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Abstract 

The aim of this paper is to select important Inconel 718 powder properties that can have 

significant effect on the structural and mechanical properties of Laser-Beam Powder Bed Fusion 

manufactured specimens. The dataset used was provided by NASA and contains powder 

rheological, morphological, and chemical composition properties. The output variables considered 

are melt pool depth, high cycle fatigue life, porosity volume fraction and porosity size. Initially, 

Pearson correlation coefficient matrix is used to reduce the number of predictor features. Several 

statistical and machine learning algorithms including stepwise regression, LASSO, and random 

forest regression are used to identify the powder properties that have the strongest impact on the 

selected outputs. The variables identified using the different statistical and machine learning 

techniques are similar, which increases the confidence of the findings.  

Keywords: LB-PBF, Correlation coefficient, Variance inflation factor, LASSO, Random forest 

regression, Stepwise regression 

1. Introduction

Laser beam powder bed fusion (LB-PBF) is a metal Additive Manufacturing (AM) process 

that uses a computer driven, highly focused laser beam which melts a metallic powder layer, 

resulting in building parts layer-by-layer. The benefits that LB-PBF offers include; the design and 

customization of products, the fabrication of complex geometries while keeping waste down, the 

reusability of powder for LB-PBF which reduces production cost, and alleviating of the difficulties 

of manufacturing superalloys such as Inconel 718, which occur in traditional manufacturing.  

The application of machine learning (ML) in additive manufacturing has become 

widespread. The main application of ML in additive manufacturing (AM) has been optimization 

of the process parameters. There are comparatively fewer works that discuss the powder properties 

and no work yet that identifies powder properties for AM that most impact to structural and 

mechanical properties of produced part. This work tries to fill that gap by identifying the most 

important powder features that contribute to porosity and fatigue life. 

For Inconel 718 AM through LB-PBF, this paper presents selection of relevant powder 

properties that influence the properties of a produced part. Specifically, variant statistical and 

machine learning tools, namely correlation coefficient matrix, LASSO, random forest regression, 
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and stepwise regression are applied to meet the objective. The response variables selected for this 

study are melt pool depth, high cycle fatigue life, porosity volume fraction and porosity size. The 

results obtained upon the applications of different algorithms agree with each other, adding to the 

confidence that the correct factors have been identified.  

This paper is organized as follows. Section 2 provides a brief literature survey concerning 

LB-PBF as manufacturing process, Inconel 718 as material, powder properties for metal AM, 

feature selection algorithms and predictive modeling techniques used in additive manufacturing. 

Section 3 presents the work methodology along with a brief description on each of the algorithms 

that were applied. Section 4 focuses on the results obtained. Finally, Section 5 presents concluding 

remarks and some future directions.  

2. Literature Review

AM processes produce physical objects from digital information layer-by-layer, 

simultaneously defining the object's geometry and determining its material properties. In the world 

of manufacturing, AM is currently the best solution to fabricate a near-net-shape component with 

minimal or without post-processing [1, 2]. AM by LB-PBF is a specific subset of metal additive 

manufacturing technologies in which a metal powder is selectively melted layer-by-layer by a 

computer-driven highly focused laser beam. The benefits that LB-PBF offers are fabrication of 

complex shapes without requiring long supply chain networks, production waste that is minimal, 

and product customization. Another notable advantage of the LPBF technology is that only the 

locally melted powder transforms into a solid material while the remaining powder can be reused 

a number of times [3, 4]. These days, LB-PBF is finding its way in advanced manufacturing 

applications such as manufacturing of shape memory alloy [5], landing gear of aircraft [6] and 

magnetic materials [7]. The main limitations for LB-PBF are low build rate and the need to clear 

unmelted powder from internal geometry [8]. All PBF systems can be used to process powders of 

a relatively large range of metal alloys, such as titanium alloys, stainless steels and Nickel-based 

super alloys such as Inconel 718 [4].  

Inconel 718 is a work hardenable Nickel- Chromium- Iron austenite (γ) based superalloy 

possessing a wide range of compositions and mechanical properties [9-10]. The alloy can maintain 

oxidation and corrosion resistance at very high temperature (up to 7000C) [11]. This engineering 

material is recognized in the manufacturing world for its good cryogenic and fatigue properties. 

