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Abstract 
In Additive Manufacturing (AM) of titanium alloys, the formation of defects in parts is typically related 

to the stability of the melt pool. With increased instability and size of the melt pool comes an increase in the level 
of emissions generated as the laser processes the material. Recent developments with in-situ monitoring and 
process control allows the collection of large amounts of data during the printing process. This includes data about 
emissions, which are made available as 2D representations in the form of colour images. However, it is still a 
manual process to inspect these 2D representations to identify defects, which hinders scalability.  Given recent 
advances in Deep Learning for computer vision and the availability of large amounts of data collected from in-
situ monitoring, our approach leverages Deep Learning techniques for characterizing abnormal emissions to 
automatically identify defects during the printing process. One of the challenges to apply deep learning in AM is 
the lack of proper labelled data for training the models. In this paper, we tackle this challenge by proposing an 
approach that uses transfer learning and fine-tuning on a pre-trained Convolutional Neural Network (CNN) model 
called VGG 16 to successfully train the deep model with a small labelled dataset. Results show good classification 
accuracy on the emission images obtained from the in-situ monitoring system, and improvements in classification 
of defects on a public industrial benchmark datasets named DAGM (Deutsche Arbeitsgemeinschaft für 
Mustererkennung e.V., German chapter of the IAPR). 

1 Introduction 
In Additive Manufacturing (AM), also known as 3D printing, a laser scans the input material and a melt 

pool is created at the laser-material interaction point. This forms a layer of the object being manufactured, and 
the process continues layer by layer until the manufacture is complete. The formation of defects in parts such as 
tensile weakness, is typically related to the stability of the melt pool during manufacture. Due to thermal 
instability, the melt pool can create different levels of emissions. A more unstable and volatile melt pool will 
typically emit a greater number of emissions leading to the formation of defects in parts. Recent developments 
in monitoring and process control have resulted in a significant enhancement of the AM process and reduced 
the amount of inter-build variation and interruption in material manufacturing. Also, given recent advances in 
computer vision and the availability of potentially large amounts of data collected from in-situ monitoring of 
emissions from melt pools during additive manufacturing, it is possible to use machine learning on this data to 
automatically identify key features and predict the presence of defects in manufactured products. 

In-situ monitoring facilitates the collection of large amounts of data during the build process in AM. 
Specifically, this data includes feedback on energy input and emissions from the AM build process, and it is 
typically done through two sensor modules: one module measures the power of laser input at any point and the 
other module measures emissions from the melt pool in the near-infrared infrared spectra. The data streams 
collected from these modules can be used to build 2D and 3D representations of the objects being manufactured. 
Figure 1 shows one example of the images formed by emissions in 2D and 3D representations produced by the 
InfiniAM monitoring suite present in the Renishaw machine. Despite the abundance of this type of data, the 
analysis and characterization of emissions as well as their correlation with defects, is still a manual process that 
involves examining the representations produced by the monitoring software. As the performance of humans in 
such tasks can vary, along with fatigue and the associated costs of labor, there is demand for the automation of 
such inspection. In addition to the cost of labour, defects in manufacturing usually mean a waste of time, energy, 
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and other resources. Ideally, a real time prediction of a defect during the manufacturing process could tell the 
operator to either shut down and stop production at an early stage or intervene, if possible, to prevent further 
defects from happening. This requires not only to develop models with the ability to better and automatically 
understand the data and relate it to defects, but it also requires to continuously adjust such models as the data is 
produced. This research aims to explore modern data analytics and machine learning techniques including 
Convolutional Neural Networks (CNNs) to automatically inspect the huge amounts of data captured by an in-situ 
monitoring suite to extract the most descriptive features that can help in tasks such as classification and object 
detection. More specifically, in this research we propose a neural network based architecture to accurately and 
efficiently identify (and classify) input data as normal or abnormal with a limited amount of labelled initial data. 

