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Abstract 

 

Additive manufacturing (AM), also known as 3d printing, has become a hot topic in 

academia and industry in the past decades. For a typical layer-based additive manufacturing 

where the object is printed in a layer-by-layer fashion, the battle to reduce or even eradicate the 

support structure is always faced by researchers and industrial practitioners. The newly emerging 

multi-axis printing platform inspired by the five-axis machine tool opens new directions, such as 

surface quality improvement, support-free printing, etc. In this paper, we have presented a 

framework for the support-free hollowing of 3+2-axis printing. A suite of algorithms including 

curved skeleton extraction, print sequence optimization, hollowing generation, and print path 

planning is introduced. It is expected that the print efficiency will increase while the residue 

artifacts caused by the support structure on the contact surface can be ultimately eradicated. 

 

1. Introduction 

Additive manufacturing (AM), also known as 3d printing, has gained remarkable attention in 

academia and industry in the past decades [1]. It shows unrivaled advantages in fabricating 

complex models comparing with the conventional subtractive method, such as milling. The most 

commonly adopted AM technique is the layer-based printing scheme. The digital target model is 

discretized into a stacking of layers, each of which is manufactured following the layer-by-layer 

fashion. 

 

For layer-based additive manufacturing, slicing plays a crucial role in decomposing the input 

mesh into a piling of intermediate layers [2]. The material is deposited layer upon layer until the 

target geometry is fabricated. The planar slicing is widely used by three-axis printers in a two-

and-half manner where the nozzle exhibits planar movement during the material for each layer. 

The advantages are apparent: 1) the planar slicing is very computationally efficient, which can be 

achieved by parallel computing since the intersection of mesh and planes with different height is 

independent of each other [3]; 2) the collision between the platform and the building part is 

naturally avoided since the all the previously deposited material must lay below the current layer 

[4]. However, the prominent stair-step effect and the excessive support structure usage are two 

major battles for the 2.5-axis printing platform. 

 

Thanks to the newly emerging multi-axis printer inspired by the five-axis CNC machining, 

the nozzle orientation can be adjusted during the printing process synchronizing with the linear 

movements. The multi-axis 3D printing is expected to alleviate the aforementioned issues. 

Previous works [5][6][7][8][9] have successfully shown the capability of multi-axis 3D printing 

by fabricating models without support structures and with enhanced print quality.  
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Planar slicer and curved layer slicer are two major approaches to fulfill the task. As the name 

implies, the planar slicer intersects the model with a planar plane. The resultant planar slice 

composes of one or multiples close regions. The 2.5-axis printing simplifies the situation by 

fixing the plane normal to +Z direction. The only variable left for the 2.5-axis slicing process is 

the slicing height. As for the curved layer slicing, Dai et al. [6] proposed a convex growing 

method to generate curved layers based on voxel representation of the original mesh. The clever 

convex-front approach of the former work naturally ensures collision-free multi-axis printing. Xu 

et al. [10] decomposed the mesh into curved layers, each of which was bounded by an iso-level 

contour extracted from the original mesh. Regarding the kinematics of the multi-axis printing 

platform, the continuous tilting of the nozzle head or the build plate tremendously drags down 

the printing efficiency.  

 

The past experience showed that the material used for both support structures and inner 

fillings would drag down the print efficiency. To best take advantage of the multi-axis printing 

while preserving the superior properties of the planar slicing, in this paper, we propose a 3+2-

axis process planning to decompose the model into a stacking of non-parallel slices with 

hollowing for the support-free printing to increase the print efficiency and to reduce material 

usage.  

 

2. Notations and formulation 

2.1. Variable-direction planar slicer (VPS) 

In order to fabricate a mesh model Ω, the crux of the process planning is to decompose both 

Ω into a sequence of layers {𝑆𝑖}. The operation is also known as the slicing process. The planar 

slicing is widely adopted in the 2.5-axis printing paradigm in which the target model is divided 

into a serial of parallel layers with planar planes. The plane used for slicing is known as the 

planar slicer. A general form of the planar slicer will be defined first. 

