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Abstract

Numerical simulation of metal additive processes are computationally intensive tasks. Iterative
solution techniques for physics-based methods can lead to lengthy solution times and convergence
problems, particularly if fluid dynamics of the melt pool are considered. Deep learning (DL) tech-
niques offer an opportunity to infer solution results quickly. In this paper we propose a DL method
based on long short term memory (LSTM), network trained on rendered images from a metal AM
process simulation and CAM data. We obtained vector representations of the images by training
on an autoencoder. LSTM is a memory based recurrent neural networks (RNN) that is capable of
processing long sequences of data while combating temporal stability problems encountered with
conventional recurrent neural networks (RNN)s. This LSTM network is used to predict images
of the process given scan path and process information. This could later be used to compare with
process monitoring systems as part of a quality assurance or process control schema.

Key words: Additive manufacturing, autoencoder, deep learning

1 Introduction and Motivation

Additive manufacturing (AM) processes rely on a sets of technology parameters (e.g. slicing
settings, infill settings, speeds, feeds, laser settings) to generate functional machine level code to
produce printed parts. Sets of the technology parameters are commonly referred to as a ‘profile’.
The contents of a particular profile can be dependent upon process, AM system architecture, ma-
terial, and desired part geometry. Complicating matters further, performance characteristics of
the printed parts are a consideration in the profile selection for metal parts produced via Directed
Energy Deposition (DED) and Laser Powder Bed Fusion (LPBF) processes.

Developing a new 3d print profile can be a costly endeavor. Users typically rely on some combi-
nation of experimentation and simulation to justify decisions and set values for critical parameters.
This process can be both time consuming and costly. This paper presents an attempt to shortcut
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the costly computational methods used to simulate metal 3d printing processes by inference using
a LSTM [1, 2]. When successful, this inference schema has applications in process development,
machine controls, and quality assurance.

2 Literature review

Several researches have proposed different neural network architectures based on build classifi-
cation depending on the input laser process parameters. long short term memory (LSTM)-recurrent
neural networks (RNN) are widely used in applications such as text completion [3, 4], image cap-
tioning [5], stock prices forecasting [6]. LSTM networks can handle long term dependencies for
long data sequences therefore are advantageous over traditional recurrent neural networks (RNN)
architectures [7]. Other than the mentioned applications, its applications in image series prediction
is analogous to the current requirement. These networks can efficiently predict the trajectory of a
pedestrian [8, 9, 10] as well as the traffic trajectory [11, 12, 13].

Different Neural network architectures have been used in the applications of in-situ monitor-
ing and optimizing process parameters for DED processes[14, 15, 16]. However, recent studies
show that this state of art technology is primarily used for prediction of temperature history in the
DED process. According to the present literature, recurrent neural networks consisting of LSTM
cells provide an accurate mapping of temporal information about thermal distribution in the DED
process.

A study by Ren et al. [17] shows that in comparison of individual architectures, a combination
of recurrent neural networks (RNN) and DNN shows consistency in contour maps and temperature
distribution produced by finite element simulation. This type of architecture has an added advan-
tage over individual networks that LSTM cell in recurrent neural networks (RNN) learns sequential
data of laser scan path which is mapped to temperature field information via fully connected layer
in DNN. However this model is confined to single layer process prediction with limited input
information about laser process parameters and material properties.

In a similar study Mozaffar et al. [18] proposed that a stacked recurrent neural networks (RNN)
with Gated Recurrent Unit (GRU) formulation is efficient in predicting thermal history at a single
point for different geometries. GRU structure in the network can accurately find out the hidden
correlations in the high dimensional data and predicts critical features in the thermal history such
as sharp gradients, and melting and re-melting of the material.

Zhang, Liu, and Wu [19] used two Machine Learning (ML) algorithms XGBoost and LSTM-
RNN to predict the melt pool temperatures of an eight layer thin-walled CarTech® 718 alloy
sample made by DED process. Prediction accuracy of both algorithms was measured for different
input process parameters. It is found out that LSTM outperforms XGBoost algorithm in all four
special cases with highest and lowest values of Laser power and scan speed. Though LSTM is
computationally ineffective than XGBoost, fluctuation in the melt pool temperature does not affect
the accuracy of LSTM model.