The superalloy also possess excellent weldabilitty and creep properties as well. Since its initial use 

in the mid-1960s, Inconel 718 has gained attention in building mechanical components such as gas 

turbines, rocket engines, turbine blades, and in extrusion dies and containers [12]. Traditionally, 

Inconel 718 products are manufactured with vacuum induction melting and high precision 

machining but because of strain hardening of the material, the cutter wears down quickly and 

machining becomes difficult [1]. As an alternative, the recent emergence of metal AM such as LB-

PBF eases the manufacturing of Inconel 718 products with high precision and accuracy. 

Researchers have employed techniques to measure rheological properties of Inconel 718 

powders [1] to compare with the produced parts’ structural or mechanical properties to measure 

the impact of powder reuse. In [1], the authors concluded that apparent and tapped densities of 

virgin powder were higher than reused powder because of the deformed shape of reused powder. 
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However, true density was found to be higher for reused powder because of removal of entrapped 

gas and remelting. It was also found that smaller particle size resulted in a smoother surface finish 

because of homogeneous melting. Virgin powder showed better flowability than recycled powders 

because of virgin powder’s more homogenous shape and recycled powder lost sphericity with time 

and also tended to stick together. Studying 21 samples of Fe and Ni based alloy powders, 

researchers [14] concluded avalanche surface fractal and avalanche angle are the two factors 

influence powder flowability. Ellipticity or convexity of powder particle also influence powder 

flowability by reducing powder density. As per their argument, spherical powders provided higher 

powder density. In another study [15], six different powders’ properties were measured using 

powder rheometer and rotational shear cell. They concluded that powder flowability was higher 

for non-cohesive powders and that aeration improved flowability. Powder characterization and 

flowability were also investigated in [16] using four different powders; they concluded that 

powders having low values of flow energy, flow rate index, shear strength, compression strength, 

consolidation index, internal angle of friction, and cohesion had better flowability. Investigating 

particle morphologies, particle chemistry, and particle microstructure [17], it was concluded that 

average particle size and particle size distribution influence layer homogeneity; porosity of as built 

part is also influenced in presence of large particles or agglomerates. They also asserted that 

maximizing flowability coupled with increasing powder-bed density can be done using narrow 

particle distribution with less surface deformities. Studying the effects of powder reuse on tensile 

and fatigue behavior of LB-PBF 17-4 stainless steel parts [18], it was found that fatigue behavior 

of parts was dependent on location but diminished with powder reuse. Findings from [18] also 

include that elongated powder showed less flowability and generated higher shear stress, circular 

equivalent diameter of powder decreased due to powder reuse because of the breaking down of 

powder particle agglomerates, and with powder reuse bulk and tapped densities of the powder 

found to be increased. Also, powder reuse did not show any significant impact on microstructure 

which resulted in no difference in strength of parts produced with either virgin or reused powder. 

The papers above are in agreement that with powder reuse, spherical powder particles are produced 

providing better flowability with higher bulk and tapped density. 

Much experimental work is being carried out in the AM field every day, the involvement of 

statistical and machine learning tools is also present in the field. To predict a response variable 

with high precision and accuracy, it is important to select the important predictor variables that 

would describe which attributes are more significant in predicting the response variable [19]. 

Several techniques exist for this purpose. For example, [20] shows how LASSO regression can be 

used in model selection purpose. Similarly, [19] explained how LASSO regression can be used in 

selecting important variables from a high dimensional dataset. The article also explains Ridge 

regression and elastic net regression for selecting important features and discusses their limitations. 

Stepwise regression is another highly used tool that has been employed in reducing the dimension 

of the dataset to select the important features [21]. In addition to many other ensemble methods, 

the application of random forest algorithm is clearly noticeable in selecting important features [22, 

23] in different areas. However, in the area of AM; LASSO regression, stepwise regression and

random forest regression are yet to be applied for selecting significant features of powder to predict

structural and mechanical properties of the finished part. The goal of this article is to fill that gap,

by using these techniques to identify the features that best predict porosity, melt-pool depth and

fatigue life of Inconel 718 AM parts.

