location of 𝑦𝑦𝑖𝑖 is determined by optimizing the KL divergence and the loss 
function as following: 

𝐾𝐾𝐿𝐿(𝑃𝑃|𝑄𝑄) =  �𝑝𝑝𝑖𝑖𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑖𝑖𝑗𝑗
𝑞𝑞𝑖𝑖𝑗𝑗𝑖𝑖≠𝑗𝑗

(17) 

A gradient descent algorithm is used for minimizing KL divergence. Here, 𝑦𝑦𝑖𝑖 is corresponding 
to the result of minimization. 

Part 4: Clustering models 
In this part, we are using two different methods to do the clustering: Gaussian Mixture Model 

(GMM) and K-Means. We are interested in finding out whether the latent variables of VAE explain 
their cluster. Therefore, the constructed latent values are the inputs of these two clustering methods. 
Both for K-Means and GMM are trained with an assumption that the number of clustering is 2. 
K-Means:

K-Means is an iterative clustering algorithm based on squared Euclidean distance. This method
aims to assign N observations into k clusters in which every observation belongs to a cluster with 
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the closest squared Euclidean distance. Here, 𝑘𝑘 = 2. In our study, we use standard K-Means to do 
the clustering, and the algorithm proceeds as follows: 

1. Choose a set of k means as initial cluster centroids 𝒎𝒎 = 𝒎𝒎1,𝒎𝒎2, … ,𝒎𝒎𝑘𝑘.
2. For each latent space point, calculate Euclidean distance to every centroid and assign each

observation according to the Voronoi diagram generated by the means.

𝑺𝑺𝑖𝑖
(𝑡𝑡) = {𝒛𝒛𝑝𝑝:�𝒛𝒛𝑝𝑝 −𝒎𝒎𝑖𝑖

(𝑡𝑡)� ≤ �𝒛𝒛𝑝𝑝 −𝒎𝒎𝑗𝑗
(𝑡𝑡)�

2
∀𝑗𝑗, 1 ≤ 𝑗𝑗 ≤ 𝑘𝑘} (18) 

3. Recalculate the centroids of each cluster.

𝒎𝒎𝑗𝑗
(𝑡𝑡+1) =

1

𝑺𝑺𝑖𝑖
(𝑡𝑡) � 𝒛𝒛𝑗𝑗

𝒛𝒛𝑗𝑗∈𝑺𝑺𝑖𝑖
(𝑡𝑡)

 (19) 

4. Repeat steps 2 and 3 until the convergence.

Gaussian mixture model: 
GMM is an extension of a single Gaussian probability density function. The model is 

comprised of several different single Gaussians. Each Gaussian is regarded as a cluster according 
to the different parameters of the normal probability density function (PDF). By computing the 
PDF of the input, the typical cluster of the input could be determined by a threshold. The PDF of 
inputs could be represented as Eq. (20): 

𝑃𝑃(𝒛𝒛𝑖𝑖) =  � 𝑎𝑎𝑗𝑗𝑁𝑁𝑗𝑗(𝒛𝒛𝑖𝑖;𝝁𝝁𝑗𝑗,𝚺𝚺𝑗𝑗)
𝑀𝑀

𝑗𝑗=1
 (20) 

where 𝑥𝑥𝑖𝑖 is the latent variables of an image in our case and  ∑ 𝑎𝑎𝑘𝑘 = 1𝐾𝐾
𝑘𝑘=1 . 𝑎𝑎𝑗𝑗 is the weight factor 

and denotes the probability of choosing the kth Gaussian model. With the sample points with 
unknown specified classification, the model parameters ( 𝑎𝑎,𝝁𝝁,𝚺𝚺 ) could be calculated. The 
likelihood function of {𝒛𝒛1, … , 𝒛𝒛𝑁𝑁} is: 

𝐿𝐿(𝑎𝑎,𝝁𝝁,𝚺𝚺) = 𝐿𝐿(𝒛𝒛1, … , 𝒛𝒛𝑁𝑁;𝑎𝑎,𝝁𝝁,𝚺𝚺) = �𝑝𝑝(𝒛𝒛𝑛𝑛;𝑎𝑎,𝝁𝝁,𝚺𝚺) = ��𝑎𝑎𝑘𝑘𝑁𝑁(𝒛𝒛𝑛𝑛;𝝁𝝁𝑘𝑘,𝚺𝚺𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑛𝑛=1

 (21) 

Finally, we set the derivation of 𝑙𝑙𝑙𝑙𝐿𝐿(𝑎𝑎,𝝁𝝁,𝚺𝚺) to zero and obtain optimal (𝑎𝑎,𝝁𝝁,𝚺𝚺). 