The material for the 3D-printed parts considered in this paper is Ti6Al4V. The in-situ monitoring suite is 
the InfiniAM monitoring suite from the Renishaw 3D printer, which can provide feedback on energy input and 
emissions using two photodiodes as sensors. The sensors detect plasma emissions (range 700 nm to 1040 nm) 
and near-infrared (range 1090 nm to 1700 nm) from the melt pool and the monitoring suite produces a 3D point 
cloud model from which we can look 2D representations, which is a horizontal cut of the 3D model.  
Using a video recording software, we were able to extract videos of the model representing the building process 
layer by layer. We extracted each of these layers as one image (440px840p resolution) by removing duplicated 
frames so that we have one image only per layer in the AM process. These images represent the input for our 
model and from now on we refer to them as to the emission dataset. The rest of the paper is organised as follows: 
Section 2 is a literature review of related approaches to optical inspection in AM using machine learning; Section 
3 illustrates the proposed methodology based on CNN and presents our evaluation setup for two experiments; 
Section 4 discusses the results obtained from the tests and future research directions; we conclude in Section 6 
with a summary and final remarks. 

Figure 1: 3D to 2D representations of emissions during manufacture 
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2 Literature review 
 

 During the AM process, as layers are built up to make a component, the height of each layer and the 
classification of this height is hugely important as the next layer on top of this will be impacted if height is not 
within certain tolerances. Thus, an optical inspection task is required to detect variations in size, orientation of 
patterns and other characteristics that could reflect any defects in a layer. It is also important to develop flexible 
inspection approaches that can be easily reconfigured for different tasks. Many of the conventional approaches to 
optical inspection are based on feature extraction and further clustering or classification. Over the last decade, 
advances in deep learning have made it possible to apply Neural Network architectures to automatically inspect 
the surface of the component and the layers printed during the AM process. 

  
2.1 Feature based approaches 

 
 Conventional approaches to AM inspection employ human engineered feature extraction to find defective 
patterns in an image. The authors of [14] presented a strategy using thresholds derived from a histogram of grey 
values for segmentation and further computed the shape describing features while in [9] several types of wavelet 
model have been introduced to extract features from a surface topography. Moreover, [6] proposed an approach 
for defect detection in texture images with high accuracy by evaluating the distribution of local gradient 
magnitudes based on a Weibull fit. There are also other methods for feature extraction based on machine learning 
such as histogram of oriented gradient (HOG) [15], local binary patterns (LBP) [11] and a gray-level co-
occurrence matrix (GLCM) [2]. The results generated by these algorithms for feature extraction and defect 
detection are high in accuracy. However, their algorithms have limitations in their applicability as they often rely 
on thresholding. Thresholds are sensitive to background, colour and light. When these conditions change, manual 
adjustment of the thresholds is needed. Also, such human-engineered methods are limited by the fact that the 
features need to be customized to specific AM tasks. As a result, for complex AM conditions these methods are 
not robust and discriminative enough to generate results with sufficient accuracy. 

 
2.2 Applying CNNs for inspection in AM 

 
 In order to develop approaches that are both good on adaptability and high in accuracy, several methods 
based on convolutional neural networks (CNNs) have been proposed. [8] and [5] have applied CNNs in their 
work and achieved higher classification accuracy than conventional machine learning algorithms. However, a 
major problem is that training a deep CNN from scratch requires a large amount of labelled data. One of the 
challenges we consider in this paper is to be able to apply CNNs to AM processes with acceptable accuracy when 
only a limited amount of labelled data is available. 
Authors [1], [13] and [7] have used transfer learning to address this problem by using pre-trained weights from a 
source network to set the weights of a target network and then use the target network to fulfil the task of feature 
extraction. However, the performance improvements with these approaches depends on the fact that there is 
similarity between the source and target domains in their tasks. Authors in [3] have pointed out that if there is a 
significant difference between the source and target domains such a transfer learning approach with fixed 
transferred weights can yield less accurate results, and this is the case for AM processes. 

 
2.3 Transfer learning with fine-tuning 

 
 In order to address the low performance of transfer learning when using dissimilar target and source 
domains, authors in [10] proposed a method that applies fine-tuning on the CNN architecture VGG 16 [12]. In 
their approach, both the source and target networks were based on VGG 16. The only modification on the VGG 
16 architecture was reducing the 1,000 node outputs (as used in the source network) to 12 nodes on the target 
network. For the data, they used the ImageNet 2012 dataset as the source dataset and the industrial optical 
inspection dataset DAGM 2007 [16] provided by the German Association for Pattern Recognition, as the target 
dataset. The results of their experiments showed significant improvements on the overall classification 
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performance. Building upon this approach, in this paper we develop a methodology to process 2D representations 
of the emission data from InfiniAM and DAGM for defect detection and analyse changes in performance.  
   