394



3. Methodology

The purpose of this work is to select important powder morphological and rheological 

properties which can be used to predict structural and mechanical for LB-PBF manufactured parts. 

The dataset used for this study was provided by NASA [24] and it includes 16 virgin powders and 

3 once recycled powders of Inconel 718 produced by gas or rotary atomization and bought from 

different suppliers. A set of 31 candidate features and 4 response variables were selected initially 

out of 191 columns found in the original dataset, but for this work the number of candidate features 

was reduced down to a level similar to the number of observations, i.e. 19. The response variables 

chosen for this study are average high cycle fatigue (HCF) life for as fabricated parts, porosity 

volume fraction, porosity size and melt pool depth. With a view to selecting the important features, 

a number of statistical and machine learning tools are applied for each of the response variables. 

In the first step, a correlation matrix is built containing all the 31 candidate features. Next, by 

applying a cutoff Pearson correlation coefficient value of 0.70, 15 features are selected. Upon 

finding the 15 features; LASSO, random forest regression, and stepwise regression are applied for 

each of the response variables to select 10 or less than 10 significant features for each response 

variable.  

3.1 Dataset Description 

The original dataset obtained from NASA has 191 columns and 19 rows which was reduced 

down to 15 features and 4 response variables for 19 observations. This dataset has also been used 

to study the variation in microstructure and mechanical behavior of LB-PBF processed Inconel 

718 product due to powder variability [24]. However, this work tries to discover the impact of 

morphological and rheological properties of powder on LB-PBF processed Inconel 718 part 

properties namely porosity volume fraction, porosity size, melt pool depth and high cycle fatigue 

life. Because of missing values in the original dataset, among the 19 variants of Inconel 718 

powders provided by the suppliers, only 13 observations could be used for this study. Each powder 

either came from 7 different suppliers or from same supplier’s different lot. In this study, no reused 

powder has been used. To reduce the number of candidate features, from 191, several criteria were 

applied. First, quantile data are avoided, chemical constituents are also rejected since this goes 

beyond the scope of this study; materials’ phase related data are also avoided in the study. Among 

the morphological data were present in the original dataset; the mean, standard deviation, 

skewedness and kurtosis of different morphological parameters such as circular equivalent (CE) 

diameter, circularity, convexity, aspect ratio have been selected in the study. For this study, all 

powders including fines are considered where particle fines can be defined as powder particles 

whose diameter is less than or equals to 7 𝜇𝑚. Among the rest of the candidate features from the 

original dataset bulk density and angle of repose are selected in the first phase of variable selection. 

Combining all the selected features, in the first phase we have a dataset that consists of 31 

candidate features and 4 response variables and 13 observations. Table 1 shows the initially 

selected 31 candidate features. The 4 response variables used in this work are high cycle fatigue 

life for as fabricated part, porosity volume fraction and porosity size and melt pool depth. In the 

table, d5, d10, d50, d90 and d95 are quantiles distributions of CE diameter of powder particle. As 

an example, d90 would mean the CE diameter of 90% particle are less than d90 value.  
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Apparent 

density 
Percentage of fines 

Standard deviation of 

convexity 

Aeration energy 

Angle of 

repose 

Mean circular equivalent (CE) 

diameter 

Skewedness of 

convexity 

Normalized aeration 

sensitivity 

Adjusted 

flow rate 

Standard deviation of CE 

diameter 
Kurtosis of convexity Consolidation energy 

d5 Skewedness of CE diameter Basic flow energy Permeability 

d10 Kurtosis of CE diameter Stability index Compressibility 

d50 Mean aspect ratio (AR) Flow rate index Shear stress upper 

d90 Standard deviation of AR Specific energy Shear stress lower 

d95 Mean convexity 
Conditioned bulk 

density 
− 

3.2 Pearson Correlation Coefficient Matrix 

Since there is a chance of high multicollinearity among the predictor variables, in the first 

step we tried to get rid of multicollinearity using Pearson correlation coefficient. Correlation 

coefficient can be defined as a dimensionless number measuring the linear association between 

two variables, lying in the interval from −1 to +1 [25]. A correlation coefficient value of 0 

indicates no correlation but does not guarantee independence between the variables. If 𝐱 and 𝐲 are 

two vectors then the correlation coefficient can be written mathematically as follows where x̅ and 

y̅ are the mean of x and y vector respectively. 