Experimental Design and Materials 

This section presents equipment for acquiring melt pool images in this real-world case study. 
An OPTOMEC Lens 750 machine equipped with a 1-kW Nd: YAG laser, pyrometer, and an in-
chamber thermal camera (Figure 3(a)) are utilized to fabricate single-track Ti-6AI-4V thin walls 
(Figure 3(b)). The experiment was performed at Mississippi State University with popular Lens 
technique in DED process that has the capability to create functionally graded materials [5]. To 
predict the porosity occurrence and the time-varying evolution of melt pool dynamics, a built-in 
thermal imaging system is integrated. Temperature distribution of the top surface of melt pool 
during fabrication is recorded by a dual-wavelength pyrometer (Stratonics, Inc.). Due to the 
specified exposure time (2.0274 𝑚𝑚𝑚𝑚) for a given collection rate of the pyrometer, the sensor could 
reduce the chance of blur resulting from motion compared to the IR camera. In this experiment, 
the laser’s scan rate and build move are set to 12.7 𝑚𝑚𝑚𝑚/𝑚𝑚 and 26 𝜇𝜇𝑚𝑚 in each exposure time. There 
is a CMOS detector applied in the pyrometer with 752 × 480 pixels and 6.45 𝜇𝜇𝑚𝑚 for each pixel 
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size. The temperature in the pyrometer has a range of 1000 to 2500℃. The exposure time and pixel 
clock to 2.0274 𝑚𝑚𝑚𝑚 and 5 𝑀𝑀𝑀𝑀𝑧𝑧, respectively.  

 

 
Because of the high image resolution (1.7 𝑀𝑀𝑀𝑀 for each melt pool image) and monitoring 

frequency, the build of a single thin wall (length = 47.81 𝑚𝑚𝑚𝑚, height = 27.56 𝑚𝑚𝑚𝑚, thickness = 
1.78 𝑚𝑚𝑚𝑚) brings about 4.7 𝐺𝐺𝑀𝑀 of image stream data.  
 

 
Figure 4. (a) The image of the thin wall, and (b) The relationship between meltpool characteristics 
and lack of fusion. 
 

Figure 4 demonstrates the potential relationship between characteristics of melt pool images 
and lack of fusion from our experimental data. Note that the color of meltpool indicates the 
temprature of the melp pool. After obtaining the data, a radon transform is applied to reconstruct 
the image using the acquired X-ray intensity readings for each of the detector elements. Then the 
individual slice images could be accumulated into a 3D reconstruction. Next, a 3D reconstruction 
could be generated by accumulation of the individual slice images. The porosity of the as-built 
part, which is derived from melt pool characteristics, is compared with the XCT characterization. 
The thermal image data are processed and stored in1564 thermal image files, each of which 
contains 480×752 cells of information. The area of the melt pool is extracted based on the melt 
pool temperature of Ti-6Al-4V(𝑇𝑇𝛾𝛾=1636◦C). Each melt pool is scaled using the coordinates of the 
peak temperature. The accuracy of prediction is examined by finding the proportion of pores, 
which are predicted correctly using the melt pool clustering method, in total pores. 