3 Methodology 
 

In this section, the proposed classification method is illustrated and tested using the emission dataset we 
generated and the DAGM datasets. We first provide a description of the initial dataset and the experimental setup. 
Secondly, the performance of two different types of classifiers is investigated. Thirdly, the setup of the deep 
learning model is modified to improve the classification accuracy and all the datasets are processed by the 
improved model with a comparison of performance. For reproducibility, we also provide a list of specific 
parameters and settings used in the overall deep learning model and in the training process.  
 
3.1 Initial datasets creation 
 

The first set of data was collected from the 2D representations of the emission images generated by the 
in-situ monitoring suite. The images represent the melt pool conditions of the printed layers in a group of dog-
bone shaped testing parts of Titanium alloy (Ti6Al4V) during the AM process. 11,000 images were manually 
exported from the InfiniAM monitoring software as described in the introduction. Initially, all the raw image data 
are unlabelled. These raw data are not suitable to be used directly for training. For initial inspection, the 11,000 
sample images were manually inspected in order to select 150 images as defected samples and another 150 images 
as normal samples. These were labeled and used to create a dataset considered as the ground truth in the tests. 
The size of this labelled dataset is relatively small for the training of the ML models. We acknowledge that the 
manual selection of the samples could be better analysed and automatic methods could be used to select the most 
representative sample or investigate the impact of sample selection in the training process. However, in this 
investigation, we aim at demonstrating the feasibility of the approach with limited training data and we postpone 
the analysis of sample selection to future work. 

 
 As the currently available labelled data from the emission dataset are limited, we also used a well-known 

industrial optical inspection dataset provided by DAGM for testing purposes. The DAGM dataset contains 6 
patterns of texture with each texture pattern containing 1,000 non-defective and 150 defective images, resulting 
in 6,900 images of 12 classes. Based on the original DAGM dataset, from each pattern, 150 non-defective images 
samples were selected from the original 1000 non-defective samples to create new groups of testing dataset that 
involves 6 patterns and each pattern include 150 defective and 150 non-defective samples. This dataset was used 
in conjunction with the manually labeled emission image dataset generated from the InfiniAM 3D model. In total, 
there are 7 patterns used in the experiments: along with the 6 patterns from the DAGM dataset, the emission 
dataset is used as the 7th pattern and it contains samples of both defected and non-defected classes. Figure 2 
shows a collection of examples for normal and defect from each pattern. All the tests in the following sections 
are based on these datasets. 
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Figure 2: Sample images marked as pattern 1-6 from the DAGM industrial optical inspection dataset. 
The 6 different texture patterns contain both normal and defects in a particular location, marked with red 
ellipsoids in the figures. Images marked as pattern 7 are those we generated from the InfiniAM emission 

dataset. 
 
3.2 Combining VGG 16 and SVM classifier  
 

In this test, the image datasets are used as input for features extraction, The features are extracted by the 
CNN architecture from a VGG16 model using transferred weights trained using ImageNet data [4] without fine-
tuning. Then, features are passed to a Support Vector Machine (SVM) classifier to detect if the input image is 
normal or has a defect. The architecture of this model is shown in Figure 3. 
 

 
 

Figure 3: The architecture of the model using a combination of VGG 16 and SVM. 
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The SVM classifier divides the dataset into classes by creating hyperplanes in multidimensional space. 
The SVM classifier in this paper is implemented using the C-Support Vector Classification functions from the 
Python ML package Scikit-learn [18]. The hyperparameters used for the SVM classifier are the type of kernel, 
the regularization parameter C and the kernel coefficient Gamma. Table I lists the values as used in our 
experiments, and a brief description of what these parameters are. 

Table I: parameters for the SVM classifier 
Name of 

hyperparameter Type or Value Description 

Kernel radial basis function (RBF) The main function of the kernel to transform the 
given input data into the required form. 

Regularization 
parameter C 1.0 

C is the penalty parameter, which is used to 
maintain regularization. It represents 

misclassification or error term of the SVM 
classifier. 

Gamma 1/number of features 
The kernel coefficient for the RBF, the value of 
Gamma depends on the number of features from 

the data 

The 7 patterns were individually passed through the model for training and testing purposes. As illustrated 
previously, the dataset includes 300 samples for each pattern, which are further divided into 2 classes: 150 positive 
samples and 150 negative samples. 70% of the samples were used for training and the remaining 30% were used 
for validation. The classification results are shown in Table II. 