Corr(x, y) =
∑ [(𝑦i−y̅)(xi−x̅)]n

i=1

√∑ (yi−y̅)2(xi−x̅)2n
i=1

There are 31 candidate features after the initial screening. The goal is to select the predictor 

features among the 31 candidates in a way such that no two predictor features would have a 

correlation coefficient of more than 0.70. Upon the application the Pearson correlation coefficient, 

the desired number of features came down to 15. These are: apparent density, angle of repose, 

adjusted flow rate, d50, mean CE diameter, standard deviation of CE diameter, skewedness of 

circularity, kurtosis of convexity, basic flow energy, stability index, conditioned bulk density, 

aeration energy, consolidation energy, shear stress upper and shear stress lower. Even after this 

filtering, the number of features is higher than number of observations, as a result, variance 

inflation factor analysis could not be run on the predictors features. Therefore, we applied several 

other well recognized machine learning algorithms namely LASSO, random forest regression and 

stepwise regression to select the most significant features. Below we describe each method. 

3.3 Least Absolute Shrinkage and Selection Operator 

Unlike ordinary least squares (OLS) which tries to minimize the squared sum of residuals 

(SSE); in Least Absolute Shrinkage and Selection Operator (LASSO), a little bias is incorporated 

to reduce the variance. LASSO minimizes a non-linear objective function containing both response 

and predictor variables [19]. The mathematical formulation for LASSO can be written as 

following. Given a vector of inputs X and outputs Y, 
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β̂ = argminβ (
‖𝐘 − 𝐗β‖2

2

n
+ λ‖β‖1)

where ‖𝐘 − 𝐗β‖2
2 = ∑ (Yi − (𝐗β)i)

2 andn
i=0

‖β‖1 = ∑ |βj|
k
j=1  and λ ≥ 0

Therefore, LASSO seeks a β vector which minimizes the objective value and that vector can 

be obtained using desired regularization constant (λ). The number λ measures the severity of 

penalty. It can range from 0 to +∞. For λ = 0, LASSO line is the OLS line but if λ → ∞, the 

penalty becomes so large that all the coefficients are forced to be zero. In this work, LASSO is 

utilized with tuned λ value to capture the important features. The tuning parameter values were 

generated from a one dimensional array which ranged from 10−6 to 10 containing 100,000

regularization constant (λ) values regardless of the response variable. For each response variable, 

same sized array was generated and it worked as both features and response variables were 

normalized. Among these values, optimal values of λ were used to perform LASSO operation for 

each of the response variable. Based on the working principle of LASSO, it picks the λ value which 

minimizes the squared sum of residuals. The results obtained from different algorithms are listed 

in the following subsections. 

3.4 Random Forest Regression 

Among the feature selection algorithms that work on the method of aggregation, random 

forest (RF) is one which can be applied for both classification and regression problems [22]. The 

principle of random forest is to combine large number of binary decision trees built using several 

bootstrap samples coming from the learning sample L. Assuming vector 𝐗 ∈ ℝPcontains

predictors features where,  𝐗 = (X1, … … , Xn) and vector 𝐘 ∈ 𝓎 label i.e. is a binary {0, 1} valued

random variable or numerical response having a space, 𝓎 ∈ ℝPthen learning set L is made of n
independent and identically distributed vector (𝐗, 𝐘). Therefore, learning set can be designated as 

𝐋 =  {(X1, Y1), … . , (Xn, Yn)}. If 𝑡 is a classifier for a classification problem then 𝑡 can be defined

as a mapping t:  ℝP → 𝓎 and for regression problem we can write, Y = s(X) + ϵ where E[ϵ|X] =
0. At each node, a given number of input variables are randomly chosen and the best split is

calculated only within the subset. During the process, no pruning is performed so all the trees of

the forest are maximal trees. In this work, the number of input variables to be chosen at each node

has been kept default which is the rounded down value of  
P

3
 where P is the total number of features 

(i.e. 15) and number of trees are kept fixed at 1000. 

