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Abstract 
Computed axial lithography (CAL) is a tomographic additive manufacturing technology 

that offers exceptionally fast printing in a wide range of materials. CAL involves pre-computing 
a sequence of light patterns to be projected into a photopolymer. For a uniform spatial 
discretization of the target geometry, computational time scales inversely with the cube of the 
discretization pitch, which makes it challenging to exploit the full space-bandwidth product of 
available spatial light modulators. This work introduces an adaptive voxelization approach to 
reduce computational expense. Using one of several proposed mesh-based complexity analyses, 
a CAD model is recursively subdivided into stacked sub-meshes of varying voxel resolution. 
These complexity methods can be tailored to emphasize complexity in particular regions. Each 
sub-mesh is then independently voxelized before projections are generated and optimized in 
parallel. On a four-core CPU, this method results in a 2 − 6 × speedup with applications in high-
precision CAL and other voxel-based additive manufacturing computations. 

 

Introduction 
Computed axial lithography (CAL) is a photopolymer resin-based volumetric additive 

manufacturing (VAM) method which pre-computes a projection sequence based on an inverse 
computed axial tomography algorithm [1]. During CAL printing, 2D images are projected 
through a rotating cylindrical volume such that the cumulative energy dose is sufficient to 
polymerize the target geometry. To resolve fine details and achieve a smooth surface finish, it is 
desirable to use high-resolution images during projection. Currently, the 2D images are pre-
computed based on a uniform spatial discretization, or voxelization, of the target geometry – 
referred to as the ‘standard’ approach. However, the computational time of projection generation 
scales inversely with the cube of the discretization pitch. This limits the accessibility of high-
resolution CAL printing despite improvements in the achievable optical resolution of the system. 

Voxel-based methods are becoming more prominent in pre-processing for additive 
manufacturing. While the .STL file format can more precisely describe the surface of a given 
geometry, the simplicity of the voxel format - the 3D analog to a pixel image - enables the use of 
complex computational techniques to improve AM processes. Examples include lattice 
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generation [2], optimized build orientation [3], energy and error optimization [4], and 
tomographic reconstruction itself [1]. Additionally, adaptive resolution voxelization, in which 
the voxel size is non-uniform, has previously been applied in feature recognition. In one 
application, a point cloud representation of a 3D-scanned ear is analyzed and recursively 
subdivided according to proximity functions which capture the nearness of every point to a set of 
keypoints [5]. This subdivision has the effect of emphasizing distinct surface features. 

Several layer-based AM processes have begun to utilize adaptive layer heights for more 
efficient printing, including digital light processing [6] and fused deposition modeling [7]. These 
methods analyze the contour of the target geometry and calculate a set of layer heights required 
to maintain an error threshold based on the intrinsic surface errors introduced by a given AM 
process. The goal of adaptive layer height methods is to improve print speed while maintaining 
reasonable accuracy. 

In this work, an adaptive voxelization scheme is constructed to enable efficient projection 
sequence generation for CAL printing. This process dramatically improves computational speed 
while maintaining reconstruction accuracy (Figure 1). First, several mesh-based complexity 
methods, which are used to identify complex features of the target geometry, are introduced and 
analyzed. The results of this analysis drive the recursive subdivision of a CAD model into 
stacked sub-meshes which are then voxelized at non-uniform resolutions. Then, the algorithms 
used to generate and reconstruct the final projection sequence - including a parallel processing 
implementation - are described. Finally, computational speed and reconstruction accuracy are 
evaluated with respect to the current state-of-the-art. 

 

Figure 1. Cubic curves are fit to the projection generation time data for the standard and parallel processed adaptive projection 
computation methods. Effective resolution for the adaptive process is the base resolution for each sub-mesh multiplied by the 

number of sub-meshes. For the standard process, effective resolution is the same as the resolution. The voxel error rate, a 
measure of predicted over-exposure, shows no consistent trends. However, the errors for each approach are within an order of 
magnitude. This demonstrates the benefit of the adaptive voxelization approach – significant computational speed-up without 

sacrificing accuracy. 
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Methods 
The process for utilizing the proposed adaptive voxelization scheme is detailed in Figure 

2. The complexity analyses and projection stitching are built around the pre-existing process for 
projection computation developed for CAL printing.  

 

Figure 2. A process outline for the adaptive voxelization approach. 