Table II: classification results from the SVM classifier 
Class Precision Recall F1-score Support 

Class1 Def 0.88 0.15 0.25 42 
Class1 0.50 0.98 0.66 48 

Class2 Def 0.50 0.52 0.51 42 
Class2 0.57 0.54 0.55 48 

Class3 Def 0.47 1.00 0.64 42 
Class3 0.00 0.00 0.00 48 

Class4 Def 0.47 1.00 0.64 42 
Class4 0.00 0.00 0.00 48 

Class5 Def 1.00 0.79 0.88 42 
Class5 0.84 1.00 0.91 48 

Class6 Def 0.57 0.92 0.72 42 
Class6 0.94 0.35 0.52 48 

Class7 Def 0.91 0.98 0.94 42 
Class7 0.98 0.92 0.95 48 

As the size of each labelled dataset is quite small, it is remarkable to see how, even with limited training 
data, the results of classification for certain classes (such as class 7) have relatively high value in recall with true 
positive rate (precision) and true negative rate (recall) being 98% and 92% respectively. Despite these positive 
results, the approach still shows low performance on classes related to patterns 1,2,3 and 4. There are three 
possible reasons to explain such a low performance: first, the number of samples for training is not sufficient to 
train the SVM classifier; second, some of the features extracted from the datasets may not be representative 
enough and may contain too much unnecessary information; third, SVM may not be a suitable classifier for certain 
patterns in the test data. To address these issues and improve results, we propose and test a different approach 
solely based on CNN, which relies on VGG 16 architecture extended and modified for our specific problem. 
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3.3 Extending VGG 16 for classification using dense layers 
 

This approach relies on a transfer learning method in which the 13 convolutional layers from the pre-
trained convolutional layers of VGG16 from the previous model are still used for feature extraction and the 
weights in these layers are unchanged. To modify the classifier, the SVM classifier is replaced by fully connected 
layers. As illustrated in Figure 4, after the convolutional layers, 2 dense layers with ReLU activation function are 
added and followed by 1 dense layer as the output layer using sigmoid as the activation function, since detecting 
normal or defect individually for each pattern isa binary classification task. 

 

 
 

Figure 4: The architecture of the model based on VGG 16 and fully connected layers. 
 

In this experiment, rather than directly test on all the image groups, three patterns which are considered to 
be the most challenging are selected first. As illustrated in Table II, the selected patterns are: pattern 4, with one 
of the worst performances in the previous test; pattern 6, with average performance in the previous test; pattern 
7, with the best performance in the previous test. 

 
Test on pattern 6: The initial investigation of the performance of the new model began with the dataset of 

pattern 6 (refer to Figure 2) for binary classification and the length of training in this test was set to 200 epochs. 
Accuracy and loss are the metrics used to trace and evaluate the training and validation process.   Figure 5 shows 
the curves of accuracy and loss for both training and validation for pattern 6.  

 
In Figure 5, the lines show an overall increase in accuracy (the left image) and a decrease in loss (the right 

image) both for training and validation but with significant fluctuation. The results do not show overfitting as the 
validation loss is not significantly larger than the training loss. Regarding the problem of the extremely high 
fluctuation in the validation, the following points are considered: 

1) The number of samples for the test is relatively small, as the loss is still relatively high and unstable, even a 
small number of classification results will cause major changes in the overall accuracy. 

2) There may be too much noise considered as features. To address this problem, adding a pooling layer between 
the convolutional and the dense layers would be a solution. 

3) According to Kim et al. (2017) [10] with a frozen network for the convolutional layers, the results should 
have a level of accuracy in the range of 78%-85%. This means that using the setup without fine-tuning, the 
fluctuation should be around 80%. Fine-tuning has therefore been applied as discussed in Section 3.4 to 
reduce the fluctuation and improve the overall classification accuracy. 
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Figure 5: Accuracy and loss over 200 epochs (the horizontal axis shows the number of epochs) with transfer-
learning and without fine-tuning. The vertical axis in the left chart stands for the value of accuracy while the 

vertical axis in the right chart stands for the value of loss. 
 