 

Since a planar plane can be defined as a point 𝑝 and a normal vector 𝑛, the corresponding 

planar slicer is denoted as 𝑃 = (𝑝, 𝐧) . The intersection between Ω  and 𝑃  results in one or 

multiple close contours on 𝑃, i.e., 𝑆 = {𝑠𝑖} = 𝜕Ω ⋂ 𝑃. Model hollowing is a typical operation in 

the CAM process to increase printing efficiency by reducing the infill region inside the close 

contour. For the hollowing operation, both the mesh model Ω and the hollowed inner surface Ω𝐻 

are sliced by the planar slicer 𝑃. Therefore, the resultant build layer becomes a group of close 

regions composing of paired contours 𝑆 = {(𝑠𝑖, 𝑠𝑖
𝐻)} . It is worth noting that the contour 𝑠 

determines the outer shape of the model, which should be kept unchanged, while the hollowing 

contour 𝑠𝐻 is the variable that affects the infill material usage. Therefore, the determination of a 

hollowed slice can be divided into outer contour and hollowing generation, respectively. 

 

2.2. Outer contour generation  

The foundation of the contour generation is to compute all the intersection points of each 

mesh edge with the planar slicer and connect them in one or multiple close contours. Let 𝑒 =
𝑒1𝑒2̂ be a line segment with two endpoints 𝑒1 and 𝑒2, and 𝑃 = (𝑝, 𝐧) be a slicer passing point 𝑝 

with normal 𝐧. Any point on the line segment can be represented as 𝑞 = 𝑒1(1 − 𝑡) + 𝑒2𝑡, where 

𝑡 ∈ [0,1]. The parameter 𝑡∗ of the intersection is computed as, 

 𝑡∗ =
(𝑝−𝑒1)∙𝐧

(𝑒2−𝑒1)∙𝐧
 (1) 
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The intersection exists only when 𝑡 falls into the range between 0 and 1. Let 𝐸 = {𝑒𝑖𝑒𝑗} be 

the edge set of mesh model Ω, the intersection computation is executed for every edge in 𝐸 

resulting in a group of discrete intersection points. To eventually cluster them into close contours, 

we mark all the valid edges participating in the intersection operation and build an undirected 

graph 𝐺 . Then, we gather the connected components to generate point clusters {𝑝𝑖} each of 

which belongs to one close contour. Note that the weight of each edge in 𝐺 is assigned to 1, and 

the directed contours 𝑐 = {𝑐𝑖} are retrieved by the depth-first search algorithm.  

 

2.3. Hollowing definition 

Given contour 𝑐 = (𝑉𝑐, 𝐸𝑐) as a close polygon, where 𝑉𝑐 and 𝐸𝑐 are the vertex and edge set, 

respectively, the hollowing contour 𝑠𝐻 can be modeled as the shrinks of 𝑠 by shifting each vertex 

𝑣𝑖 ∈ 𝑉 in the polygon along the direction 𝐝𝑖, with a distance 𝑙, 
 𝑣𝑖

′ = 𝑣𝑖 + 𝐝𝑖𝑙,     𝑖 = 1,2, … , 𝑛 (2) 

where 𝑛 is the number of vertices in the contour. The offset distance 𝑙 is a global design variable 

that controls the shape of the hollowing contour 𝑠𝐻. The shifting direction 𝑑𝑖 is determined with 

the help of the Voronoi diagram’s poles constructed from a dense sampling on the original 

contour 𝑠. We also impose the lower and upper bound on the vertex displacement to avoid 

potential self-intersection, i.e., 𝑙 ∈ [𝑙𝐿 , 𝑙𝑈] . The lower bound 𝑙𝐿  is assigned to the minimum 

thickness that a predefined nozzle can be printed (0.1𝑚𝑚 for a 0.4𝑚𝑚 nozzle) to ensure the 