Complexity Analysis and Subdivision 
The goal of an adaptive voxelization algorithm is to make more efficient use of 

computational resources by using greater computed projection resolution for more complex 
sections of the target geometry. Therefore, methods of identifying complexity in a target 
geometry must be developed. 

In its simplest physical representation, CAL has no interactions between voxels in the 𝑧𝑧-
direction (the axis of rotation for the cylindrical resin volume), unlike some VAM technologies 
[8]. In this case, the computation associated with each horizontal row of the voxelized target is 
self-contained. Therefore, splitting the model using 𝑧𝑧-normal planes will enable independent 
projection sequence generation while losing no data. 
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Complexity analysis will ultimately drive the subdivision progression in the adaptive 
voxelization scheme. Figure 3 compares the layer-based complexity for several geometries using 
each proposed method, with the overall complexity as the integral under these curves. The 
simplest of the proposed complexity methods, ‘n-vertices’ and ‘vertex density’, are based on 
mesh properties. These methods do not require layer-based analysis and the total complexity is 
calculated by counting the number of vertices and calculating the vertex density of a mesh, 
respectively. These methods can provide a rough estimation of the complex regions of a part. 
Other metrics such as a bulk-volume1-to-volume ratio and surface-area-to-volume-ratio have 
been demonstrated to provide similar results to the vertices-to-volume ratio [9]. However, mesh-
based definitions of complexity are not without limitations. Vertex and triangle metrics are 
dependent on mesh export resolution and mesh refinements. Surface area and volume metrics 
require watertight meshes, which can be difficult to maintain after subdivision because the new 
faces required to cap a sub-mesh at the split plane are not often trivial to create. 

 

Figure 3. Complexity comparisons. Models from top to bottom: Rodin’s Thinker, the Stanford Bunny, a triple vasculature for 
microfluidics, and an octet truss unit cell. Methods from left to right, ‘n-vertices’, ‘vertex density’, ‘perimeter gradient’, and 

‘perimeter-to-area ratio.’  

 
1 Bulk-volume is the sum of the volume of an object and the volume enclose by an object: e.g., the bulk volume of 
a hollow sphere is simply the volume of a solid sphere of the same radius. 
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The ‘perimeter gradient’ and ‘perimeter-to-area ratio’ are layer contour-based complexity 
methods. Using these metrics, the complexity is calculated by taking a sum of the complexity of 
all layers. Despite CAL’s departure from layer-based 3D printing, slicing the model can provide 
insight into the relative complexity along the 𝑧𝑧-axis of the target. The ‘perimeter gradient’ 
method uses the layer-to-layer difference in section perimeter to define regions of the geometry 
with the most significant cross-section changes as complex. The ‘perimeter-to-area ratio’ is 
calculated for each layer by dividing the perimeter of each layer contour by its area. In cases 
where there are multiple entities represented in a layer, the summed perimeter and summed area 
are used to compute the ratio. The perimeter-to-area ratio is simply calculated and the basis of 
more rigorous measures of shape complexity, like the fractal dimension index [10]. This method 
ultimately assigns high complexity to regions of a geometry with relatively small cross sections 
and, in theory, to layers with high fractal dimensions. 

 

Figure 4. The subdivision process for the Thinker using the ‘n-vertices’ (top) and ‘perimeter gradient’ (bottom) methods. A binary 
tree labelling structure is used to track subdivisions: e.g., 𝑖𝑖 = 0 represents the top half of the model and 𝑖𝑖 = 01 represents the 
upper third quartile of the model. If 𝜇𝜇𝑖𝑖, the complexity of a given sub-mesh, exceeds 𝜀𝜀, the subdivision process continues. While 

each method subdivides the model into six sections, they emphasize complexity in different regions of the geometry.  

The recursive subdivision algorithm (Figure 4) used is consistent across all proposed 
complexity analyses. First, the maximum subdivision depth, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, is defined. Then, one of 
several complexity methods is used to define the complexity, μ, of the full geometry and a 
complexity threshold, 𝜀𝜀, is set using Eq. 1. This threshold is chosen to distribute the complexity 
uniformly across subdivisions. For example, with 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 set to 3, the maximum number of 
resultant sub-meshes is 8. This threshold ensures that each sub-mesh contains less than 1/4th of 
the total complexity. 