3.5 Variance Inflation Factor 

The variance inflation factor (VIF) is a popular tool to assess whether there is any 

multicollinearity among the predictor variables or not. VIF can confirm how much of a regressor’s 

variability is explained by the rest of the regressors in the model due to correlation among those 

regressors [26]. The value of a VIF has direct impact on the width of the confidence interval for 
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its associated parameter estimate. For independent variables, If rj
2 represents the coefficient of

determination for the jth independent variable, then VIF is mathematically written as following.

VIFj =
1

1 − rj
2  ∀ j = 1, 2, . . , p − 1

rj
2 is obtained by fitting a regression model for the jth independent variable on the other

independent variables. Although there is no fixed rule for a cutoff value of VIF but a value of 5- 

10 is often popularly used as cutoff. An rj
2= 0.90 would signify that 90% of the variability in the

jth independent variable is explained by the remainder of the independent variables in the model.

In this work, VIF is used to assess the multicollinearity among the features that are chosen by 

random forest from the 15 selected features. 

3.6 Stepwise Regression 

Stepwise regression, as the name suggest, works by performing OLS regression step by step 

by adding variables one at a time or by removing variables one at a time [27]. In forward selection 

stepwise regression, the model starts with no variables, in the first step one variable is added which 

is believed to be the most significant. In the following step next best significant variable is chosen 

out of all the candidate variables. This process continues until all the variables are added or a 

stopping criterion is met. Similarly, in backward elimination stepwise regression method, the 

initial model starts with all the candidate variables and in each step model keeps on eliminating 

variables. The first variable to be removed is the least significant. This process keeps continuing 

as long as all variables are removed or a stopping condition is fulfilled. In this work, Akaike 

information criterion (AIC) is used as the model selection criterion for the stepwise regression 

models. For small cases, where 
n

K
< 40, the formula is following. 

AICc = −2ln[l(θ̂|data)] + 2K +
2K(K+1)

n−K+1
. 

where, l(θ̂|data) = the likelihood of the parameter θ̂ in the model, n = number of 

observations, and K = number of estimable parameters in the model [28]. In this work, n = 13 and 

K = 3. The lower the AIC value is, the better fit the model is regardless of forward selection or 

backward elimination method. 

To the best of our knowledge, this is the first research work where the sum of these 

aforementioned statistical and machine learning techniques have been used in the area of additive 

manufacturing to predict part properties based on the powder properties. 

4. Results and Discussion

After applying the algorithms described above on the dataset for each of the response 

variables, the obtained results are presented in the following subsections. It is to be noted, before 

performing each regression analysis, the dataset was normalized using max-min normalization.  
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4.1 Porosity Volume Fraction 

The first algorithm attempted to select the significant features on porosity volume fraction 

(porosity VF) is LASSO. Since the dataset is high dimensional i.e. it has bigger number of features 

than the number of observations, it is a suitable dataset where LASSO could be applied. Upon 

applying LASSO using library ‘glmnet’ in software R [29], it is found that shear stress lower is 

the only feature that LASSO finds significant on porosity VF. For LASSO, optimal regularization 

constant (𝜆) value found to be 0.1054. 

Next, to select the significant features on porosity VF, random forest (RF) regression is 

performed keeping porosity VF as the response variable and the number of features are kept at 15. 

Upon performing RF regression using ‘randomforest’ library [29] in software R, the most 

significant features are selected. It is also verified using variance inflation factor (VIF) that there 

is no multicollinearity involved among the selected features. As per random forest regression, 

shear stress lower is found to be the most significant feature on porosity volume fraction. The 

ranking of features on porosity volume fraction according to random forest regression is shown in 

Fig. 1.   