Figure 3. (a) The advanced imaging system installed in the OPTOMEC LENS 750 machine, and (b) final 
thin wall builds using Ti-6Al-4V material [5]. 
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Experimental Results 

In this section, we perform the experimental study on our dataset with the proposed 
methodology. To prevent overfitting, we perform K-fold cross validation with different fold 
numbers. Note that we have 1493 positive instances (i.e., defective images) and 71 (i.e., non-
defective images) negative instances in our data. We first performed SMOTE-SVM to balance the 
positive and negative cases for VAE construction; therefore, we have in total 2896 instances. We 
trained the VAE based on the proposed methodology and run each experiment 20 times. Note that 
each image has a size of 28 × 28. We investigate VAE-Kmeans and VAE-GMM with different 
dimensions of latent space (L=2, 5, 10, 100, 1000) and the number of folds (K = 2, 3, 4, 5). 

We first utilize the t-SNE to visualize the embedded latent space of the whole dataset. As 
shown in Figure 4, the trend of separation can be seen from a) to e). Each node in the t-SNE 
visualization is corresponding to one image in the dataset. 

Figure 4 a) shows the nodes from two classes are overlapped with each other, indicating that 
the two-dimensional latent space embedding cannot extract enough useful information to express 
the distinction of two classes. However, with the increment of the number of latent L, the 
distinction between two groups can be clearly visualized through t-SNE embedding. In Figure 4 
(e), only a few images are misclassified into the other group. 

Figure 5 illustrates the accuracy of porosity detection using the proposed VAE-KMeans and 
VAE-GMM when embedding to different numbers of latent for a) 2 folds, b) 3 folds, c) 4 folds, 
and d) 5 folds. As shown in Figure 5, the overall trend of detection accuracy increases when the 
number of latent increases. However, the number of latent that brings the best detection accuracy 
under different fold numbers varies. For example, the best choice for the number of latent L=10 
while K=2, and L=100 is a better option when K=2 since under different values of K, the number 

Figure 4. t-SNE embedding of the latent space based on the number of latent in VAE, a) number of latent 
L=2, b) number of latent L=5, and c) number of latent L=10, d) number of latent L=100, and e) number 
of latent L=1000. 
  

Figure 5. The accuracy of porosity detection using the proposed VAE-KMeans and VAE-GMM when 
embedding to different number of latent for a) 2 folds, b) 3 folds, c) 4 folds, and d) 5 folds. 
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of training data and testing data are different. The training set has more data when K=2 in 
comparison with K=3. It can be seen that less amount of training data needs more dimensions in 
latent to have a better detection accuracy. Also, it is worth mentioning that the accuracies under 
L=1000 among the four subplots in Figure 5 are not the highest, indicating that a higher dimension 
in latent space does not necessarily mean that it can capture all the hidden information from melt 
pool images and provide a better detection result. Instead, it might pick redundant features from 
the images. As shown in Figure 5 (c) and Figure 5 (d), the accuracies under different L could reach 
0.9. Even though the accuracies when 𝐿𝐿 = 100 are the highest among all experiments when 𝐾𝐾 =
5, all accuracies under different L are higher than 0.7 when 𝐾𝐾 = 4, which means it performs better 
than 𝐾𝐾 = 5 and the computational cost is lower. Overall, K=4 results in a better porosity detection 
accuracy with the consideration of the computational complexity. Further, we construct the 
confusion matrix and report the sensitivity (SEN), specificity (SPC), precision (PPV), and F-scores, 
respectively, under 𝐾𝐾 = 4. The results of the experiment are provided in Table 1. 

Table 1. Sensitivity (SEN), specificity (SPC), precision (PPV), and F-scores of porosity detection 
using the proposed VAE-KMeans and VAE-GMM model when K=4. 

Number 
of Latent 

Sensitivity (SEN) Specificity (SPC) Precision (PPV) F-score
K-Means GMM K-Means GMM K-Means GMM K-Means GMM 

L=2 81.43% 75.54% 93.85% 93.11% 92.13% 89.47% 85.13% 79.62% 
L=5 81.53% 84.63% 94.86% 95.26% 92.33% 93.06% 85.31% 86.98% 

L=10 76.00% 74.97% 89.37% 87.91% 86.60% 85.71% 79.63% 77.42% 
L=100 86.06% 85.59% 94.12% 93.86% 93.07% 93.09% 88.55% 87.05% 