 𝜀𝜀 =
𝜇𝜇

2𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1
 (1) 
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The recursive subdivision process begins, using a 𝑧𝑧-normal plane at the centroid of the 
mesh to split the model if μ𝑖𝑖, the sub-mesh complexity, exceeds 𝜀𝜀. Subdivision terminates when 
all sub-meshes are below the complexity threshold or the maximum depth is reached. This 
process creates a binary tree structure with each leaf representing a sub-mesh. 

In Figure 5, the reconstruction error is compared for the standard and adaptive projection 
generation methods. This error is based on a comparison between the dose reconstruction and the 
binary target. In this binary scheme, voxels contained inside and outside of the target region are 
noted as ‘gel’ and ‘void’ voxels, respectively. A threshold is set using the minimum dose 
received in a gel voxel of the target, and the error is defined as the ratio of void voxels which 
receive a greater dose than the threshold to the total voxel count. This error quantifies the 
predicted overcuring of the print. In Figure 5, none of the complexity analyses stands out in 
consistently predicting the reconstruction error, although the ‘perimeter-to-area ratio’ and 
‘perimeter gradient’ methods show promising results. Even between the standard and adaptive 
approaches, the best-suited complexity method for prediction is inconsistent. 

 

Figure 5. In the far-right column, the linear layer-based error for each model is compared for a low-resolution standard, high-
resolution standard, and mixed resolution adaptive approaches. The magnitudes of errors for each are comparable. For the 

Thinker (top), the ‘perimeter gradient’ captures the adaptive error best while ‘n-vertices’ captures the standard error best. For 
the triple vasculature (bottom), the ‘perimeter-area ratio’ and the ‘perimeter gradient’ are the best predictions for the adaptive 

and standard errors, respectively. This inconsistency motivates the exploration of other complexity definitions. 

In some cases, the results of the complexity analyses are sub-optimal: e.g., not all the 
complex features of a target geometry are recognized by an individual analysis method. 
Therefore, a user-manipulated method of defining complexity is implemented [7]. This custom 
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definition parametrizes the perimeter-to-area ratio, 𝑃𝑃/𝐴𝐴, and the number of distinct closed 
contours or entities, 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒, in a 𝑧𝑧-slice, as in Eq. 2  

μ𝑙𝑙𝑚𝑚𝑙𝑙𝑒𝑒𝑙𝑙 = (𝑃𝑃/𝐴𝐴)α ⋅ (𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒)β (2) 
 

with 𝛼𝛼 and 𝛽𝛽 as the user-modified parameters. For any geometry, the user can adjust the 
parameters to match the resulting complexity curve to their own intuitive understanding of 
complexity. The results of this method are demonstrated in Figure 6. This method enables greater 
control over the complexity definition, and thus, the subdivision progression. Ultimately, these 
changes affect the local resolution in projection computation. 

 
Figure 6. For the Thinker, (A) and (B) represent two possible complexity definitions by changing the 𝛼𝛼 and 𝛽𝛽 parameters. For the 

Stanford Bunny, (C) and (D) serve the same purpose. For the Triple Vasculature, complexity definition (E) results in the 
subdivision scheme (G), while complexity definition (F) results in subdivision scheme (H). A flexible, modular complexity definition 
is useful for two reasons. First, it broadens the scope of applications beyond CAL-specific complexity. Second, the CAL process is 
still being studied to find which features are difficult to print – this method doesn’t tie down complexity to certain feature types. 

Projection Computation and Stitching 
After recursive subdivision, each sub-mesh leaf has a 3D target geometry computed on a 

Cartesian voxel basis. The discretization pitch is dependent on a base resolution, 𝑟𝑟𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒, and 
scales with the inverse of 2𝑑𝑑𝑖𝑖 . This approach implements increased resolution for sections of 
greater complexity (i.e., sections at a greater subdivision depth).  

We can now move onto projection initialization and optimization. However, the targets 
for each leaf are centered around their own centroid, rather than the global centroid. The 
resulting tomographic reconstructions would thus be inconsistent between leaves. To account for 
this offset in projection initialization, the ASTRA toolbox [11] enables the use of a rotational 
axis offset. This offset is calculated in 𝑥𝑥 and 𝑦𝑦 according to Eq. 3, Eq. 4. 

Δ𝑥𝑥 = (2𝑑𝑑𝑖𝑖 ⋅ 𝑟𝑟𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒)/∆𝑧𝑧 ⋅ δ𝑥𝑥𝑖𝑖 (3) 
Δy = (2𝑑𝑑𝑖𝑖 ⋅ 𝑟𝑟𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒)/∆𝑧𝑧 ⋅ δ𝑦𝑦𝑖𝑖 (4) 
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where δ𝑥𝑥 and δ𝑦𝑦 are the leaf offsets from the global axis of rotation and width and Δ𝑧𝑧 is the 
global height. Further explanation of these equations is found in Figure 7 below. 