3.4 Further optimisation: pooling and fine-tuning 
 
  To further improve the model, an average pooling layer is added between the convolutional layers and 
the dense layers to reduce the spatial dimension of the output from the convolutional layers. We performed a test 
by training the new model for only 50 epochs to show that the modified architecture can effectively and quickly 
reduce the fluctuation for accuracy and loss in both training and validation, as shown in Figure 6. 
 

 
Figure 6: There is an obvious reduction of fluctuation in the curve of the overall accuracy and loss after adding 
the pooling layers (top-right and bottom-right) compared to the results without pooling a layer (top-left and 
bottom left). 
 

After improving the model with the addition of a pooling layer, fine-tuning is applied in order to increase 
the classification accuracy and reduce the loss. Based on this new configuration, the last 3 convolutional layers 
from the VGG16 architecture are unlocked for fine-tuning. The weights in the unlocked layers are modified by 
the training replications using the image datasets. Using the updated model and pattern 6, the training and 
validation are re-executed for 200 epochs to ensure the process reaches convergence. The curves of training and 
validation as shown in Figure 7. Around epoch 200, the training accuracy is over 97% while the validation 

430



accuracy is around 95%. The training loss starts to converge at about the 100th epoch with a value around 0.1 
while the training loss continues to drop slightly. 

 

 
Figure 7: Accuracy and loss for pattern 6, using a model with pooling and fine tuning on the last 3 

convolutional layers. 
 

 Test on pattern 4: Similar tests are also applied on pattern 4, with the updated setup, the validation accuracy 
at about the 200th epoch is also over 96% with a relatively stable value of the validation loss of 0.1 (refer to 
Figure 8). This result is significantly more accurate than the one obtained from the SVM classifier in the previous 
experiment, where the model was not able to identify the classes for pattern 4. 
 

 
Figure 8: Accuracy and loss for pattern 4, using a model with pooling and fine tuning on the last 3 

convolutional layers. 
 
 Test on pattern 7: Pattern 7 is the emission dataset of images generated from the 2D presentation collected 
and converted from the InfiniAM in-situ monitoring system. This dataset is the one we specifically collected for 
this research. The model is trained using the dataset for pattern 7 for 200 epochs. The output of the classification 
shows considerably high values in accuracy for both training and validation. As shown in Figure 9, the training 
process reaches convergence after around the 130th epoch with a training accuracy around 99% and a validation 
accuracy over 98%. 
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Figure 9: Accuracy and loss for pattern 7, using the model with pooling and fine tuning on the last 3 

convolutional layers. 
 
 The results of the classification by the model with fine-tuning has shown significant improvement in the 
overall accuracy. To complete this investigation, the remaining patterns 1, 2, 3 and 5 (refer to Figure 2) are also 
tested individually using our modified VGG16 architecture with transfer learning and fine-tuning. Results for 
all the 7 patterns are shown in Table III, including the average values (after convergence) of training accuracy, 
training loss, validation accuracy, validation loss and the training duration (in epochs) for each corresponding 
pattern. 
 
 

Table III: classification results from the modified VGG16 architecture with transfer learning and fine-tuning   
 

Patterns Ave. Training  
Accuracy 

Ave. Training 
Loss 

Ave. Validation 
Accuracy 

Ave. 
Validation 

Loss           

Training 
Duration 
(epochs) 

Pattern 1 0.98 0.03 0.96 0.09 800 
Pattern 2 0.99 0.02 0.98 0.03 400 
Pattern 3 0.98 0.04 0.96 0.09 600 
Pattern 4 0.97 0.05 0.96 0.10 200 
Pattern 5 0.99 0.02 0.98 0.04 400 
Pattern 6 0.97 0.05 0.95 0.09 200 
Pattern 7 0.99 0.03 0.98 0.03 200 

 
 3.5 Parameters and settings 

This subsection specifies the values of parameters used in the overall model, as well as settings for the 
training process. The deep learning model in this paper is implemented using the Python deep learning package 
Keras [19]. Figure 10 describes the architecture of the model layer by layer, and the shape of input/output tensors 
in each layer. Table IV contains the hyperparameters used for the training of the model.  