Fig. 1: Ranking of features on porosity volume fraction according to RF regression 

Fig. 1 shows that the features are clearly divided into three classes based on importance. The 

most important feature is shear stress lower. A class of intermediate importance includes 

Consolidation Energy and Full SD CE diameter. While the remaining features appear to be of little 

importance. The following table presents the variance inflation factor among the most important 

features selected by random forest regression. VIF values of the selected features are random forest 

are shown in Table 2. 

Table 2 Variance inflation factor for the selected features by random forest for Porosity VF 

Features VIF value 

Shear stress lower 1.319 

Consolidation energy 1.140 

Full SD CE diameter 1.209 
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After selecting the significant features using RF regression, both forward selection and 

backward elimination stepwise regression are performed based on the 10 highest ranked features 

selected by random forest. It is found that shear stress lower is the most statistically significant 

features among the selected features. Both forward selection and backward elimination model 

agree with each other. Table 3 presents different statistics obtained from stepwise regression. 

Running the stepwise regression, both forward selection and backward elimination based on 

features selected by random forest, it is found that shear stress lower is the most statistically 

significant features among the 10 features attempted. In Table 3, the value of F statistic is shown 

along with its p-value. Since, the p-value of F statistic less than 0.10, it can be said with 90% 

confidence that there is a relationship between the features and the response variable.  

Table 3 Different statistic for porosity volume fraction for stepwise regression 

Regression 

Model 

Adjusted 𝑹𝟐

value 
F statistic 

Residual 

standard error 
p-value

Stepwise 

regression 
0.7455 5.395 0.1395 0.0605 

Table 4 lists the features that are significant on porosity volume fraction, for each method. 

By taking a cut off of 0.05 for node purity score, three most significant features are found according 

to random forest. In all of the following tables, double * in the parentheses would indicate a 

confidence level of 99%, single * in the parentheses would indicate a confidence level of 95% and 

∙ in the parentheses would indicate a confidence level of 90%.

Table 4 Algorithms and corresponding features significant on porosity volume fraction 

Response 

variable 

LASSO Random forest 

regression 

Stepwise regression 

Porosity VF 

Shear stress lower Shear stress lower Shear stress lower (∗∗) 

− Consolidation energy d50 (∙) 
− Full SD of CE diameter − 

Table 4 shows that LASSO, random forest regression, and stepwise regression agree that 

shear stress lower is the most significant predictor feature for porosity volume fraction. 

4.2 Porosity Size 

Similar to porosity volume fraction, in the case of porosity size, LASSO is attempted first to 

select one of more significant features from 15 candidate features. LASSO found shear stress 

lower, standard deviation of circular equivalent diameter, basic flow energy consolidation energy 

and median of circular equivalent diameter to be the most significant features on porosity size. The 

optimal regularization constant value found for lasso is 0.0153. 

By taking a node purity value of 0.05 as a cutoff, random forest selected three most important 

features for porosity size. Fig. 2 shows the ranking of features according to random forest 
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regression. Shear stress lower, consolidation energy, and basic flow energy are found to be the 

most significant predictor features according to random forest regression. 

Fig. 2: The ranking of features on porosity size according to RF regression 

Table 5 shows the variance inflation factor among the features selected by random forest 

regression while porosity size is the response variable. From the VIF analysis, it is found that there 

is no multi-collinearity involved among the features selected by random forest. 

Table 5 Variance inflation factor for the selected features by random forest regression for 

Porosity size 

Features VIF value 

Shear stress lower 1.180 

Consolidation energy 1.186 

Basic flow energy 1.228 

Based on the features selected by random forest, stepwise regression is performed as the 

absence of multicollinearity is already ascertained by VIF analysis. Upon performing stepwise 

regression using both forward selection method and backward elimination method, significant 

features on porosity size are determined. Both forward method and backward method agree with 

each other. Table 6 shows important statistics on stepwise regression.  