L=1000 72.87% 71.59% 91.70% 91.30% 88.53% 89.26% 78.64% 75.87% 

Sensitivity, Recall, Precision, F-score, which account for the accuracy, are represented by the 
following equations,  

𝑆𝑆𝑆𝑆𝑙𝑙𝑚𝑚𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑦𝑦 (𝑆𝑆𝐸𝐸𝑁𝑁) =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
(22) 

𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑦𝑦 (𝑆𝑆𝑃𝑃𝑆𝑆) =
𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃
(23) 

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙𝑙𝑙 (𝑃𝑃𝑃𝑃𝑆𝑆) =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
(24) 

𝐹𝐹 − 𝑚𝑚𝑆𝑆𝑙𝑙𝑃𝑃𝑆𝑆 =
2 × (𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑇𝑇𝑃𝑃𝑃𝑃)

𝑃𝑃𝑃𝑃𝑆𝑆 + 𝑇𝑇𝑃𝑃𝑃𝑃
(25) 

where TP, FN, FP, TN are representing true positive, false negative, false positive, and true 
negative in the confusion matrix, respectively. Interestingly, when 𝐿𝐿 = 100, the values of F-scores 
are highest both for K-Means and GMM, resulting in 0.885±0.0156 and 0.871±0.0172, which 
indicates the highest accuracies in terms of porosity prediction.      

Conclusion 

In-situ thermal image sensing systems are recently developed to address the quality challenge 
in DED. However, they are still at an early age and are limited in the ability to analyze generated 
data in real-time. The presence of high-dimensional, low signal-to-noise ratio, and ill-structured 
data without annotation hinders real-time defect detection in the process. There is an urgent need 
to integrate real-time thermal image data with newly developed machine learning methods and 
realize the qualify-as-you-build paradigm in DED. We validate the proposed porosity prediction 
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method by benchmarking against the X-ray CT characterization of a Ti-6Al-4V thin wall build 
fabricated using a LENS system. The comparative study with a previous work that focuses on the 
morphological features of melt pools (e.g., area, length, width, etc.) shows significant 
improvement in prediction accuracy. The clustering based on morphological features fails to form 
distinct clusters, which indicates that simple features are not sufficient for the identification of 
anomalies. The structure of melt pool images can be learned through the sparse representation 
model that encodes both morphological features and thermal distribution automatically.  

Acknowledgment 

The authors gratefully acknowledge the valuable contributions from the Center for Advanced 
Vehicular Systems (CAVS) at Mississippi State University for this research. 

Reference 

[1] A. Gaikwad, R. Yavari, M. Montazeri, K. Cole, L. Bian and P. Rao, "Toward the digital
twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to
detect process faults," IISE Transactions, vol. 52, (11), pp. 1204-1217, 2020.

[2] F. Imani, A. Gaikwad, M. Montazeri, P. Rao, H. Yang and E. Reutzel, "Process mapping
and in-process monitoring of porosity in laser powder bed fusion using layerwise optical
imaging," Journal of Manufacturing Science and Engineering, vol. 140, (10), 2018.

[3] B. Torries, A. Imandoust, S. Beretta, S. Shao and N. Shamsaei, "Overview on
microstructure-and defect-sensitive fatigue modeling of additively manufactured
materials," Jom, vol. 70, (9), pp. 1853-1862, 2018.

[4] B. Torries, R. Shrestha, A. Imandoust and N. Shamsaei, "Fatigue Life Prediction of
Additively Manufactured Metallic Materials Using a Fracture Mechanics Approach," Solid
Freeform Fabrication, pp. 11811190, 2018.

[5] M. Khanzadeh, S. Chowdhury, M. A. Tschopp, H. R. Doude, M. Marufuzzaman and L.
Bian, "In-situ monitoring of melt pool images for porosity prediction in directed energy
deposition processes," IISE Transactions, vol. 51, (5), pp. 437-455, 2019.

[6] F. Imani, A. Gaikwad, M. Montazeri, P. Rao, H. Yang and E. Reutzel, "Layerwise in-
process quality monitoring in laser powder bed fusion," in ASME 2018 13th International
Manufacturing Science and Engineering Conference, 2018, p. V001T01A038.