manufacturability. The upper bound 𝑙𝑈 is assigned as the minimum distance of all the contour 

vertices to the Voronoi boundary along the corresponding direction, i.e., 

 𝑙𝑈 = min ||𝑣𝑖 − ℬ(𝑣𝑖)|| (3) 

where ℬ(𝑣𝑖)  is the first Voronoi boundary that intersects with the ray starting at 𝑣𝑖  along 

direction 𝐝𝑖 , as shown in Figure 1. The minimum distance is the most conservative value to 

avoid self-intersection of the hollowing contour. For details, please refer to Ref. [11].  

 
Figure 1  Voronoi diagram of close contour. 

 

2.4. Problem formulation 

Due to the layer-wised material additive paradigm, the current build layer should always lay 

upon the previous layer. Let 𝑆 and 𝑆0 be the current and the previous build layer, respectively. 

Given a built layer 𝑆0, the objective function for the next layer 𝑆 can be defined with the notation 

and variable introduced above as, 

 max
𝑃,𝑙

ℱ(𝑆, 𝑆0) (4) 
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Note that the variables encapsulated in Eq. (4) can be categorized into two parts: the planar 

slicer 𝑃 determines the outer contour generated by the plane and mesh intersection (Section 2.1); 

the offset distance (Eq. (1)) controls the shape of the hollowing contour (Section 3.2). In this 

paper, the objective ℱ is defined as an indicator that reflects the print efficiency between two 

adjacent layers as our objective (Section 4.2). The variables are also subject to several constraints 

relating to the physical limitations of the print nozzle and other manufacturing concerns, which 

will be further investigated in the later sections. 

 

3. Fabrication concerns 

The variable direction planar slicer (VPS) is the extension of the conventional slicer by 

adding the freedom to alter each layer’s build direction. In this section, we mainly focus on two 

fabrication constraints in the printing process: 

(1) Build thickness. Due to the physical limitation of the nozzle geometry in the FDM-base 

printing, the deposition thickness of the material should be constrained in a specific range. 

(2) Support-free. The overhang features may increase the material used for support 

structures, which drags down the print efficiency. Another side effect is that the removal of the 

support structure may jeopardize the print quality. 

 

3.1. Build thickness limitation 

Given a specified nozzle size, the maximally and minimally allowed building thickness is 

introduced to ensure the print quality. Let 𝑘𝑚𝑖𝑛  and 𝑘𝑚𝑎𝑥  be the minimally allowed and 

maximally allowed building thickness, respectively. 𝑘𝑚𝑖𝑛  ensures sufficient bonding between 

adjacent layers while 𝑘𝑚𝑎𝑥  should always smaller than the nozzle size 𝑅0  in case of over-

extruding, which may deteriorate the commonly assumed ellipse cross-section shape. In this 

paper, 𝑘𝑚𝑖𝑛 is set to 0.1𝑅0 and 𝑘𝑚𝑎𝑥 is set to 0.9𝑅0. Therefore, the build thickness constraint can 

be expressed as, 

 𝑘 ∈ [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] (5) 

 
Figure 2  Illustration of the build thickness 

 

For a multi-axis printer in which the build plate can tilt and rotate, we assume that the nozzle 

axis is always aligned with the slicer normal to avoid the collision between the slice and the 

nozzle. Therefore, the build thickness should be measured along the build direction. Generally, 

when the slicer normal of the two adjacent layers are different, the build thickness varies at each 

print location. Let 𝑣 ∈ 𝑃(𝑝, 𝐧) be a print location to be built, the build thickness is computed as 

the signed distance to the previous layer 𝑃0(𝑝0, 𝐧0), that is 

 𝑘𝑣 = (𝑣 − 𝑝0) ∙ 𝐧 (6) 
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The build thickness for all the possible print locations should be tested again with the build 

thickness constraint (Eq. (5)). The build thickness between two neighboring layers is illustrated 

in Figure 2. 