Table 6 Table showing different statistic for porosity size for stepwise regression 

Regression 

Model 

Adjusted 𝑹𝟐

value 
F statistic 

Residual 

standard error 
p-value

Stepwise 

regression 
0.8817 15.90 0.08677 0.0019 

According to Table 6, a very high adjusted R2 value is noticed in a scale of 0 to 1 signifying

a strong fit of the response variable with the features. A p-value less than 0.01 also indicates a 

confidence level of 99% that response variable is related with the predictor features.  
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From the stepwise regression results, it is found that shear stress lower is the most significant 

feature and standard deviation of circular equivalent diameter and median of circular equivalent 

diameter are also very significant. The forward and backward methods agree totally in selecting 

significant variables. Table 7 lists the important features according to the discussed three 

algorithms. 

 Table 7 Algorithms and corresponding features significant on Porosity size 

Response 

variable 

LASSO Random forest 

regression 

Stepwise regression 

Porosity 

size 

Shear stress lower Shear stress lower Shear stress lower (∗∗∗) 

Full SD of CE 

diameter 
Consolidation energy Consolidation energy (∙) 

Basic flow energy Basic flow energy d50 (∗) 

Consolidation energy − Full SD of CE diameter (∗) 

d50 − − 

All of the three algorithms agree that shear stress lower is the most significant feature in 

predicting porosity size. Consolidation energy is also another feature that is selected by all 

algorithms which can be used in predicting porosity size.  

4.3 Melt Pool Depth (MPD) 

For melt pool depth, LASSO could not select any important features, as the results were 

never statistically significant.  

To select the important features on melt pool depth, random forest regression is also 

performed keeping melt pool depth as the response variable and using same parameters as porosity 

VF and porosity size. The ranking of the features obtained from random forest regression for melt 

pool depth is shown in Fig. 3. 

Fig. 3: Ranking of features on melt pool depth according to random forest regression 
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Upon imposing a cutoff value of 0.05 for node purity score, random forest selected five most 

significant features. Based on the features selected by random forest regression, VIF analysis is 

performed. It is found that there is no multicollinearity involved among the features that random 

forest selected. Table 8 shows the VIF value for each of the significant features selected by random 

forest when melt pool depth is response variable. 

Table 8 Variance inflation factor of selected features by random forest for MPD 

Features VIF value 

Shear stress lower 3.066 

Aeration energy 2.063 

Consolidation energy 2.439 

Adjusted flow rate 2.766 

Angle of repose 3.858 

Upon obtaining the significant features from random forest regression, where there is no 

multicollinearity involved among the features is ensured, stepwise regression is performed keeping 

melt pool depth as the response variable. It is found that stepwise regression also selects features 

that have also been selected by random forest. Table 9 shows the statistics of stepwise regression.  

Table 9 Different statistic for melt pool depth for stepwise regression 

Regression 

Model 

Adjusted 𝑹𝟐

value 
F statistic 

Residual 

standard error 
p-value

Stepwise 

regression 
0.7806 9.541 0.1332 0.004971 

According to stepwise regression, based on the p-value of the F statistic, it is highly likely 

that melt pool depth is related with the features. Table 10 lists the variables that are significant on 

melt pool depth, for each method.  

Table 10 Algorithms and corresponding features significant on melt pool depth 

Response 

variable 

LASSO Random forest regression Stepwise regression 

Melt pool depth 

− Shear stress lower Aeration energy (∗∗) 

− Aeration energy Angle of repose (∗∗) 

− Consolidation energy Apparent density (∗∗) 

− Adjusted flow rate Shear stress lower (∙) 

− Angle of repose d50 

According to Table 10, LASSO did not find any significant predictor features on melt pool 

depth but shear stress lower, aeration energy and angle of repose are found to be predictive on melt 

pool depth based on both random forest and stepwise regression.  

4.4 High Cycle Fatigue life (HCF life) 
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 To select the significant features on high cycle fatigue (HCF) life, LASSO is attempted at 

first. It is found that LASSO captured 7 significant features for HCF which are angle of repose, 

d50, mean CE diameter, standard deviation of CE diameter, aeration energy (AE), consolidation 

energy (CE) and conditioned bulk density. The tuned regularization constant value in LASSO for 

HCF is found to be 0.03462.  