Stopping criterion: In the tests, the numbers of epochs for stopping criterion are simply set as long enough 
for the curves of validation accuracy and loss to reach the convergence where the curves will not have significant 
change with longer duration of training. Because the input dataset is different in each test, the number of epochs 
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required will be different. For example, to reach the convergence in the training process, the test of dataset 1 
requires more epochs than that required by the test of dataset 7. 

Table IV: hyperparameters used for the training of the deep learning model 

Name Type / Value Description 

Optimizer Stochastic Gradient 
Descent (SGD) 

Optimizers are used to change the attributes of the neural 
network to reduce the losses 

Loss function binary cross entropy The loss function computes the quantity that a model 
should seek to minimize during training 

Learning rate 0.001 The step size at each iteration while moving toward a 
minimum of a loss function during the training process 

Evaluation metric Accuracy, Loss Metric is a function to judge the performance of the 
model 

Pooling layer: To reduce the spatial dimension of the output of the feature extraction model based on VGG 
16, a Global Average Pooling 2D (GAP2D) layer is added between the outcome of the VGG 16 model used for 
feature extraction and the dense layers of the classifier. The GAP2D layer receives the output tenser from the 
VGG 16 model and applies global average pooling operation for spatial data. By doing this the number of total 
channels in the output of the GAP2D layer is reduced to 512 and ready to be processed in the dense layers. (See 
Figure 10)    

Dense layers: We added three dense layers (also known as fully connected layers) to our model. The 
activation function used in the first two layers is the ReLU activation function, while a Sigmoid activation function 
is used in the third dense layer for binary classification. 

 
Figure 10: The overall model including the VGG 16 architecture layers, the GAP2D layer and the dense layers 

for classification. The value “None” in the shape of tensors indicates the dimension is a variable  
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4 Discussion  
 

From the results obtained, it is clear that the deep learning model introduced in our approach which 
leverages transfer learning and fine-tuning has relatively good classification performance on all the 7 patterns in 
the initial datasets. For certain patterns, such as pattern 5 and pattern 7 the results show higher values in accuracy 
even before any optimisation. More importantly, by replacing the SVM with fully connected layers as a classifier, 
the approach allows the overall model to be fine-tuned using a relatively small amount of data to further adjust 
the weights in both the convolutional and fully connected layers for low performance patterns. The application of 
fine-tuning greatly improved the accuracy in the classifications for those patterns and it is also expected to allow 
the model to be continuously improved as the available datasets grow in size.  

 
With the aid of transfer learning, this approach greatly reduces the required amount of labelled data and 

computational power for training. In fact, manually creating large training databases is time consuming, expensive, 
and often infeasible in industrial production settings. The lack of properly labelled data is a common issue for the 
application of ML, especially in AM processes.  

 
Future research we are planning to investigate goes into two main directions. The first direction is looking 

to continue to improve the deep learning model. Although the current model works well with the initial datasets, 
the architecture used in this paper is not the most up to date CNN. Other architectures, such as ResNet [17], have 
better performance when the problem becomes more complex and the network needs to be deeper. This will be 
considered for the application of computer vision with transfer learning and fine-tuning on other tasks. The second 
direction for investigation considers the need to produce more high quality data and we are looking into extending 
our framework to include active learning and semi-supervised learning for automatic data labelling.  
 

5 Conclusion  
 
 In this paper we have designed and tested a deep learning model based on Convolutional Neural Networks 
to automatically identify defects in the AM process of titanium alloy Ti6A14V. In our approach, we leverage 
information about emissions collected through in-situ monitoring and represented as images, one for each layer. 
These images represent a dataset we have curated and used to train our deep learning model. Our experiments 
have demonstrated that our model pre-trained and fine-tuned can obtain good performances even with relatively 
low computational power and limited training data. The model we propose in this paper can be used as an effective 
feature extractor and classifier with limited labelled data for training. However, we believe the ability to generate 
more labelled data using the outcome of our model is necessary, as it not only enables faster convergence (with 
limited number of epochs), but it also represents a valuable resource to be used by other researchers. For this 
reason, we are investigating the combination of our model with active learning techniques to develop a framework 
that can produce good quality labelled data to be used when applying machine learning to AM processes. As a 
result, we will produce a more accurate and more effective pipeline that can potentially be used for different 
classification tasks where the availability of labelled dataset is scarce. Currently we are looking into two of such 
tasks: automatic segmentation of individual melt pool areas and characterisation of porosity structure in AM 
processes.  
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