[7] M. Khanzadeh, P. Rao, R. Jafari-Marandi, B. K. Smith, M. A. Tschopp and L. Bian,
"Quantifying geometric accuracy with unsupervised machine learning: Using self-
organizing map on fused filament fabrication additive manufacturing parts," Journal of
Manufacturing Science and Engineering, vol. 140, (3), 2018.

[8] A. Bansal, M. Sharma and S. Goel, "Improved K-mean clustering algorithm for prediction
analysis using classification technique in data mining," International Journal of Computer
Applications, vol. 157, (6), pp. 975, 2017.

[9] J. J. Verbeek, N. Vlassis and B. Kröse, "Efficient greedy learning of Gaussian mixture
models," Neural Comput., vol. 15, (2), pp. 469-485, 2003.

[10] J. Liu and J. Han, "Spectral clustering," in Data ClusteringAnonymous Chapman and
Hall/CRC, 2018, pp. 177-200.

389



[11] F. Imani, R. Chen, E. Diewald, E. Reutzel and H. Yang, "Deep learning of variant
geometry in layerwise imaging profiles for additive manufacturing quality control,"
Journal of Manufacturing Science and Engineering, vol. 141, (11), 2019.

[12] A. Gaikwad, F. Imani, H. Yang, E. Reutzel and P. Rao, "In Situ Monitoring of Thin-Wall
Build Quality in Laser Powder Bed Fusion Using Deep Learning," Smart and Sustainable
Manufacturing Systems, vol. 3, (1), 2019.

[13] A. Mirzaei, A. Zarei-Hanzaki, M. H. Pishbin, A. Imandoust and S. Khoddam, "Evaluating
the hot deformation behavior of a super-austenitic steel through microstructural and neural
network analysis," Journal of Materials Engineering and Performance, vol. 24, (6), pp.
2412-2421, 2015.

[14] A. Chabot, N. Laroche, E. Carcreff, M. Rauch and J. Hascoët, "Towards defect monitoring
for metallic additive manufacturing components using phased array ultrasonic testing," J.
Intell. Manuf., pp. 1-11, 2019.

[15] A. B. Lopez, J. Santos, J. P. Sousa, T. G. Santos and L. Quintino, "Phased array ultrasonic
inspection of metal additive manufacturing parts," J. Nondestr. Eval., vol. 38, (3), pp. 1-11,
2019.

[16] R. M. Yazdi, F. Imani and H. Yang, "A hybrid deep learning model of process-build
interactions in additive manufacturing," J. Manuf. Syst., vol. 57, pp. 460-468, 2020.

[17] F. Imani, B. Yao, R. Chen, P. Rao and H. Yang, "Joint multifractal and lacunarity analysis
of image profiles for manufacturing quality control," Journal of Manufacturing Science
and Engineering, vol. 141, (4), 2019.

[18] J. P. Kruth, M. Bartscher, S. Carmignato, R. Schmitt, L. De Chiffre and A. Weckenmann,
"Computed tomography for dimensional metrology," CIRP Annals, vol. 60, (2), pp. 821-
842, 2011.

[19] B. M. Colosimo and M. Grasso, "On-Machine Measurement, Monitoring and Control,"
Precision Metal Additive Manufacturing, pp. 102, 2020.

[20] Q. Tian, S. Guo, E. Melder, L. Bian and W. Guo, "Deep Learning-Based Data Fusion
Method for In Situ Porosity Detection in Laser-Based Additive Manufacturing," Journal of
Manufacturing Science and Engineering, vol. 143, (4), p. 041011, 2021.

[21] S. A. Shevchik, C. Kenel, C. Leinenbach and K. Wasmer, "Acoustic emission for in situ
quality monitoring in additive manufacturing using spectral convolutional neural
networks," Additive Manufacturing, vol. 21, pp. 598-604, 2018.

[22] H. Wu, Z. Yu and Y. Wang, "A new approach for online monitoring of additive
manufacturing based on acoustic emission," in ASME 2016 11th International
Manufacturing Science and Engineering Conference, 2016, p. V003T08A013.