Thus, LSTM model provides promising results in predicting thermal history.However, as far as
we know, no previous research has been investigated in prediction of process images based on the
laser scan path and process parameters. Although a lot of work has already been done in modeling
and simulation of DED process, this technique is time consuming and cannot always guaranteed
to be convergent. On the there hand, deep learning requires huge training data which is not easy
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to generate in AM processes. Thus, this research proposes an innovative approach of integrating
physics based iterative methods with deep learning techniques.

3 Research methodology

In this section, we describe the structure and various sections of our approach, starting with the
general overview, followed by detailed description of the sections/parts.

Our model trains an autoencoder (Section 3.1) to learn a compressed (encoded) version of
the image we feed into it. This is achieved using several convolutional layers (Section 3.3). The
compressed image (from a vector of length >49,000 to a vector of length 16) can then be de-
compressed (decoded) back into its original shape/dimension. Our model feeds the time-series
embedded vectors of very small dimension (output of the autoencoder’s encoder) into an LSTM
(Section 3.2) which we train to predict vectors that are some time steps ahead. We then use our
decoder from the autoencoder to decode these vectors into actual image vectors. The architecture
of our model can be seen in Figure 1.

3.1 Autoencoder

The concept of autoencoders as seen in Figure 2 is that we want to force a network to try to
reconstruct our data and hopefully it will learn a useful representation of the data. For traditional
autoencoders this is used for feature learning. Normally the encoder will be a 4-layer downsampled
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Figure 1: The architecture of our proposed model. There are 3 main parts: The encoder, which
consists of convolutional networks, the LSTM, and the decoder which also has convolutional net-
works.
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convolution, and the decoder a 4-layer upsampled convolution. Sometimes they share weights:
dim(z) = D,dim(z) = H,we : H x D,wg: D x H=w!.

The idea is to pass the input data through an encoder network that will produce features z. This
step can be thought as PCA. We are transforming the input data and transforming it into another
feature representation. The encoder network is usually a ReLU CNN. Normally z is smaller than z
(dimensionality reduction). The problem is that we do not have any explicit labels to use to know
which information is relevant and which one its not to decide how to make the dimensionality
reduction. To decide which is the most relevant data we reconstruct the input data only with the
information in the z features and compare the reconstruction with the original image. Specially if
the z features are small, hopefully, it will force the network to summarize the useful statistics and
to discover useful features of the input image.

3.2 Long-short term memory units

In this section we describe the deep LSTM. We let subscripts denote timesteps and superscripts
denote layers. All our states are n-dimensional. Let h! € R"™ be a hidden state in layer [ in
timestep ¢. Moreover, let 7;, ,,, : R® — R™ be an affine transform (Wx + b for some W and
b). Let ® be element-wise multiplication and let i) be an input word vector at timestep k. We
use the activations h” to predict y;, since L is the number of layers in our deep LSTM. The
LSTM is an advanced form of a recurrent neural network. The recurrent neural networks (RNN)
dynamics can be described using deterministic transitions from previous to current hidden states.
The deterministic state transition is a function

RNN: 7t pl | — Al
For classical recurrent neural networks (RNN)s, this function is given by
hl = f(Tpnhi™ + T, .kt ), where f € {sigm, tanh}

The LSTM has complicated dynamics that allow it to easily memorize information for an ex-
tended number of timesteps. The long term memory is stored in a vector of memory cells ¢, € R™.
Although many LSTM architectures that differ in their connectivity structure and activation func-
tions, all LSTM architectures have explicit memory cells for storing information for long periods
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Figure 3: A graphical representation of LSTM memory cells used in this paper [21].

of time. The LSTM can decide to overwrite the memory cell, retrieve it, or keep it for the next
timestep. The LSTM architecture used in our experiments is given by the following equations [20]:

LSTM : At Bl db | — bl é

? sigm
f1 | sigm T hit
o] | sigm | "\ AL,
g tanh

G=fOd +ioyg
hi = 0 ® tanh(c})

In these equations, sigm and tanh are applied element-wise. Figure 3 illustrates the LSTM equa-
tions.

3.3 Convolutional Neural Networks

CNNs (Figure 4) generally consist of three elements: convolutional layers (Figure 5), pooling
layers (Figure 6), and fully connected layers. In the convolutional layer, filters are convolved with
the receptive field of the input image in a sliding window style to learn data-specific features. Basic
features, such as lines, edges, and corners, are learned in the initial layers, while more abstract
features are learned as layers go deeper [22].