 

Figure 7. Rotation axis (green and blue circles) offsets from the true centroid (red) are calculated according to Eq. 3 and Eq. 4. 
The ASTRA toolbox accepts pixel values for the offsets, so we first transform from the model coordinate system to the voxel 
coordinate system. This is achieved by calculating the 𝑧𝑧-fraction that the sub-mesh accounts for: (2𝑑𝑑𝑖𝑖 ⋅ 𝑟𝑟𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒)/𝛥𝛥𝑧𝑧. Then this 

fraction is multiplied by the offset in the model coordinate system, leaving us with the axes offsets in pixels. Using 𝑟𝑟𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒 = 20 in 
this example, the bottom section (blue) will have an x-offset of (22 ⋅ 20)/100 ⋅ 𝛿𝛿𝑥𝑥 = 0.8 ⋅ 𝛿𝛿𝑥𝑥 while the top section (green) will 

have an x-offset of (23 ⋅ 20)/100 ⋅ 𝛿𝛿𝑥𝑥 = 1.6 ⋅ 𝛿𝛿𝑥𝑥. This accounts for the doubled resolution of the green section. 

The projection initialization and gradient descent optimization approaches used for CAL printing 
[1] are then used to generate individual projection sequences. Because each leaf can be handled 
independently, this method is well suited for parallel processing. Parallel processing has been 
implemented in tomographic reconstruction in previous work [12], but to our knowledge, this 
approach of segmenting a target is novel. 

There are several steps in order to make the individual projection sets and dose 
reconstructions compatible. First their relative intensities need to be scaled. Second, they need to 
be resized to account for the different voxel resolutions. And last, they need to be placed into a 
master array to account for the 𝑥𝑥 and 𝑦𝑦 offsets. In optimization, a dose threshold, 𝛾𝛾𝑖𝑖, which 
attempts to divide ‘gel’ and ‘void’ doses is calculated. To ensure uniform 3D dose dynamic 
range between leaves of the target and avoid dose discontinuities along the 𝑧𝑧-axis, the optimized 
projection of each leaf is scaled by γ𝑖𝑖/γ0 with γ0 being an arbitrary threshold. This intensity 
scaling method has been experimentally validated by printing on the CAL system. 
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 The projection stitching procedure (Algorithm 1) begins by initializing a master 
projection set to match the highest depth voxel resolution. Projection sets are shaped as 
�𝑛𝑛𝑚𝑚,𝑙𝑙,𝑛𝑛θ,𝑛𝑛𝑧𝑧� where 𝑛𝑛𝑚𝑚,𝑙𝑙 is the square voxel grid length, 𝑛𝑛θ is the count of projection angles, and 
𝑛𝑛𝑧𝑧 is the voxel grid height. Therefore, to match the scaling of each set, 𝑛𝑛𝑚𝑚,𝑙𝑙

𝑖𝑖  and 𝑛𝑛𝑧𝑧𝑖𝑖  are scaled by 
the scaling factor 𝑓𝑓 (Eq. 5). 

𝑓𝑓 = 2𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑖𝑖 (5) 
 

 

Figure 8. An adaptive resolution projection image for the Thinker with 𝑟𝑟𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒 = 20. From top to bottom: (A) low-resolution of 80, 
(B) high-resolution of 160, (C) low-resolution of 80. Despite the increased effective resolution from 80 to 100, this projection set 

is generated more quickly than computing the projection set at the low resolution using the standard approach. 

Each scaled projection set is then placed relative to the center of the master projection set. This 
algorithm is modified slightly to perform dose reconstruction stitching, accounting for the 𝑥𝑥 (Eq. 
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3) and 𝑦𝑦 (Eq. 4) offsets – both scaled by 𝑓𝑓 – in the placement into the master array. The result is 
a seamless projection set calculated and resolved using non-uniform resolution (Figure 8).  

Results 
The computational time savings using the adaptive voxelization approach are 

summarized in Figure 9. The projection generation time ratio, Π, is calculated according to Eq. 6, 
accounting for the cubic time complexity of calculation. This lets us use collected data at all 
resolutions to calculate efficiency. A low Π indicates more efficient computation. All the 
represented data were collected using a 4-core CPU. 