 

3.2. Support-free condition 

Previous researches have confirmed the unrivaled advantage of multi-axis printing over the 

conventional 2.5-axis one on the capability of printing objects without (or with reduced) support 

structures [12]. The inevitable support structure usage has two major problems. On the one hand, 

the excessive usage of support structures may lead to substantially increased print time. On the 

other hand, residue defects left on the print part after the cleanup may jeopardize the surface 

quality. The multi-axis printing with the introduced variable direction planar slicer may resolve 

the problem. In this section, the condition for support-free printing of the VPS is studied. Then, 

the support-free region of a close contour is defined, which plays a crucial role in the support-

free slicing process of the next spherical slicer. 

 

In our previous work [13], we utilized the spherical duality to reveal the relationship between 

a point and its appropriate support-free build directions. Suppose we have a triangular surface 

patch with surface normal 𝐧, the facet is buildable (self-supported by the built geometry) once 

the following condition is satisfied, 

 𝐧 ∙ 𝐛 ≥ cos (𝛼 +
𝜋

2
) (7) 

where 𝐛 is the normalized build direction, and 𝛼 is the maximal self-supporting angle. For the 

FDM process adopted in this paper, 𝛼 = 45° is used. In the context of the fixed build direction 

paradigm, the whole facet can be built support-freely as long as the build direction satisfies Eq. 

(7). To ensure that the self-support property is always held for any point on the facet with 

variable build direction, we need to find the support-free region in which any facet that belongs 

to the layer can be built support-freely.  

 
Figure 3  Support-free build direction region determination. (a) A set of candidate facets are 

selected for computation; (b) Illustration of the facet normal and the support-free region on a 

unified Gaussian sphere 

 

Given a unified Gaussian sphere, any point on it indicates a normalized vector. Let 𝑝𝑛 denote 

the mapped point of normal vector 𝐧 , the support-free build directions satisfying Eq. (7) 

essentially form a region Φ(𝑝𝑛) on the Gaussian sphere. In fact, the fabrication of a single layer 
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covers multiple facets, each of which has a distinguish surface normal. Therefore, for a set of 

mapped points {𝑝𝑛
𝑖 }, it is easy to find that the support-free build direction lays in the region 

formed by the Boolean summation of the correspondent region of each mapped point, that is 

 Φ = Φ(𝑝1) ∩ Φ(𝑝2) ∩ ⋯ ∩ Φ(𝑝𝑛) (8) 

 

Figure 3(b) shows an example of the computation of the support-free build direction region 

for the fabrication of a cluster of potential facets given in Figure 3(a).  

 

4. Process planning  

Process planning is the crucial step in FDM, which includes both slicing and print path 

generation. The slicing strategy is first utilized to divide the target object into multiple layers, on 

which the print paths are then generated. The VPS proposed in Section 2 provides us a more 

general tool for the model decomposition. Instead of planar layers of fixed build direction 

generated from the conventional planar slicing, the target object can be segmented into a 

stacking of planar layers of variable build directions. The most challenging parts are the 

determination of the build layer sequence and the print path planning on each generated layer. 

The two issues will be alleviated in this section. 

 

4.1. Curved skeleton extraction 

The key to the fabrication sequence determination is to find a sequence of VPS, i.e., 

{𝑃(𝑝𝑖, 𝐧𝑖)}, each of which corresponds to a cut plane. Conceivably, there will be an infinite 

number of possible planes that intersect with the target mesh. The curved skeleton is a powerful 

feature embedded in a 3D object to reflect the shape topology, which is widely adopted in the 

realm of computer graphics, like shape matching, animation. In this paper, we suppose that the 

target object is a genus-zero geometry with a single skeleton to reduce the problem difficulty. 