Generally, a pooling layer follows each convolutional layer. Max-pooling is basically a nonlin-
ear down-sampling procedure, which takes the maximum of 2x2 neighborhoods of the image, and
helps to reduce the computational complexity for the forward layers, as well as adding translation
invariancy to the network. Fully connected layers are used to learn the nonlinear combinations of
extracted features from previous layers. Dropout is recommended as a way of preventing overfit-
ting by disabling randomly chosen neurons and their connections [23]. The dropped neurons stay
inactive during the feedforward and backpropagation phases, thus forcing the network to learn
different nonlinear combinations of features on each epoch.
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Figure 4: The architecture of the original convolutional neural network, as introduced by LeCun et
al. [24], alternates between convolutional layers including hyperbolic tangent non-linearities and
subsampling layers. In this illustration, the convolutional layers already include non-linearities
and, thus, a convolutional layer actually represents two layers. The feature maps of the final
subsampling layer are then fed into the actual classifier consisting of an arbitrary number of fully
connected layers. The output layer usually uses softmax activation functions[25].
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Figure 5: Illustration of a single convolutional layer. If layer [ is a convolutional layer, the input
image (if [ = 1) or a feature map of the previous layer is convolved by different filters to yield the
output feature maps of layer /.

1300



feature maps feature maps
layer (I — 1) layer [

D\»

Figure 6: Illustration of a pooling and subsampling layer. If layer [ is a pooling and subsampling
(=1 — 4 feature maps of the previous layer, all feature maps are pooled and
subsampled individually. Each unit in one of the mgl) = 4 output feature maps represents the

average or the maximum within a fixed window of the corresponding feature map in layer (I — 1).
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4 Simulation Description

With their work in AM [26, 27], Product Innovation and Engineering LL.C (PINE) has devel-
oped several physics-based simulations in order to better understand the AM process. The sim-
ulation used in this study was developed to specifically target the thermal history of the material
during a build. This simulation has the aims of being computationally efficient while still being
based on physics. It has the expressed goals of being fast and giving general guidance to path
planning by giving a thermal history for a given build. In order to accomplish this goal, a voxel
based simulation was developed which heavily leverages a graphics processing unit (GPU) and
is based on many image processing techniques. From past simulation development experience, it
was understood that the calculation of the fluid flow is the most computationally expensive part of
the simulation, therefore it was omitted in this simulation for the sake of efficiency.

The simulation is able to predict the thermal history of a part, Figure 7a, the phase map of the
part at any given time, Figure 7b, and a cooling rate for any section of the part, Figure 7c. This
helps to give a predictor of the micro-structures within the deposition which are the driving force
behind the final mechanical properties.

The laser in the simulation is modeled in 3-D to be able to take into account the beam quality. In
many lasers the beam quality is defined using the beam parameter product (BPP) this is defined as
0.50w, where 6 and wy are the divergence angle and the beam waist respectively. These are shown
graphically in Figure 8a. When this is done in 3 dimensions the results can be seen in Figure
8b. In this figure, the laser profile for each slice is a Gaussian profile. In addition to taking into
account the quality of the laser, it is ray traced onto the object in order to account for shadowing of
the build by the incoming material and non-planar effects where the center axis of the laser is not
perpendicular to the work surface.

Other key features which have been developed in the system are the inclusion of temperature
dependent material properties and the inclusion of work holding, shown in Figure 9. The larger
section of material on the bottom of the substrate is the work holding. This work holding has
modified material properties so that it can emulate the mass and material properties of whatever
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Figure 7: Examples of data maps which can be expected from the simulation.

(a) 2-D laser representation, (b) 3-D representation of the laser profile.
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Figure 8: 2-D and 3-D representation of the laser profile.
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work holding is used in the process.
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Figure 9: Example of the the inclusion of work holding in the simulation.

5 Case Study

The simulation that was described in Section 4 was used to generate the training data for the
ML model. The parameters used in the simulation can be seen in Table 1.