Π =
Tgen

(𝑅𝑅effective)3 
(6) 

 
 

The adaptive parallel approach ultimately results in a 2 − 6 × speedup. Even without parallel 
processing, computation time can be reduced by up to half. The result of this approach is 
adaptive resolution projection computation that can be faster than using the standard approach to 
compute projections for the coarsest represented resolution of the adaptively voxelized target. 

 

Figure 9. Models from left to right: Stanford Bunny, Gyroid, Octet Truss, Slot Cylinder, Sphere, Test Box, Thinker, and Triple 
Vasculature. With no exceptions, the adaptive method outperforms the standard approach. The addition of parallel processing 

to the adaptive approach further improves performance.  

Discussion 
 When comparing the proposed complexity analysis methods, the layer contour-based 
metrics align well with an intuitive understanding of complexity. While mesh property-based 
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metrics are simple, they provide less insight into the how the geometry of a target evolves along 
its 𝑧𝑧-axis. Regardless, neither the ‘perimeter gradient’ nor ‘perimeter-to-area ratio’ methods can 
capture all forms of complexity. However, the user-manipulated complexity demonstrates that 
parametrized combinations of layer contour-based metrics can be tuned to detect complex 
regions of a target geometry.  

 The complexity analysis dictates the subdivision scheme of the mesh, generating a binary 
tree of sub-mesh leaves. The proposed method of normalizing, scaling, and inserting independent 
projections and dose reconstructions from each leaf into master arrays enables the use of parallel 
processing while maintaining the compatibility of the projection sets. This approach is built 
around the existing approach for projection computation for CAL and provides a simple and 
robust solution. 

 

6.8 4.82 32.16 
𝑇𝑇𝑔𝑔𝑒𝑒𝑒𝑒,seconds 

Figure 10. Optimization time improvements using the non-parallel adaptive process. The adaptively voxelized and generated 
projection set has five leaves with 𝑟𝑟𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒 = 20, and thus an effective resolution of 100. 

 When compared to the standard approach, the optimization speed-up is significant for the 
adaptive approach. As noted above, in some cases adaptive resolution projection computation 
can be faster than using the standard approach to compute projection for even the coarsest 
represented resolution of the adaptively voxelized target (Figure 10). This result is surprising and 
counterintuitive, and can be explained by differences in the optimization procedure. After 
projections are generated, they are optimized using a gradient descent algorithm which utilizes a 
user-defined error threshold exit condition. Because the range of 𝑧𝑧-positions over which the 
gradient descent optimization algorithm operates is reduced when looking at smaller sections of 
the part, the solution converges – and thus falls below the error threshold – much more quickly 
for independent leaves than for the target as a whole. Another possible explanation is the tighter 
bounding boxes that can be created for independent leaves. Rather than back projecting each 
slice using the 𝑛𝑛𝑚𝑚,𝑙𝑙 – the maximum cross section size – of the entire geometry, sections with 
smaller 𝑛𝑛𝑚𝑚,𝑙𝑙

𝑖𝑖  are calculated over a more economic domain. Additionally, parallel computing can 
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be used to optimize the solution for each leaf independently. This particular implementation of 
parallel processing for tomographic reconstruction is novel and provides a simple method to 
subdivide calculations using a parallel beam projector. 

Conclusion 
The adaptive voxelization approach demonstrated in this work can support rapid 

generation of high-fidelity projection sequences for the CAL 3D printing system without 
sacrificing accuracy. Computational resources can be allocated towards regions of the target 
geometry which are identified as complex by using a non-uniform discretization pitch. The 
complexity analyses, subdivision method, and adaptive approach developed could be applied to 
other AM processes that use a Cartesian voxel basis in pre-computing. Future work could 
include an in-depth investigation into variations of the proposed complexity analysis methods, 
expanding on the hybrid modular approach presented in this work and potentially including the 
use of the fractal dimension index as a metric. Additionally, although this method enables the 
use of higher voxel resolutions, the voxel representation referenced as the ‘target geometry’ 
throughout this work does not truly represent the mesh. More future research into a mesh-based, 
ray trace-driven reconstruction algorithm could further improve the precision of projections 
used for CAL printing. Lastly, the development of a 3D octree subdivision structure, rather than 
the 1D z-slice method discussed in this work, could lead to more detailed feature recognition 
and subdivision, and even greater efficiency in computational resource allocation.  
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