 

The mean curvature-based [14] and the Laplacian smoothing [15][16] are the two most 

popular skeleton extraction methods in defining the shape topology. As pointed out by Ref. [17], 

the former may result in a 2D surface that can not be directly applied to describe the tendency of 

the topology changes. In this paper, we resort to the Laplacian smoothing to extract the skeleton 

of the given geometry. Referring to Ref. [16], the curved skeleton is extracted by iteratively 

contracting on the discrete geometry data. The method converges fast and is robust for multi-

genus geometries. The discrete skeleton generated from Ref. [16] cannot be directly utilized in 

the process planning. Moreover, the existence of potential sharp corners in the original skeleton 

is another issue. To address these problems, we first apply the Laplacian smoothing and utilize 

the B-spline fitting to convert the discrete vertices into a parametric curve.  

 

Let 𝒟(𝑡) denote as the parametric skeleton generated from the Laplacian-based contraction, 

where 𝑡 ∈ [0,1] is the curve parameter. Starting from 𝒟(0) to 𝒟(1), we find that the growth of 

the curve roughly matches the additive direction of the geometry from base to top. In other 

words, point 𝒟(𝑡)  reflects the sequential state of the manufacturing process. Therefore, the 

position variable in the VPS, i.e., 𝑝, is replaced by the skeleton with a single parameter 𝑡. Figure 

4 illustrates two examples of curved skeleton extraction and skeleton refinement. 
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Figure 4 Illustration of the curved skeleton extraction and refinement of two test models. 

 

4.2. Print sequence optimization 

Layered manufacturing often suffers from long print time with limited print depth for each 

layer. Compared with the fabrication of objects with overhang features, support-free printing 

saves time for the fabrication of support structures. Even for support-free printing, different build 

directions may result in different layer shapes (both outer and hollowing contour), affecting the 

print time. Since the previously built layer is treated as the given condition for the optimization 

of the next layer, the local optimization of the next layer may not be the global optimization for 

the total print time. Based on the observation that the total volume of the target geometry is a 

fixed value, we introduce a two-stage optimization scheme to increase print efficiency. In the 

first stage, a sequence of VPSs is computed by maximizing the volume between two consecutive 

layers without hollowing, while the offset distance is optimized for the mesh hollowing. 

 

The introduction of the parametric curved skeleton reduces the variables in the objective 

function (Eq. (4)) to one curve parameter and the normal of the slicer. The optimization problem 

defined in Section 2.4 can be written as, 

 max
𝑡,𝐧

𝑉𝑜𝑙(𝑆, 𝑆0) (9) 

 s. t.    𝑝𝑛 ∈ Φ(𝒩(𝑆0)),   𝑡 ∈ (𝑡(𝑆0), 1],   𝑘(𝑆, 𝑆0) ∈ [0.1𝑅0, 0.9𝑅0]    

where: 𝑝𝑛  is the mapped point of normal 𝐧  on the unified Gaussian sphere, 𝒩(𝑆0)  is the 

potential facets on the target geometry Ω whose signed geodesic distances to the facets that 

intersect with 𝑆0 are below a threshold (maximally allowed print depth is adopted in the paper), 

𝑡(𝑆0) is the skeleton parameter that determines the slicer of 𝑆0 . The layer thickness should 

always satisfy the build thickness constraint. To estimate the volume between the two layers, we 

first adopt the strip triangulation to stitch the two layers into a watertight triangulated mesh. The 

tetrahedral meshing [18] is then applied to convert the triangulated surface patches into 

tetrahedrons. The total volume is the summation of the volume of each tetrahedron.  

 

The optimization starts with the initial slicer 𝑃0 = (𝒟(0), [0,0,1])  and the corresponding 

contour 𝑆0, the optimized VPSs are found in sequence until the skeleton parameter reaches one. 
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The target geometry decomposes into a stacking of outer contours by the mesh and plane 

intersection. The next task is to generate the support-free hollowing.  