[23] J. C. Heigel, P. Michaleris and E. W. Reutzel, "Thermo-mechanical model development
and validation of directed energy deposition additive manufacturing of Ti–6Al–4V,"
Additive Manufacturing, vol. 5, pp. 9-19, 2015.

[24] L. Song, V. Bagavath-Singh, B. Dutta and J. Mazumder, "Control of melt pool
temperature and deposition height during direct metal deposition process," The
International Journal of Advanced Manufacturing Technology, vol. 58, (1), pp. 247-256,
2012.

[25] D. A. Kriczky, J. Irwin, E. W. Reutzel, P. Michaleris, A. R. Nassar and J. Craig, "3D
spatial reconstruction of thermal characteristics in directed energy deposition through
optical thermal imaging," J. Mater. Process. Technol., vol. 221, pp. 172-186, 2015.

390



[26] J. P. Davim, C. Oliveira and A. Cardoso, "Predicting the geometric form of clad in laser
cladding by powder using multiple regression analysis (MRA)," Mater Des, vol. 29, (2),
pp. 554-557, 2008.

[27] A. R. Nassar, T. J. Spurgeon and E. W. Reutzel, "Sensing defects during directed-energy
additive manufacturing of metal parts using optical emissions spectroscopy," in Solid
Freeform Fabrication Symposium Proceedings, 2014, pp. 278-287.

[28] C. Wang, X. P. Tan, S. B. Tor and C. S. Lim, "Machine learning in additive
manufacturing: State-of-the-art and perspectives," Additive Manufacturing, pp. 101538,
2020.

[29] M. Khanzadeh, W. Tian, A. Yadollahi, H. R. Doude, M. A. Tschopp and L. Bian, "Dual
process monitoring of metal-based additive manufacturing using tensor decomposition of
thermal image streams," Additive Manufacturing, vol. 23, pp. 443-456, 2018.

[30] M. Grasso, A. G. Demir, B. Previtali and B. M. Colosimo, "In situ monitoring of selective
laser melting of zinc powder via infrared imaging of the process plume," Robot. Comput.
Integrated Manuf., vol. 49, pp. 229-239, 2018.

[31] M. Montazeri and P. Rao, "Sensor-based build condition monitoring in laser powder bed
fusion additive manufacturing process using a spectral graph theoretic approach," Journal
of Manufacturing Science and Engineering, vol. 140, (9), 2018.

[32] O. Kwon, H. G. Kim, M. J. Ham, W. Kim, G. Kim, J. Cho, N. I. Kim and K. Kim, "A deep
neural network for classification of melt-pool images in metal additive manufacturing," J.
Intell. Manuf., vol. 31, (2), pp. 375-386, 2020.

[33] M. Grasso, V. Laguzza, Q. Semeraro and B. M. Colosimo, "In-process monitoring of
selective laser melting: spatial detection of defects via image data analysis," Journal of
Manufacturing Science and Engineering, vol. 139, (5), 2017.

[34] L. Wang, Y. Chan, F. Ahmed, Z. Liu, P. Zhu and W. Chen, "Deep generative modeling for
mechanistic-based learning and design of metamaterial systems," Comput. Methods Appl.
Mech. Eng., vol. 372, pp. 113377, 2020.

[35] D. P. Kingma and J. Ba, "ADAM: A method for stochastic optimization, ICLR2015,"
arXiv Preprint arXiv:1412.6980, vol. 9, 2015.

[36] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, "SMOTE: synthetic
minority over-sampling technique," Journal of Artificial Intelligence Research, vol. 16, pp.
321-357, 2002.

[37] L. Van der Maaten and G. Hinton, "Visualizing data using t-SNE." Journal of Machine
Learning Research, vol. 9, (11), 2008.

[38] M. Lan, Y. Zhang, L. Zhang and B. Du, "Defect detection from UAV images based on
region-based CNNs," in 2018 IEEE International Conference on Data Mining Workshops
(ICDMW), 2018, pp. 385-390.

391