For HCF life, applying random forest regression keeping HCF life as the response variable 

found some significant features are found. The ranking of the features obtained from random forest 

regression for high cycle fatigue life is shown in Fig. 4.   

Fig. 4: Ranking of features on HCF life according to random forest regression 

Applying a cutoff value of 0.10 for node purity, three significant features are selected by 

random forest regression. The variance analysis factor of the features selected by random forest 

regression are performed and the absence of multicollinearity is also ascertained from the VIF 

values as shown in Table 11. 

Table 11 VIF for the selected features from random forest regression for HCF life 

Features VIF value 

Stability index 1.372 

Basic flow energy 1.387 

Full mean CE diameter 1.013 

After obtaining the important features from LASSO and random forest, stepwise regression 

is performed and the value of different statistic from stepwise regression is listed in Table 12. The 

significant features selected by three algorithms are listed in Table 13. 

Table 12 Different statistic for high cycle fatigue life for stepwise regression 

Regression 

Model 

Adjusted 𝑹𝟐

value 
F statistic 

Residual 

standard error 
p-value

Stepwise 

regression 
0.7735 7.835 0.1148 0.01216 
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Based on the p-value of the F-statistic, it can be asserted with a confidence of 90% that 

average HCF life is related with the predictor features.  

Table 13 presents the different algorithms and corresponding significant variables on high 

cycle fatigue life. 

Table 13 Algorithms and corresponding features significant on average HCF life 

Response 

variable 

LASSO Random forest 

regression 

Stepwise regression 

High cycle 

fatigue life 

Angle of repose Stability index Full mean CE diameter (∗∗) 

d50 Basic flow energy Full SD CE diameter (∗∗) 

Full mean CE 

diameter 
Full mean CE diameter Aeration energy (∗∗) 

Full SD CE diameter − Angle of repose (∗) 

Conditioned bulk 

density 
− − 

Consolidation energy − − 

Aeration energy − − 

Based on the table we find, LASSO and stepwise regression results agree with each other 

and the significant predictor variables are angle of repose, aeration energy, median of circular 

equivalent diameter, standard deviation of circular equivalent diameter.  

5. Conclusions

From this study of effect of powder’s morphological and rheological properties on the LB-

PBF manufactured Inconel 718 part properties the following conclusions can be drawn. 

1. In this research work, an attempt is made to select the powder features of Inconel 718

manufactured in LB-PBF AM that have the greatest impact on porosity size, porosity volume 

fraction, melt pool depth and HCF life of the finished part. To meet the objective, several statistical 

and machine learning tools namely Pearson correlation coefficient, LASSO regression, random 

forest regression and stepwise regression were employed. In the first step, 31 predictor features 

and 4 response variables were selected from a dataset consisted of 191 columns. In the next step, 

a Pearson correlation coefficient cut off value of 0.70 was used to reduce the number of features 

to 15. Upon obtaining 15 features, different statistical and feature selection techniques were 

applied to select the most significant predictor features.   

2. Applying LASSO, random forest regression and stepwise regression based on the features

selected by random forest, it is found that shear stress lower is the most significant feature for both 

porosity size and porosity volume fraction. Shear stress lower is also found to be highest ranked 

feature according to random forest. All the algorithms are in agreement about shear stress lower’s 

significance on both porosity volume fraction and porosity size.    

3. The most significant features impacting melt pool depth according to random forest

regression are shear stress lower, aeration energy and angle of repose. This finding from random 
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forest regression agrees with forward selection and backward elimination stepwise regression. 

LASSO regression, however, did not find any features to be significant.     

4. For high cycle fatigue, the seven most important features are selected using LASSO.

Running a multiple linear regression taking seven predictor features, it is found that mean of 

circular equivalent diameter is the most significant feature for predicting average high cycle fatigue 

life. This finding also agrees with LASSO and random forest regression results.  

The findings from this research are in agreement with existing literature [1]. This work only 

identifies the important predictive feature from the perspective of selecting predictor variables that 

influence the part quality of Inconel 718 manufactured in LB-PBF. Future work is required to 

create predictive models based on the selected features. However, this work enables such 

possibilities, by identifying the important ones to use.  
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