 

4.3. Support-free hollowing 

The condition for successful filament deposition requires that the current layer should always 

be supported by the previously built geometry. In other words, given two neighboring layers, 𝑆 

and 𝑆0, layer 𝑆 is supported by layer 𝑆0 as long as the projection of 𝑆 onto 𝑆0 always inside the 

region bounded by the layer contour of 𝑆0 . Let Γ(𝑆) denote as the projection of 𝑆 along the 

negative direction of the cut plane normal onto the previous layer 𝑆0 , the inclusion relation 

between the projection Γ(𝑆) and S0 can be represented as 

 Π = Γ(𝑆) − Γ(𝑆) ⋂ 𝑆0 (10) 

 

As shown in Figure 5(a), the deposited filament can be supported when Π = ∅. Due to the 

self-support property of the material, a relaxation distance 𝑟 is added to the projection to normal 

shrinking the bounded region (see Figure 5(b)). A conservative value is chosen to ensure the self-

support property of the hollowing contour, that is 

 𝑟 = min
𝑝∈𝑆

𝑘𝑝 sin 𝛼 (11) 

 
Figure 5  Illustration of the layer projection (a) without relaxation; (b) with relaxation. 

 

The outer contours of the neighboring two layers have already known, when the hollowing 

contour of layer 𝑆 is given, the offset distance 𝑙0 that determine the hollowing contour of layer 𝑆0 

can be optimized when the overlap region of 𝑆0 and the relaxed projection Γ𝑟(𝑆) is minimized 

while Eq. (10) is preserved, that is 

 𝑙0
∗ = arg min

Π=0,𝑙0 ∈[𝑙𝐿,𝑙𝑈]
||𝑆0(𝑙0) − Γ𝑟(𝑆)|| (12) 

 

The offset distance optimization should be applied to each layer. According to Eq. (12), the 

offset distance computation starts from the very top layer and follows the top-down manner 

sequentially.  

 

4.4. Print path planning 

The print path planning is also known as the path filling process that generates the print path 

to fill the region between the outer contour and hollowing contour. Since the hollowing contour 

is defined as the normal offset of the outer contour, the simple but effective contour parallel print 

path is adopted in the paper. 

1250



 

Referring to Figure 6(a), the nozzle deposits the melted filament onto the printed part during 

the printing, which fills up the gap between the nozzle and the previous layer. In our previous 

work [5], the cross-section of the re-solidified filament is modeled as an ellipse with 𝑤1 and 𝑤2 

being the major axis length the minor axis length, respectively. The major axis length is roughly 

equal to the nozzle diameter, i.e., 𝑤1 = 2𝑟0. The minor axis length is equal to the build thickness 

𝑘. A proper overlapping between the two neighboring paths should be enforced to obtain enough 

lateral bonding, which is known as the path interval. According to our ellipse model, in the 

conventional 2.5-axis printing, since the build thickness is a fixed value, the constant lateral 

bonding is preserved with constant path interval. However, for print locations with different 

build thicknesses, constant path interval may result in overlapping difference, which corresponds 

to different lateral bonding. In this work, to simplify the problem, we set a conservative path 

interval, which is equal to the major axis length, to control the minimum lateral bonding. 

 
Figure 6  (a) Side step determination; (b) Contour parallel path. 

 

The generation of the contour parallel paths begins with the outer contour 𝑆 . The next 

contour is obtained by the curve offsetting such that the interval between the two paths equals to 

𝑤1. Borrowing the concept of cutter contact (CC) point in the subtractive machining process [19], 

let 𝑐𝑐𝑖
𝑗
 denote the 𝑖-th contour point on the 𝑗-th path, the corresponding contour point on the next 

contour is computed as, 

 𝑐𝑐𝑖
𝑗+1

= 𝑐𝑐𝑖
𝑗

+ 𝐝𝑖𝑤1 (13) 

 

The process iterates until the region between the outer contour, and the hollowing contour is 

filled with print paths. It is worth noting that the feed step should also be considered for print 

path with variable build thickness. The feed step should be set to comply with the volume 

equilibrium between the deposited material and the filament. The feed step 𝑙𝑒 sending to the feed 

extruder for depositing the material between two neighboring print locations is computed as,  

 𝑙𝑒 =
𝑤1𝑤2||𝑐𝑐𝑖+1−𝑐𝑐𝑖||

4𝑟𝑚
2  (14) 

where 𝑟𝑚 is the filament radius. For details, please refer to our previous work [5]. 