Table 1: Parameters used in simulation

Parameter Value
Material Ti-64
Resolution 250 um
Laser diameter 4.0 mm
Laser power 1000 W
Laser profile TEMO0
Laser scan speed 1273 mm/min
Powder stream diameter 15 mm
Powder stream rate 12 g/min

The training images were created in an attempt to emulate images which could be collected
from a physical camera on deposition systems. These images were generated using the colors of
steel which can be seen in Figure 10. These colors were used because of the extensive character-
ization which has been performed on steels and not been performed on Ti-64. These colors will
serve as a starting point and proof of concept. In order to generate the images, the virtual camera
was placed 50 mm above the melt pool and an image was created which was 1080 pixels by 1080
pixels based on what a physical camera would image. During the image generation, cold voxels
which were recently inserted because of powder insertion were eliminated to clean up the image.
Figure 11 shows a selection of the original and reconstructed (predicted) images from the test set
after training of the autoencoder model.

Figure 12 shows the results of the next image prediction task for a test set. Its corresponding
graph of mean squared error and structural similarity score values are shown in Figure 13. This is
the combined output of both the autoencoder and LSTM models. As can be seen from the graph, all
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Figure 10: Temperature to color map used in image[28]

Figure 11: Image Reconstruction results from the trained autoencoder model

mean squared error values are below 0.001 across the test distribution and all structural similarity
score values are above 0.985.

It was interesting to observe how our model will behave in the event of a change in direction.
Figure 14 shows the results of the next image prediction task for a test set which covers a change
in direction range. Its corresponding graph of mean squared error and structural similarity score
values are shown in Figure 15. This is the combined output of both the autoencoder and LSTM
models. As can be seen from the graph, all mean squared error values are below 0.001 across
the test distribution except for a tiny spike to 0.004 around timestep 5 before it stabilizes and all
structural similarity score values are above 0.97 except for a tiny spike to 0.94 around timestep 5.
This is consistent with what one can observe from the images in Figure 14 as a start to a change in
direction at timestep 5.

For an anomaly detection case study, we obtained simulated images with holes in the metal
for the AM process at random timesteps. Figure 16 shows the results of the next image prediction
task for a test set which covers examples of images with holes. Its corresponding graph of mean
squared error and structural similarity score values are shown in Figure 17. As can be seen from
the graph, all mean squared error values are below 0.001 across the test distribution except for huge
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Figure 12: Autoencoder normal and predicted

0.010 100
0.008 0.98
0.006 0.96
w =
£ #
0.004 094
0.002 092
0.000 T T T T T 0.90 T T T T T
o 2 4 & 8 o 2 4 & 8
IMAGE TIMESTEP IMAGE TIMESTEP

Figure 13: Autoencoder normal and predicted graph

Figure 14: Autoencoder normal with change in direction
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Figure 15: Autoencoder graph of normal with change in direction

spikes at timesteps 4 and 8 and all structural similarity score values are above 0.97 except for huge
spikes at timesteps 4 and 8. This is also consistent with what one can clearly observe as holes in
the images in Figure 16 at timesteps 4 and 8.
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Figure 16: Autoencoder normal vs anomaly
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Figure 17: Autoencoder normal vs anomaly graph

6 Conclusion and Future Work

In this work, we framed the inference of Metal AM process states as a next image prediction
problem. We first trained a CNN based autoencoder to carry out the identity function of reconstruc-
tion of a given image through a series of convolutions and deconvolutions. Then, we augmented
the obtained latent vectors with process parameters to form our input at each timestep to be fed into
an LSTM model for time series prediction. We used these two models to carry out the next image
prediction in two stages: latent vector prediction with the LSTM model and image reconstruction
from the decoder of the autoencoder model. Lastly, we simulated anomalies resulting from holes
and our model was able to detect these anomalies through spikes in the response obtained from the
selected metrics of mean squared error and structural similarity.

The next step in this work is to apply the Encoder/Decoder and LSTM models to physical
AM systems. The intent of using the simulation images rather than raw simulation data for the
original model training is to facilitate the transition to real in-process camera data. Two promising
applications of the present work are:

Anomaly detection: Using methods analogous to the one presented in Section 3 on real in-process
imagery, such as a welding camera, will enable real-time anomaly detection.

Internal state inference: While the present work focuses on surface-facing data, as captured by a
simulated camera, the simulation contains data throughout the volume. Completing the link
between the observed surface states and the behavior of what is happening below the surface
will allow for exploration of the root causes of the anomaly detection. Understanding the
causes of a problem create the opportunity to develop in-situ corrective strategies.
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