 

So far, we have presented the process planning containing both the layer decomposition and 

print path planning. The target geometry is discretized into a sequence of planar layers, each of 
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which is filled with contour-parallel paths. The paths are then converted into G-code for the 

printer to execute.  

 

5. Results and discussion 

A suite of algorithms proposed in this paper has been implemented by us in MATLAB and 

C++. The remeshing that generates the triangulated mesh in a close region is achieved by 

invoking the isotropic remeshing related function derived from CGAL, and the well-known 

Mitchell-Mount-Papadimitriou (MMP) algorithm is applied to find the geodesic-based potential 

facets. The multi-axis FDM hardware system, which integrates an FDM extruder and a 6-DOF 

UR5 robotic arm, is developed to conduct the physical experiment. For the configuration details, 

please refer to Ref. [5]. 

 

The single-branch model shown in Figure 4(a) is selected as our test example. The nozzle 

size is fixed to 𝑅0 = 0.4 𝑚𝑚, which limits the feasible build thickness in the range between 0.04 

mm and 0.3 mm. Before optimizing the print sequence, the curved skeletons of the two models 

are extracted using the method adopted in Section 4.1. The results are shown in Figure 4. For 

comparison, the top layer of the first model is removed, resulting in an open mesh. Since the 

skeleton extraction method adopted takes the discrete point cloud as input, the result remains the 

same for the first example. 

 

Next, we call the print sequence subroutine to generate an optimized sequence of VPS. In 

total, 471 VPSs are found. Once the VPSs are obtained, the outer contour of each layer is 

computed by the plane and mesh intersection. The point order is sorted by considering the mesh 

topology (see Figure 7(a)). Then, the optimization for the hollowing contour of each layer is 

conducted in a top-down manner. Since the given model is an open mesh, the minimally allowed 

offset distance is enough for support-free printing while maintaining manufacturability. The 

offset distance begins to increase after some layer to satisfy the self-support condition.  

 
Figure 7  Process planning. 

 

The contour-parallel path is generated for each layer with a fixed path interval. Before 

converting to the machine-aware G-code, the print path on each layer is connected in a head-tail 

manner, while a traversing path is added between the paths of the neighboring layers. To avoid 

the potential collision between the nozzle and the already built geometry, we set a clearance 

distance for the traversing path. The rotation operation for the build direction change can only be 
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executed after the nozzle reaches the clearance height. The print paths on three different layers 

are given in Figure 7(b). The print path with build thickness visualization for layer# 200 is also 

depicted in Figure 7(c). 

 

The physical test is conducted on our multi-axis 3D printer [5], and the result is shown in 

Figure 8(b). Clearly, the inevitable support structure (generated from Meshmixer with default 

settings) is needed to fabricate the model on a conventional 3-axis printer as shown in Figure 

8(a), which takes up to around 8% of the total volume.  

 
Figure 8  (a) The model with overhang features; (b) 3+2-axis support-free printing. 

 

6. Conclusion 

We have presented a framework of the support-free hollowing of 3+2-axis printing for 

column-like geometry with a single skeleton. To overcome the tangling of the print sequence 

determination and the hollowing, we have developed a two-stage strategy. With the introduction 

of the 3+2-axis printing scheme, it is expected that the print efficiency will improve while the 

residue artifacts caused by the support structure on the contact surface can be ultimately 

eradicated. The limitation of the current strategy is the flexibility in handling geometries with 

multiple skeletons or multi-genus. The segmentation strategy developed in the field of machining 

[20] may be adopted to resolve the problem.  
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